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SPECTRAL ANALYSIS ON SWANSON’S
HAMILTONIAN
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In the original work of non-Hermitian Swanson’s Hamiltonian and sub-
sequent Hermitian counterpart of the same, it has been shown that the only
condition ω − α − β > 0 reflects positive energy eigenvalues. However, we
find that the Swanson Hamiltonian reflects both positive as well as negative
energy under the same condition (ω−α−β > 0). In order to complete the
work, we also discuss the wave function corresponding to negative energy.
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1. Introduction

In 2004, Swanson [1] has considered an interesting non-Hermitian qua-
dratic Hamiltonian as

H = ω
(
a†a+ 1

2

)
+ αa2 + β

(
a†
)2

, (1)

where α, β, ω are real constants and α 6= β. Here, a and a† are annihilation
and creation operators of harmonic oscillator respectively. The author [1]
proposed that the above Hamiltonian will produce real and positive eigen-
values provided that

ω2 − 4αβ ≥ 0 . (2)

Swanson’s Hamiltonian has been used as a model to investigate the non-
Hermitian systems by several authors [2–15]. Jones [3] showed that the
Hamiltonian given in Eq. (1) with the condition

ω > α+ β (3)
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can be written as

H =
p2

2
(ω − α− β) +

(
ω2 − 4αβ

)
(ω − α− β)

x2

2
. (4)

Let us consider

h =
2H

(ω − α− β)
= p2 +

(
ω2 − 4αβ

)
(ω − α− β)2

x2 , (5)

and re-write it as
h = p2 + ω2

0x
2 (6)

with

ω2
0 =

(
ω2 − 4αβ

)
(ω − α− β)2

, (7)

whose energy eigenvalues and eigenfunctions are

En = (2n+ 1)ω0 (8)

and

ψn(x) =

[ √
ω0√

π2nn!

] 1
2

e−
ω0x

2

2 Hn (
√
ω0x) , (9)

whereHn(
√
ω0x) is the Hermite polynomial. If one will consider the simulta-

neous non-Hermitian transformation of momentum and coordinate proposed
by Rath and Mallick [16], then the energy eigenvalue of the transformed
Hamiltonian of the Hamiltonian in Eq. (6) would lead to negative spectrum.
The concept of negative energy in harmonic oscillator under simultaneous
transformation of momentum and co-ordinate has been discussed by Fernan-
dez [17] and Rath [18]. Further, the concept of negative energy in bosons
has been discussed by Nielsen and Ninomiya [19]. Providencia et al. [20]
have discussed Swanson’s Hamiltonian considering the operator

Hθ =
p2

2
(1− i tan 2θ) + x2

2
(1 + i tan 2θ) , (10)

where θ is confined in the range of −π
4 < θ < π

4 , and using the condition,
S−1HθS = H, noticed that H can be transformed to the same Hermitian
operator as obtained by Jones as

H = ω
(
a†a+ 1

2

)
, (11)
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where ω > 0. However, the authors of [20] have not discussed negative
energy i.e. ω < 0. On the other hand, authors have shown that another
definite operator with negative potential energy,

Hα = p2 − γ(γ − 1)

cosh2(x− iα)
, (12)

can possess negative energy. We also noticed that Bagarello et al. [21] have
discussed D-deformed harmonic oscillator following the relation

abf − baf = f , (13)

where f ∈ D, and used the orthonormality relation

〈φn|ψm〉 = δmn , (14)

where |φn〉 is the basis of harmonic oscillator. One is able to construct
D-deformed harmonic oscillator Hamiltonians using a transformation of the
type ψ = Uφ (see Eq. (3.11) in [21]). However, one is not able to construct
D-deformed Hamiltonians if ψ 6= φ and ψ 6= Uφ. The paper motivates
for constructing new operators satisfying the condition as stated earlier. In
addition, we find that Bagarello et al. [22] have constructed non-self adjoint
operator relating to position and momentum and hence discussed about the
positive energy spectra.

The above works [17–22] inspire us to test its validity in Swanson’s model.
However, in this work, we apply the simultaneous non-Hermitian transfor-
mation of momentum and co-ordinate to Swanson’s Hamiltonian and notice
that the system can admit negative energy.

2. Non-Hermitian transformation of co-ordinate and momentum

Now, apply the non-Hermitian transformation proposed by Rath and
Mallick [16] to define the co-ordinate, x, and momentum, p, as

x→ x+ iλp√
(1 + δλ)

(15)

and
p→ p+ iδx√

(1 + δλ)
. (16)

With the above transformation, the Hamiltonian defined in Eq. (6) can be
transformed to

h =
1

(1 + λδ)

[
p2
(
1− λ2ω2

0

)
+ x2

(
ω2
0 − δ2

)
+ i
(
λω2

0 + δ
)
(xp+ px)

]
.

(17)
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In order to solve the above Hamiltonian, we use the second quantization
formalism [18] to define

p = i

√
W

2

(
a† − a

)
(18)

and

x =

(
a† + a

)
√
2W

, (19)

whereW is the unknown parameter. Here, a† and a satisfy the commutation
relation as [

a, a†
]
= 1 . (20)

Using Eqs. (18) and (19), we can rewrite Eq. (17) as

h = hD + hN , (21)

where

hD =

(
2a†a+ 1

)
(1 + λδ)

[(
1− λ2ω2

0

)W
2

+

(
ω2
0 − δ2

)
2W

]
(22)

and
hN = Ua2 + V

(
a†
)2

(23)

with

U =
1

(1 + λδ)

[
−W

2

(
1− λ2ω2

0

)
+

(
ω2
0 − δ2

)
2W

+
(
δ + λω2

0

)]
(24)

and

V =
1

(1 + λδ)

[
−W

2

(
1− λ2ω2

0

)
+

(
ω2
0 − δ2

)
2W

−
(
δ + λω2

0

)]
. (25)

Now, we consider the zero energy correction method introduced by Rath and
Mallick [16] to solve the above Hamiltonian. In this formalism, one need to
choose the coefficient of the appropriate operator i.e. either the coefficient
of a2 or (a†)2 such that it is equal to zero and the non-diagonal terms of the
Hamiltonian give zero contribution to the energy eigenvalues.
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2.1. Case-I: For V = 0

If one considers the coefficient of (a†)2 to be zero, then one will find that
the value of W is

W1 =
−
(
δ + λω2

0

)
± (ω0 + λω0δ)(

1− λ2ω2
0

) . (26)

If we take the positive sign while calculating W1, then we will get

W1+ =
(ω0 − δ)
(1 + λω0)

. (27)

Substituting the value of W1+ in Eq. (21) and using perturbation theory
[16, 23–28], one can easily show that all orders of energy corrections, E(m)

n ,
will be zero. Here, we find that the energy eigenvalues of the Hamiltonian
(Eq. (21)) are the same as that of the original Hamiltonian (Eq. (6)) which
is En = (2n + 1)ω0. If we consider the negative sign of Eq. (26) while
calculating W1, then we will get

W1− =
(ω0 + δ)

(λω0 − 1)
. (28)

Substituting Eq. (28) into Eq. (21) and using perturbation theory, we find
that the energy eigenvalues of the Hamiltonian (Eq. (21)) are

En = −(2n+ 1)ω0 (29)

and the wave function is

ψn(x) =

[ √
W1−√
π2nn!

] 1
2

e−
W1−x2

2 Hn

(√
W1−x

)
(30)

with
〈ψn|ψn〉 = 1 . (31)

The wave function of the Hamiltonian corresponding to the negative energy
using perturbation theory will be of the form of

Ψkn =

k∑
k=0

(−1)k
[
(λ+ δ)

(1 + λδ)

]k√(n+ 2k)!

n!
|ψn+2k〉W1− . (32)

The normalization condition and eigenvalue relation for the above case
can be written as 〈

ψn|Ψkn
〉
= 1 (33)

and
〈ψn|h|Ψkn〉 = En = −(2n+ 1)ω0 , (34)

respectively.
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2.2. Case-II: For U = 0

If one considers the coefficient of a2 as zero, then one will find that the
value of W is

W2 =
−
(
δ + λω2

0

)
± (ω0 + λω0δ)

(λ2ω2
0 − 1)

. (35)

If we take the negative sign while calculating W2, then we will get

W2− =
(ω0 + δ)

(1− λω0)
. (36)

Substituting Eq. (36) into Eq. (21) and using perturbation theory, we find
that the energy eigenvalues of the Hamiltonian (Eq. (21)) is

En = (2n+ 1)ω0 . (37)

If we take the positive sign while calculating W2, then we will get

W2+ =
(δ − ω0)

(1 + λω0)
. (38)

Substituting the value of W2+ (Eq. (38)) in Eq. (21) and using perturbation
theory, we find that the energy eigenvalues of the Hamiltonian (Eq. (21)) is

En = −(2n+ 1)ω0

which is the same as Eq. (29). For this case, the wave function corresponding
to the negative energy will be

φn(x) =

[ √
W2+√
π2nn!

] 1
2

e−
W2+x2

2 Hn

(√
W2+x

)
(39)

with
〈φn|φn〉 = 1 . (40)

The wave function of the Hamiltonian corresponding to negative energy
using perturbation theory will be of the form of

Φkn =

k∑
k=0

[
(λ+ δ)

(1 + λδ)

]k√ n!

2kk!(n− 2k)!
|φn−2k〉W2+ . (41)

The normalization condition and eigenvalue relation for the above case
can be written as 〈

φn|Φkn
〉
= 1 (42)
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and
〈φn|h|Φkn〉 = En = −(2n+ 1)ω0 , (43)

respectively.
In both the cases, we have seen the appearance of negative energy eigen-

values of the transformed Hamiltonian. The values of negative energy for the
specific values of α, β and ω satisfying the condition in Eq. (2) are reflected
in Tables I and II.

TABLE I

The values of α, β, ω, ω0 and corresponding negative energy eigenvalues with the
condition, ω − α− β = 1.

α β ω ω0 =
√

(ω2−4αβ)
(ω−α−β)2 En = −(2n+ 1)ω0

4 3 8 4 −4 (2n+ 1)

16 15 32 8 −8 (2n+ 1)

25 24 50 10 −10 (2n+ 1)

TABLE II

The values of α, β, ω, ω0 and corresponding negative energy eigenvalues with the
condition, ω − α− β = 2.

α β ω ω0 =
√

(ω2−4αβ)
(ω−α−β)2 En = −(2n+ 1)ω0

3 2 7 5
2 − 5

2 (2n+ 1)

10 9 21 9
2 − 9

2 (2n+ 1)

21 20 43 13
2 − 13

2 (2n+ 1)

3. Discussion and conclusion

The observation of negative energy by applying simultaneous transfor-
mation on harmonic oscillator has been reported by Fernandez [17] and
Rath [18]. Rath [18] reported the occurrence of negative energy with conver-
gent wave function for the case of positive frequency of oscillation, whereas
Fernandez [17] showed the occurrence of negative energy with diverse wave
function for the case of negative frequency of oscillation. However, here
we apply simultaneous transformation to Swanson’s Hamiltonian and our
study indicated that if we consider either V = 0 or U = 0, then we find
that the energy eigenvalues of the transformed Hamiltonian can be negative
even though the condition (Eq. (2)) for getting positive energy proposed by
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Swanson [1] is satisfied. Our study clearly indicated the violation of only
positive energy condition of Swanson’s Hamiltonian. The only constraint in
our study is that one needs to choose the appropriate parameter in such a
way that the values ofW1 orW2 will be positive for each case which gives the
corresponding well behaved wave function. It is worth mentioning here that
one can get a complex energy value if and only if V and/or U are non-zero.
This would lead to spontaneous breakdown of PT-symmetry. Similar type
of work has already been reported [29].

Interesting point in the findings is that the normalized condition [23]:
〈ψn|Ψkn〉 = 1 = 〈φn|Φkn〉 allows one to express Ψkn 6= Sψψn or Φkn 6= Sφφn.
As Sψ and Sφ cannot be written explicitly, hence, one will be restricted
to constructing pseudo-bosons following the work of Bagarello and others
[21, 22, 30].

Authors gratefully acknowledge the suggestions made by the referee to-
wards overall development of the manuscript. In fact, references of
Bagarello et al. made us to analyze the subject critically.
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