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A metric is introduced on the three-dimensional space of two long-range
sublattice order parameters and a short-range order parameter describing
the Ising antiferromagnets in the Bethe approximation. The Riemannian
geometry associated with this metric is investigated analytically. In terms
of the equilibrium order parameters, thermodynamic curvature scalar (R)
is derived and its temperature (T ) dependence near the Néel transition
temperature (TN) is analysed. A divergence to infinity is observed for the
curvature on both sides of the Néel temperature (R → ∞) which can
be scaled as R ∼ ελ for T < TN, and R ∼ (−ε)λ′

for T > TN, with
λ = λ′ = −2 and ε = 1 − T/TN. These observations fit well with those in
the calculations of thermodynamic curvature in other spin models such as
the spherical model and the ferromagnetic Ising model.
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1. Introduction

Riemannian geometric theory of thermodynamics and statistical mechan-
ics is nowadays successfully applied in diverse research areas [1–9]. At the
beginning, these applications are limited to simple and well-known spin mod-
els. Particularly, the authors started with the one-dimensional Ising model,
for which it was possible to calculate the thermodynamic curvature expres-
sion exactly [9–16]. The main result was that divergence of the curvature
occurs only at the zero-temperature and zero-field critical point of the model.
Since this exact result is known, it is a good starting point for testing the
geometry and curvature of the Ising-type mean-field model in the lowest or-
der approximation. Indeed, the same singularity of curvature was observed
at a nonzero Curie temperature [10–12]. Starting from these observations,
the geometrical analysis has been extended to other Ising systems on various
lattice structures [17–20].
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Most of the analysis done in the past dealt with the thermodynamic
curvature at or near the criticality of spin models with ferromagnetic in-
teractions. Moreover, the role of thermodynamic curvature at character-
izing the resulting magnetism in the antiferromagnetic phase has recently
been shown [20]. However, almost nothing is known about the curvature
concerned primarily with antiferromagnets having the Néel temperature (a
temperature above which an antiferromagnetic material becomes paramag-
netic). The simplest theory showing phase transitions and critical phenom-
ena in the antiferromagnets is the spin-1/2 antiferromagnetic Ising model
(AFIM). It has been widely used to understand the physical phenomena
that occur in some antiferromagnetic compounds [21–23].

A simple solution of the spin-1/2 AFIM was first presented by Barry
and Harrington [24]. Considering the magnetic Gibbs energy surface in the
statistical Bethe (or pair) approximation and using the equilibrium condi-
tions, they obtained two equations (also known as the Bethe equations) for
the order parameters. In advanced years, the Bethe approximation (a useful
tool for studying spin systems [25–27]) was also performed to calculate phase
diagrams of AFIM in various lattice geometries [28–30].

Although both the Bethe approximation and the mean-field theory give
the same critical behaviour near the transition temperatures, the key differ-
ence is that the former takes into account the short-range spin correlations
which has the significant role in understanding the temperature dependence
of the magnetic properties. Hence, in the AFIM, there exist three order pa-
rameters, two long-range sublattice order parameters and one short-range or-
der parameter. In the present work, we firstly introduce a three-dimensional
manifold with local coordinates using three order parameters for the anti-
ferromagnetic Ising model and define a metric on this manifold. Using the
metric components determined from the second derivatives of the Bethe-
type magnetic Gibbs energy relation of Ref. [24], the curvature scalar of
the order parameter manifold is determined and its behaviour near the Néel
temperature is investigated analytically. A similar treatment has recently
been done by us for the geometrical analysis of ferromagnetic Ising model
in the pair approximation [31].

The rest of this article is organized as follows. In Section 2, the anti-
ferromagnetic Ising model and its equilibrium (or static) properties in the
Bethe approximation are reviewed. In Section 3, the Riemannian geomet-
rical structure is introduced and the thermodynamic curvature R is calcu-
lated. The behaviour of R near the Néel temperature is shown. Finally,
some concluding remarks are presented in Section 4.
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2. Antiferromagnetic Ising model and equilibrium properties

This section is devoted to solution of the antiferromagnetic Ising model
based on the Bethe approximation. In particular, we briefly review thermal
behaviour of long- and short-range order parameters in the vicinity of the
Néel transition temperature. These behaviours will be reflected in geomet-
rical properties of the spin system in the next section.

2.1. Description of the model and magnetic Gibbs energy
in the Bethe approximation

One of the most important models introduced for ferromagnetism is the
Ising model [32]. It is an assembly of N spins which are localized on lattice
points. Each spin has a magnetic moment of µ0 and can only be up (positive)
or down (negative) direction along the z-axis. The Hamiltonian of the system
is described in terms of the energy coupling constant (J) as

H =
J

2

∑
〈ij〉

sisj , (1)

where si = ±1, J < 0 and 〈ij〉 indicates a sum over all Nz/2 nearest-
neighbour pairs of lattice sites (z is the lattice coordination number, be-
ing the number of nearest-neighbour spins surrounding any spin). When
J > 0, the model is called the AFIM and the interactions are between near-
est neighbours on a bipartite lattice. A bipartite lattice (such as the square,
honeycomb, and body centered cubic lattices) is one which can be divided
into two sublattices, which we call A and B, such that an A site has only B
neighbours, and a B site has only A neighbours.

In the Bethe approximation, the spin–spin configurational interaction
energy and the total magnetic moment are defined by E = −1

4NzJσ and
Mtot = 1

2Nµ0(r1 − r2), respectively. Here, r1 = 2
N

∑
i∈A si and r2 =

− 2
N

∑
j∈B sj are called the sublattice long-range order parameters, while

σ = − 2
Nz

∑
〈ij〉 sisj is called the short-range order parameter. The statisti-

cal expression for the entropy of the system is given by the formula S =
kB lnΩ(r1, r2, σ), where kB is the Boltzmann constant and Ω(r1, r2, σ) is
the number of ways of arranging the Ising spins consistent with the order
parameters r1, r2, σ. The logarithm of this quantity is given by [33]

lnΩ(r1, r2, σ) = N ln 2 +
1

4
N(z − 1)

4∑
i=1

xi lnxi −
1

8
Nz

4∑
j=1

yj ln yj . (2)

In order to simplify the notation and calculations, we have used the abbrevi-
ations x1 = 1+r1, x2 = 1−r1, x3 = 1+r2, x4 = 1−r2, y1 = 1+r1−r2−σ,
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y2 = 1 − r1 + r2 − σ, y3 = 1 + r1 + r2 + σ, y4 = 1 − r1 − r2 + σ. A good
reference for the description of properties of this model is Barry and Har-
rington [24], whose notation is used here. Assuming the spin system to be
placed in an external magnetic field (H) along the z-axis and to be in ther-
mal contact with a heat bath having temperature T , the magnetic Gibbs
energy (ψ = E − TS −HMtot) of the system may be written in the Bethe
approximation as [24]

ψ(r1, r2, σ) = −
1

4
NzJσ − 1

2
Nµ0H(r1 − r2)− kBT lnΩ(r1, r2, σ) . (3)

2.2. Magnetic Gibbs energy minimization and solutions at equilibrium

The equilibrium conditions ∂ψ
∂r1

= 0, ∂ψ
∂r2

= 0, ∂ψ∂σ = 0 result in the fol-
lowing coupled transcendental equations (also called the equations of state):

2(z − 1) ln

(
x1
x4

)
= z ln

(
y1y3
y2y4

)
− 4µ0H

kBT
,

2(z − 1) ln

(
x3
x4

)
= z ln

(
y2y3
y1y4

)
+

4µ0H

kBT
,

ln

(
y1y2
y3y4

)
= − 2J

kBT
. (4)

Setting H = 0, the equilibrium conditions offer the solutions r1 = r2 = r0
and σ = σ0, where r0 and σ0 are determined from the following equations:

2(z − 1) ln

(
1 + r0
1− r0

)
= z ln

(
1 + 2r0 + σ0
1− 2r0 + σ0

)
,

ln

[
(1− σ0)2

(1 + 2r0 + σ0)(1− 2r0 + σ0)

]
= − 2J

kBT
, (5)

which are also called the Bethe equations. For temperatures below the
Néel transition temperature TN, these equilibrium values can be written
conveniently in terms of the Bethe long-range order parameter δ through
the relations [24]

r0 = tanh zδ ,

σ0 = 1− 2
sinh(z − 2)δ

sinh(2z − 2)δ cosh zδ
, (6)

where the temperature dependence of δ is given by

exp (−J/kBT ) =
sinh(z − 2)δ

sinh zδ
, (7)
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and the relation between δ and the temperature slightly below the Néel
temperature (TN) is approximately written as [24]

2

3
(z − 1)δ2 =

Jε

kBTN
, (8)

where ε = TN−T
TN

is the distance from the Néel temperature. On the other
hand, for temperatures above TN, the equilibrium order parameter solutions
r0 and σ0 become, respectively,

r0 = 0 ,

σ0 = tanh

(
J

kBT

)
. (9)

In order to analytically examine a physical quantity for temperatures just
below TN, one may use the following series expansions for (6):

r0 = zδ +O
(
δ3
)
,

σ0 =
1

z − 1

[
1 +

1

3
z(z − 2)(3z − 2)δ2 +O

(
δ4
)]

, (10)

and for temperatures slightly above TN, one may use the following series
expansions for (9):

r0 = 0 ,

σ0 =
1

z − 1

[
1− z2 − 2z

2z − 2

(
ln

z

z − 2

)
ε

+
z

4
ln

z

z − 2

(
2z − 2− ln

z

z − 2

)
ε2 +O

(
ε3
)]

, (11)

where ε = −ε. We see that the order at long distances reaches zero (r0 → 0),
whereas for the order of neighbours, the short-range order remains finite, i.e.,
σ0 = 1/(z − 1), as T → TN on both sides. In Ref. [24], the above results for
the order parameters were reflected in several dynamical properties of the
same spin system. For example, using the ideas in Eqs. (10) and (11), the
behaviours of relaxation times and dynamic susceptibility expressions near
the Néel temperature were investigated analytically. Similarly, we have used
the same analysis for understanding the main geometric characteristics of
the system in the next section.
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3. Riemannian geometrical structure and the thermodynamic
curvature scalar

3.1. Riemannian geometry of a thermodynamic state space

Here, we briefly give some basics of the Riemannian geometry for the
thermodynamic state space. Denoting by θi (i = 1, 2, . . . , n) various ther-
modynamic parameters, a metric (or a line element) in equilibrium thermo-
dynamic state space is defined by Ruppeiner [11]

ds2 = Gijdθ
idθj , (12)

where Gij are the components of a covariant metric tensor given by

Gij = −β∂i∂jφ . (13)

Here, β = 1/kBT , ∂i = ∂/∂θi and φ = Φ/N (Φ is a thermodynamic poten-
tial). In terms of the metric elements Gij , the Christoffel symbols are found
by the formula

Γ ijk =
1
2G

il (∂kGlj + ∂jGlk − ∂lGjk) , (14)

where Gil are the components of contravariant tensor. The curvature tensor
may be written in terms of the Christoffel symbols as

Rijkl = ∂kΓ
i
jl − ∂lΓ ijk + Γ imkΓ

m
jl − Γ imlΓmjk . (15)

Then, the Ricci tensor is defined by

Rij = Rninj , (16)

and after another contraction of the Ricci tensor indexes, follows the Ricci
curvature scalar

R = GijRij . (17)

This curvature scalar measures the complexity of a system and plays a
central role in any attempt to look at phase transitions from geometrical
perspective. The case R = 0 corresponds to a flat geometry and a non-
interacting model. When R > 0 or R < 0, the metric is not flat and the
model is interacting.
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3.2. Thermodynamic curvature scalar for the antiferromagnetic Ising model

For an Ising antiferromagnet in an external magnetic field, we parame-
trize a three-dimensional Riemann manifold by (θ1, θ2, θ3) = (r1, r2, σ) and
choose the thermodynamic potential as the magnetic Gibbs energy (Φ = ψ).
In this case, the components of the metric tensor are found from Eq. (3) as
follows:

G11 = −β∂
2φ

∂r21
=
z − 1

4

(
1

x1
+

1

x2

)
− z

8

(
1

y1
+

1

y2
+

1

y3
+

1

y4

)
,

G12 = G21 = −β
∂2φ

∂r1∂r2
= −z

8

(
− 1

y1
− 1

y2
+

1

y3
+

1

y4

)
,

G13 = G31 = −β
∂2φ

∂r1∂σ
= −z

8

(
− 1

y1
+

1

y2
+

1

y3
− 1

y4

)
,

G22 = −β∂
2φ

∂r22
=
z − 1

4

(
1

x3
+

1

x4

)
− z

8

(
1

y1
+

1

y2
+

1

y3
+

1

y4

)
,

G23 = G32 = −β
∂2φ

∂r2∂σ
= −z

8

(
1

y1
− 1

y2
+

1

y3
− 1

y4

)
,

G33 = −β ∂
2φ

∂σ2
= −z

8

(
1

y1
+

1

y2
+

1

y3
+

1

y4

)
, (18)

where φ = ψ/N . With our metric tensor (18), due to Eqs. (14)–(17), after
lengthy computations, we have reached the following simple expression for
the curvature scalar R in terms of the known equilibrium values of r1 =
r2 = r0 and σ = σ0:

R =
ar80 + br60 + cr40 + dr20 + e(

fr40 + gr20 + h
)2 , (19)

where the z- and σ0-dependent coefficients are listed below:

a = −3z3 + 6z2 ,

b = 10z3σ0 − 2z3 − 20z2σ0 + 12z2 + 10zσ0 − 30z + 8 ,

c = −11z3σ20 + 4z3σ0 + 22z2σ20 + z3 − 24z2σ0 − 11zσ20
−10z2 + 36zσ0 + 35z − 16σ0 − 8 ,

d = 4z3σ30 − 2z3σ20 − 8z2σ30 − 2z3σ + 12z2σ20 + 4zσ30
+20z2σ0 − 18zσ20 − 34zσ0 + 8σ20 − 12z + 16σ0 ,

e = z3σ20 − 10z2σ20 + 17zσ20 − 8σ20 + 3z ,

f = z2 − 2z ,

g = −2z2σ0 + 4zσ0 − 2σ0 + 2 ,

h = z2σ20 − 2zσ20 + σ20 − 1 . (20)
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In order to analytically investigate the behaviour of the curvature just below
TN, we ignore the higher order terms in Eqs. (10) and insert the remaining
parts into (19) to obtain

R− =
3

4

(
pδ8 + qδ6 + rδ4 + sδ2 + t

(uδ2 + v)z2(wδ2 − 3)δ4

)
, (21)

with the coefficients defined by

p = 39z9 − 116z8 + 110z7 − 32z6 ,

q = −141z7 + 312z6 − 228z5 + 48z4 ,

r = 192z5 − 339z4 + 222z3 − 48z2 ,

s = −117z3 + 162z2 − 72z ,

t = 27z − 27 ,

u = 4z4 − 14z3 + 14z2 − 4z ,

v = −3z2 + 9z − 6 ,

w = 4z2 − 2z . (22)

Similarly, using the series expansions (11), (19) may be rewritten for tem-
peratures slightly above TN as

R+ =
1

(y2ε3 − 2xyε2 + (x2 + 2y)ε− 2x)2ε2

×
[
(y2z − 8y2)ε4 + (−2xyz + 16xy)ε3 + (x2z − 8x2 + 2yz − 16y)ε2

+(−2xz + 16x)ε+ 4z − 8] , (23)

where the coefficients are as follows:

x =
z2 − 2z

2z − 2
ln

z

z − 2
,

y =
z

4
ln

z

z − 2

[
2z − 2− ln

z

z − 2

]
. (24)

From Eqs. (21) and (23), one can conclude that when z is a finite number,
corresponding to a different lattice structure in solid state physics, R is al-
ways positive and tends to plus infinity (R → ∞) as T → TN from either
below or above with only one exception, namely, that of linear chain (z = 2).
The above curvature anomalies near the Néel transition temperature can be
verified analytically via the critical-point exponents which are frequently
found by determining the slopes of log–log plots of a calculated data [34].
Motivated by the similar calculations on the various physical properties pre-
sented in most references [35–37], we can also calculate the critical-point
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exponent for the thermodynamic curvature scalar in the antiferromagnetic
phase (or below the Néel transition temperature) using

λ = lim
δ→0

1

2

(
lnR−
ln δ

)
, (25)

and in the paramagnetic phase (or above TN) from

λ′ = lim
ε→0

lnR+

ln(−ε)
. (26)

These definitions are valid for all values of λ and λ′ for which the negative
values corresponding to the divergences of the variables R− and R+ as δ
and ε, respectively, go to zero. Using Eq. (21) in (25), it is found that for
z > 2, the curvature in the antiferromagnetic phase (R−) follows an ελ law
with λ = −2. Similarly, inserting Eq. (23) into (26), it is observed that the
curvature in the paramagnetic phase just above the transition point scales
as R+ ∼ (−ε)λ′ with the same exponent value (λ′ = −2).

It is of great interest to compare the above scaling results seen in the
vicinity of TN of the AFIM with the scaling law results of the curvature calcu-
lations in other spin models. Firstly, we have already shown the temperature
dependence of R in the ferromagnetic Ising model near the Curie temper-
ature using the Bethe approximation [31]. A similar calculation as in (25)
yields the law R ∼ ε−2 around the Curie temperature, which is not included
in Ref. [31]. From the standard scaling assumptions [4, 12–15, 18, 19], it is
known that the curvature scalar can be scaled as R ∼ εα−1 when α < 0 or
R ∼ εα−2 with α > 0, where α is the standard exponent characterizing the
scaling of the specific heat. It should be noted from Ref. [30] that the specific
heat displays no singular part but shows pronounced peaks corresponding
to the Néel temperatures. This property is expressed as α = 0 for the AFIM
in pair approximation and the scaling behaviour of R is, therefore, ∼ εα−2

which is the same as α > 0. Hence, setting α = 0, we reach a similar scaling
of the curvature for the antiferromagnetic Ising model, R ∼ ε−2. These
general results near the Néel temperature are also in a good agreement with
the specific case of the spherical model associated with the fact that the
specific heat exponent for d > 4 dimensions vanishes and the model attains
the mean-field character [4]. However, the spherical model displays no tran-
sition for d = 1 and d = 2 and a transition for d = 3 with α = −1. In this
case, it has also be shown in Ref. [4] that R ∼ ε−2 rather than the expected
R ∼ ε−3 as in the case of Ising model on planar random graphs [18].
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For magnetic models, the scaling behaviour of the curvature in the vicin-
ity of the critical point is also related to that of the correlation volume:
R ∼ ξd, where ξ = ε−ν is the correlation length, ν is the correlation length
exponent and d is the dimensionality of the system. The standard relation
for the curvature exponent in terms of d is λ = −dν = α− 2 which demon-
strates the critical behaviour of R [13, 18, 19]. One simple example of this
definition is the one-dimensional Ising model. It has been calculated for
d = 1 that ξ ∼ e2β (β = 1/kBT ) near the zero temperature criticality with
α = ν = 1, as expected [9]. This corresponds to λ = −1. Similarly, de-
spite the absence of a phase transition in zero magnetic field, the calculated
curvature expression of one-dimensional Potts model yields a divergence at
zero temperature with the law R ∼ ε−1 (or ξ ∼ eβ) [14]. The exponents are
again α = ν = 1. However, for the Ising model in 2 dimensions α = 0, while
ν = 1. As in 1-dimensional case, the same scaling form of curvature (∼ ε−1)
was observed for a kagome Ising model in d = 2 [19]. This behaviour was
expressed by R ∼ εα−1 which is similar to α < 0 of the spherical model
studied in [4] and d = 2 Ising model on planar random graphs studied in
[18]. Here, we can define λ = −dν + 1 = α − 1. In contrast, when d = 4
(also known as the upper critical dimension), the mean-field theory begins
to take over and thereafter for all d > 4, the curvature exponent becomes
λ = −2 with α = 0 and ν = 1/2 [10].

4. Conclusion

In this work, the curvature scalar R has been derived for the antiferro-
magnetic Ising model in the Bethe approximation using a three-dimensional
order-parameter manifold. We have only focused on the behaviour in the
vicinity of the Néel temperature. It is found that, similar to behaviour of
the ferromagnetic Ising model near the Curie temperature [31], R has also a
sigularity at the Néel temperature and increases rapidly with increasing tem-
perature and diverges to infinity on both sides of the temperature TN. From
the critical-point exponents calculated for the cases T < TN and T > TN,
we see that the same scaling relation R ∼ ε−2 is valid, corresponding to
the expected specific heat exponent of α = 0, where the scaling behaviour
R ∼ εα−2 is also verified. The calculated values of curvature exponent λ
reported in this study coincide in other spin models with d > 4 dimensions
although there is no physical relation between them. Hence, our results
provide another example of statistical approximation in which the curvature
of thermodynamic metric diverges at the critical point. As a final remark,
we hope that given any thermodynamic potential which is written using
any statistical approximate techniques, explicit calculations on geometrical
properties of n-dimensional order parameter manifolds would be welcome,
particularly in any spin model with a finite-temperature phase transitions.
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