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We compute the soft anomalous dimension (SAD) matrices for pro-
duction of massive quarks @ and Q in association with a gluon jet, from
massless quarks ¢ and antiquarks ¢: ¢¢ — QQg, and in the gluon scat-
tering gg — QQg. To analyse the behaviour of the eigenvalues of SAD
matrices, we perform numerical studies of their eigensystems at two special
kinematical configurations.
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1. Introduction

The motivation of this paper is dictated by the interest in the preci-
sion physics at the Large Hadron Collider (LHC). Providing precise theory
predictions for the Standard Model processes is necessary to fully explore
a physics potential of the LHC. One of the key point of the LHC physics
program are studies of the heaviest particle of the Standard Model, that is
the top quark. In particular, the top-quark production may occur in the
tt channel in association with an additional jet. It is difficult to calculate
perturbative fixed order QCD corrections for the processes with 3 particles
in the final state. Soft-gluon resummation offers possibility to systemati-
cally improve the precision of calculations. The necessary ingredient of the
soft-gluon resummation are the soft anomalous dimension (SAD) matrices.
Hence, we calculate the SAD matrices for a general case of a heavy quark—
antiquark production with a gluon jet. This paper contributes to ongoing
activity to effectively apply soft-gluon resummation to 2 — 3 processes
[1-6]. The obtained results open the way for numerical calculations of the
improved cross sections.

* Funded by SCOAP? under Creative Commons License, CC-BY 4.0.
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In QCD, one finds infrared divergences in perturbative corrections: soft
collinear, collinear and soft non-collinear. The collinear divergences appear
when the angle between momenta of two external massless partons § — 0.
The soft divergences occur for an emitted gluon energy F — 0. After the
procedure of regularization, the IR divergences cancel out in IR safe ob-
servables (like cross sections), but they leave logarithmic terms depending
on scales characterizing virtual and real corrections. The logarithmic rem-
nants become very large near the absolute threshold, so they are important
in processes of heavy-particles production. In the absolute threshold limit,
the characteristic velocity of the outgoing partons S is very small, which
means that total energy v/§ of partons in the centre-of-mass system is very
close to myp, where myy is the sum of masses of products in the process.
The characteristic scale of the real corrections, that come from the collinear
gluon radiation is m, 32, and the characteristic scale of the virtual correc-
tions is proportional to m¢y. The combined real and virtual corrections give
a leading contribution to cross section proportional to aglog? 2. Such log-
arithms appear in every order of perturbative expansion contributing with
(as log? ﬂz)n in the leading logarithmic (LL) approximation, ag log?—1 g2
in the next-to-leading logarithmic (NLL) approximation, and so on. When
B < 1, aglog? B2 may be close or grater than one, and one needs to resum
those corrections to all orders. The remnant logarithms are reordered in a
new perturbative expansion due to the resummation procedure. The resum-
mation formalism is described in |7, 8|. The fundamental object used in the
resummation procedure is the soft anomalous dimension matrix.

The soft-gluon resummation technique that employs the SAD matrices
have numerous applications in modern particle physics, in particular in es-
timates of superparticles hadroproduction. The SAD matrices carry infor-
mation about colour flow between particles in the studied processes. The
soft-gluon resummation effects become very important in cross sections near
the threshold for heavy-particles production.

The SAD matrices were calculated for various types of processes. Firstly,
calculations were performed for the Drell-Yan processes 2 — 1 with two in-
coming coloured particles and one colour-neutral |9, 10]. Then, there were
considered processes 2 — 2, such as ¢q¢ — ¢q¢ and gg — ¢ for massless and
massive products in the final state, in one-loop approximation [8]. This ap-
proach was extended to all reactions containing light quarks and gluons [11].
It allowed to obtain predictions for cross sections for production of heavy
quarks (especially for the top quark) [12—-19], and compare with experimen-
tal data. The SAD matrices also play an important role in predictions for
squarks and gluinos hadroproduction cross sections. Soft anomalous dimen-
sion matrices were calculated at one loop [20-22]| and two loops [23-25] for
such processes. Recently, a lot of effort has been made to obtain accu-
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rate predictions for reactions involving the Higgs boson. Firstly, there was
obtained the hadroproduction cross section improved by the soft-gluon re-
summation at the NNLL approximation [26] and then at the N3LL level [27]
for the 2 — 1 process: gg — H°. For the supersymmetric charged Higgs
boson hadroproduction, the soft-gluon resummation was performed at two
loops for the bg — tH~ process [28]. Next, the soft-gluon resummation was
extended to a new class of processes: 2 — 3 containing 4 coloured and 1
colour neutral particles, which gives more accurate predictions for the Higgs
boson hadroproduction cross section in association with the top and antitop
quarks [1-4].

In this paper, the SAD matrices are derived for 2 — 3 processes with
5 coloured particles at one loop in the perturbation theory, ¢ — QQg and
99 — QQg. The quark and antiquark in the final state are both massive.
Earlier calculations of the SAD matrices in similar reactions have been per-
formed by Sjodahl [5, 6], but only for massless final-state partons. Recently,
there have been done parallel calculations for the ¢¢ — QQg channel with
massive outgoing particles by Schéfer in [29].

2. General formalism

In this paper, we consider the following scattering processes:

¢*(p1)@’ (p2) = Q" (p3)Q°(P4)g” (p5) (1)

and

9“(p1)g"(p2) = Q*(p3)Q” (P1)9°(p5) , (2)

where o, 3, 7, 6, a, b and ¢ stand for colour indices (Greek letters are used for
description of a fundamental representation of SU(/V;) and Roman letters
for an adjoint representation) and p;, i = 1,...,5 denote the momenta of
particles. The illustration of an arbitrary 2 — 3 process is presented in
figure 1.

Fig.1. An example of a particle collision in a 2 — 3 process.
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It follows from factorization theorems in QCD that the multi-jet hadro-
production amplitudes may be factorized into hard and soft parts, see e.g.
[8, 11]. The soft function Sy fulfills the renormalization group equation

0 0 /
(“au 4 5(g)ag> Spy=— (FST) 15087 = S1a(I8) g, (3)

where Sy is a matrix in colour space and carries information about soft wide
angle gluon emissions, indices I, J correspond to colour tensors constructed
from SU(N,) representations. They depend on a studied process: the colour
charges of participating particles and the exchange channel. For example,
if we consider a quark—antiquark annihilitation, I and J tensors correspond
to a flow of a colour singlet or octet in the s-channel. At one loop, the soft
anomalous dimension matrix is defined as follows [8, 11]:

0
I (9) =~ 5 ReseoZs (9:0) (4)
where ¢ is the coupling constant for QCD, Zg(g,€) — a renormalization

matrix of the soft matrix S7y. Zg receives contributions from the soft gluons.
The general form of the SAD matrix can be obtained from Refs. [30-32].
However, in our explicit calculations, we apply the method elaborated in
[8, 11].

To get Zg, one needs to sum over the contributions ZéD

)

of relevant

Feynman diagrams. Fach contribution ZéD) to Zg coming from a single
Feynman diagram D can be factorized into a colour factor and a kinematic
factor

ZéD) o colour factor x kinematic factor . (5)
The colour part of every diagram is represented by SU(N,) tensors decom-
posed in an orthogonal and normalized basis. The vectors from colour basis
are connected with a soft-gluon line which is represented by colour tensor
i fape- The form of Zg depends on whether the partons between which there
is an exchange of the soft gluon are massive or massless (see figure 2). For
massive particles ¢ and j [8, 11],

zP) (g,¢) = Psiyo (L(BJ) ‘Li+Lj— 1) . (6)

For a massive particle ¢+ and a massless particle j,

g 1 v2;s
27 (9,¢) = —cVsij s <ln[ 7

= —cYs;;——
Tor e 2m;

—Li—lnuj+1> . (7)
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For massless particles ¢ and j,

Fig.2. Feynman diagrams contributing to Zg for process q¢ — QQg (for gg —
QQg, the topologies are analogous). The soft gluon is indicated by g in the dia-
grams, and it is exchanged between external lines that are approximated as Wilson
lines. The coupling of the soft gluon to the Wilson lines is eikonal, see e.g. [8].

In the above equations, factors ¢/ stand for colour factors, the number Sij
is related to the type of particles and the direction of the momentum flow
in a diagram. Namely,

Sij = AZAJ(SZ(SJ . (9)

The factors 4A; depend on the type of particles between which the exchange
of the gluon occurs, they have values: +1(—1) for a quark (antiquark). The
factors §; = +1(—1) for the same (opposite) direction of momentum flow
between a parton and the soft gluon. Vectors v; are rescaled momenta of the
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2
particles U Q , where Q = \[ and v;; = v; - vj. The factors v; = in)” m;)

depend on a choice of the reference vector n* of the axial gauge. In the
axial gauge A = 0 in the center-of-mass system of the colliding partons,

one has v; = % The function ng ) depends on the relative velocity 3;; of
the outgoing partons

i) _ 1—2m?/5; 1-8j .
Ly’ = 5, In 5 By +am |, (10)

where f3;; = \/1 — 4m?/8;j and §;; = (p; + pj)Q. In the processes considered,
the massive particles are labelled 3 and 4, hence in What follows, B34 will be

used. L; are dependent on the choice of gauge: L; = 3 [L; (+n) + Li(—n)],
where

1
2 \/(Uz -n)? —2m2n?/s
§(£n)2m?/s — |v; - n| — \/(vz n)? —2m2n?/s

X |ln

d(£n)2m?/s — |v; - n| + \/(vl -n)? —2m2n2/s

§(£n)n? —|v; -n| — \/(Uz -n)? —2m2n?/s

(11)

§ (£n)n? — |v; - n| + \/(UZ -n)? —2m2n?/s

Contributions L; also appear in the self-interaction terms for the heavy
quarks (antiquarks). The contribution from the self-interaction of heavy
quarks (antiquarks) is

N2 -1

—TR (Li+L; —2)1, (12)

C
where 1 is the identity matrix in the colour space and the factor Tr comes
from the normalization of generators and equals % The contribution from
the self-interaction of heavy quarks (antiquarks) is added to the soft anoma-
lous dimension matrix and the dependence of I'§ on L; is cancelled out.
Following Refs. [8, 11|, the Drell-Yan contribution is subtracted from the
soft anomalous dimension matrix. At one loop, the Drell-Yan SAD ma-

trix takes the form of 2=Cr1 (52 C41) for the partons in the colour triplet

(octet) state and Cy = Tr2N. and Cp = Tg N_l. The final form of the

soft anomalous dimension matrix Fs (g,€) is the followmg

N2
Is(g,€) = I (g,e) + TR N (L3+L4—2 ZCAFl (13)

C

where ¢ — all massless partlcles in the examined process.
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In this paper, processes with five interacting particles are considered (see
figure 1).

To fully describe the phase space of such a physical system, one needs five
independent variables: the global azimuthal angle ¢, which carries informa-
tion about the rotation symmetry of the reaction and four Mandelstam-type
variables:

ty = (p3—p1)2,
ty = (ps—p2),
2
uyr = (ps—pz) )
Ug = (p4—p1)2- (14)

The remaining scalar products of particle momenta p;-ps (i = 1,2, 3,4) may
be expressed in terms of above variables:

pl-p5:%(t1+u2+s—m3 ),
p2‘p5=%(t2+m+s—m3 ),
p3'p5=%(t2+uQ+s—m3 )7
p4-p5:%(t1+u1+s—m3 ), (15)

where m3 4 is the mass of heavy quark (antiquark).

3. Results

In this section, we collect results for the soft anomalous dimension ma-
trices for two processes ¢¢ — QQg and gg — QQg, where ¢, ¢ denote the
massless quark/antiquark, and @, Q — the massive quark/antiquark. Cal-
culations of the colour factors were obtained in the s-channel basis, using the
package ColorMath [6] for Mathematica. The colour factors were combined
with formulas (4), (6)—(8), also (13), and I's was obtained. It is convenient
to introduce new variables A, (2, I', X, which are defined in the following
way:

=T +T2+ U + Uy,
Ty + Ty — Uy — Uy,
Ty =Ty + Uy — Us,
=T -T,-U +Us, (16)

M5O~
I
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where

2p1 - p3 1—177

ms+/s

(o)
T, — ln<2p2-p4> 1—z7r
(o)~

T1:1n

M4\[

2p9 - 1-—
U = In P2 - P3 T
m4\f
Uy — 1o [ 2P1 P4 1 —im (17)
= n — .
2 mg\/g 2

In this study, the case is considered of the mass of quark and antiquark
that have the same value m = ms = my; we prefer to keep the more gen-
eral definition of the kinematic factors keeping in mind possibility to apply
formalism to general case of 2 — 3 process.

In what follows, the SAD matrices will be presented in terms of the
independent variables A, 2, I, ¥ and the variables v;5 = 2p; - ps/s that
can be expressed by A, 2, I', X' with equalities (11), (12) and (13). The
variables v;5 are kept in order to simplify the form of the matrices.

3.1. q7 — QQg
The following orthogonal and normalized colour basis was used in the
calculations [5]:

1
T! = Suitls
opita = ING(NZ —1)Tg ¢

T2 = 8ot
apfvyCa \/Nc (N2 — 1) Th ¢ Ba

C

Ta3,3'yCa = St%atfcygifbcaa
V2Ne (N2 — 1) (T)
VN,
Thsca = < 3tgatgcdbm. (18)
\/2 (N2 = 4) (N2 — 1) (TR)

Notice that indices of the adjoint representation are a, b, ¢ and indices of
the fundamental representation are «, 8, v and (. The following results are
valid for N, > 3 [5].

J;The soft anomalous dimension matrix I7; 05, can be split into two
parts

@ )
Tyasaas = Tighsoo, M 2T D)+ 102 oo (vis) (19)
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where I'M) receives contributions from the soft gluon exchanges between
particles 1,2, 3.4, and I'® from exchanges between particles ¢ and 5, with
1=1,2,3,4. Hence,

(1) _ O

@q—QQgy ~— Tr

1+(1—NC2)LB o ,/NC2_4hQ

r
N¢ N¢ \/§NC ﬁ
Q 242Lg+N2 ,/Ng,49 5
% Ne¢ 2Nc V2N¢ V2
\/NCQ"‘Q \/N374Q a+4Lg+(N2-12) 24 N2(2+4) LN
V2N V2N¢ INe TV NZ—4(I'+X)
4+44L g+ (N2-4)2+N2(2+4)
r x 1 8 ( ¢ ) c
v e TVNEAI+T) e
(20)
and
2) Qs
r® S
q3—QQg T R
N¢ In(visvas) 0 0 % ln(%>
0 1 NeIn(vssvas) 0 ln<%) V2
X 2
0 0 iNC ln(v%sv§5v35v45) % 1n<zg5:;§ ) \/N2—4
15
2
1 v, v 1 Vo5Y45 1 2 .2
Lm(s)  m(i2)va Zln(z,%ziv%)‘/]vg_él LN, In(vZ502svssvas
. 2 2 2
Qg . . 1-NZ . 2—NZ  2-— N
+—Tgr x diag | —, i i i 21
T E\N TN, TaN, TN, (21)

The SAD matrices for ¢q¢ — QQg were calculated in parallel in [29]. Note
that the obtained SAD matrix is complex symmetric. This property has
been proved to hold in general in an orthonormal basis [33]. The same

feature will be found also for the gg-channel. For clarity, we denoted LB
as Lg in all the matrices. The general form of the soft anomalous dimension
matrix is rather complicated, hence, in order to provide more insight into
its properties, we consider special kinematical configurations for which the
matrix simplifies. First, we consider the case when the momenta of the
outgoing quark and antiquark are equal, p§ = p//. Then variables A, 2, I',
Yreduceto A =+ A =21 +2U, ¥ — X' =21 — 20U, I' — 0, 2 — 0.

4m?2
1-— et

In this special case, it is convenient to introduce a variable g =

In this limit, the form of the soft anomalous matrix becomes significantly
simpler
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1) wo_ oy 9
qu_@@g (P3 —p4) T Tr

% 0 0 0
> :
o0 TEe o %
. 0 LNEet)  w ey |
0 z z JNZ-4 %}f\\f@ﬂl)
(22)
aqe W5 = 1) = 2T
Ne In(vi5v25) 0 0 0
0 Nelnwvgs 0 In(32)v2
% 0 0 INeIn(visvasvas) & 1n(5§g )V/NZ=4
o BN (WA b
+%TR x diag (JZ\Z’ i7r1 ;Viv‘?, i7r2 2_N]:7CQ’ z'7r2 2_N]:7(:2> (23)

It can be seen that the soft anomalous dimension matrix can be divided into
two blocks: 1 x 1 and 3 x 3.

Next, the limit X’ = 0 is performed that corresponds to py - p3 = p2 - p3.
The obtained matrix has a diagonal form

« 1 N2
Tygaaq (¥'=0) = —Tr x {N x diag (1 + (1=N2) Ly, 1+ Ly + =5,
N? N
VLt 5 () L Ly O (2 )
. 1 9 1 )
+diag | 2N:Invy5, NcInwvss, §Nc In (1)151)35)7 5NC In (v15v35)
it 1-N2 92_N2 9_N2
di e . A : ' o
+ 1ag(NC,Z7r N, , AT SN, , 4T N, >} (24)

3.1.1. Analysis of the eigenvalues for G — QQg

In this section, we consider the behaviour of the SAD eigenvalues for
p3s = p4 and two different scattering angles 6 (90° and 30°), where 6 is
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an angle between the incoming and outgoing partons in the CMS frame.
0 = 90° represents the most symmetric case, and the choice of § = 30°
represents a less symmetric configuration. The limit X’ — 0 corresponds to

the case of § = 90°. This analysis must be done carefully because L(534) in the

limit of B34 — 0 gives singular terms ﬁ We need to execute three steps.
While performing the limit of 834 — 0, one subtracts the singular terms from
the SAD matrix and then the limit of 5 — 0 may be studied. Finally, we
present results after a subtraction of the asymptotic small-g behaviour that
is treated analytically. Numerical calculations were performed for the N, = 3

case. The eigenvalues of I's do not contain the prefactor <. The relation

between the full SAD matrix Iy and I§ is I = %fg The singular matrix

subtracted from I has a form of % x diag (f%, %, %, %) The singular
matrix comes from the exchange of the soft gluon between massive outgoing
quark and antiquark. Hence, this matrix contains Coulomb corrections, see
e.g. |21] and references therein.

For a general 3, there is a degeneracy of eigenvalues for & = 90°, there are
three different eigenvalues. For 6 = 30°, there is no degeneracy. All eigen-
values are complex with non-trival real and imaginary part. For 6 = 90°,
there are two different values of the imaginary part of eigenvalues instead of
four, which is the case of 30°.

For 8 — 0, one finds a singular term proportional to log 5 which gives a
contribution to the real part of the eigenvalues. Each eigenvalue of Ig has
the same leading behaviour in § — 0 for both scattering angles. One finds
single asymptotic form of the eigenvalues of small 3:

M8 — Glog 3. (25)

In figures 3 and 4, we show regularized eigenvalues. They are defined as
A8 = \; — A8 One observes a quite similar behaviour of the regularized
eigensystem for § = 90° and § = 30°. In figure 3, one can see that all
Re(A&90%) are either constant (A1) or slightly increasing (\g,A34) up to
B~ 0.4. ITm(A\%") is constant in B. In the case of § = 30°, the real and
imaginary part of A\; shows a constant behaviour. The real parts of A2, A3
and A4 exhibit a similar behaviour for small 3 — they are slowly varying for
moderate 3, then for 8 > 0.6, they are rapidly increasing. The imaginary
parts of these remaining eigenvalues are nearly constant for g < 0.7, and
then start to slowly decrease (A2 and A3) or slowly increase (\4).
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Re ()\reg,QO") for q7 — QQg

2 T T T T T T
—Re )\rlcg,sw
1t |—Re )\;cg,goﬂ i
- Re /\gffg,,m)c
0 .

Im ()\900) for q¢ — QQg
1 T T T T

0r i

1} i
— Im (/\(foc)

—9 | |==Im (/\2224) i

_3 i

0 01 02 03 04 05 06 07 08 09 1

Fig.3. The real (top) and imaginary (bottom) parts of the eigenvalues of Iy for
q7 — QQg at 6 = 90°.

The following
calculations [5]:

3.2. g9 — QQg
orthogonal and normalized colour basis was used in the

= 1 t€ 50
— (Ng—l)\/ﬁ apYab >
1
= ) 0B
Nev/2(N2 - 1)Tg Jabebap
1
= Aapedas s
Ve ) (N - )T
1 . .
= 3Zfabnlfmcntgnﬁ ,
2Nc (Nc2 - 1) (TR)
1

N2 —4) (N2 = 1) (Tg)°

C

= dabnifmcnt;nﬁ ;
VAl
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Re (Are3%°) for ¢7 — QQg

Re (/\reg,i}l)")

0 01 02 03 04 05 06 07 08 09 1
B
Im (A7) for ¢7 — QQg
1 T T T T
0f o =
— I ()
~ 1l —Im ()\%20) |
2 —Im (A3"")
= Im (Af"")
& -2p 1
S 1
4 . . . . \ \ \ \ \
0 01 02 03 04 05 06 07 08 09 1
B
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Fig.4. The real (top) and imaginary (bottom) parts of the eigenvalues of Iy for

q7 — QQg at 6 = 30°.

6
Taba,@c =

1

VANZ = 4) (N2 - 1) (Tp)*

ifabndmcnt;nﬂ )

1
dabndmcnt;nﬁ )
VA2 — 4 (N2 — 1) (TR)?
1 10+10
Pabntc tZL,B )
V2 (N2 = 4) (N2 — 1) (Tp)
1 10—10
SPabmc t;nﬁ )
V2 (N2 - 4) (N2 - 1) (Tp)
-1
- P3b7mc (T)znﬁ )
\/NZ (N 4+ 3) (N — 1) (T)
1
Pc?bmc ?,B ’
(Ne = 3) (Ne + 1) (Tg)
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where
140 _ 1 1
Pabcd =5 (5%5501 - 51111501)) - 7fabgfcdg )
2 N.
T 1 ) 1 .
P)all?cd10 = §dacglfbgd - degdlfacg s
N, 1 1 1 1
27
Pabcd = 4(N7(:C_’_2)dabgdcdg + §fadgfcbg - Zfabgfcdg + Zdadébc + Z(SaC(de
1
————— 00
+2(Nc+1) abVYcd »
N, 1 1 1 1
0
Pabcd = _mdabgdcdg - ifadgfcbg + Zfabgfcdg + Zéadébc + 15ac5bd
1
e SubOed 9
2(N0+1) abYcd ( 7)

As for the ¢ — QQg case, the soft anomalous dimension matrix Iy—00g
is split into two parts

_

_ )
T99-QQg 99—QQg (A, 02, 1X) + T (vis) (28)

99—QQg

where
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In the next step, a special case of p§ = p/j is considered . The obtained
matrix has a block—diagonal form:

I3y3
Ly 0aq (5 =) = —Tr % Iax2 , (31)
Iexe

where
1
I3x3 = A X diag{l + (1 — NCQ) Lg+ N(? In (v15v95) — iTrNCQ,
C

A/
1+Lg+ N? <1 —am + o +In (v15v25)> ’

1+ (1= NZ) Lg+ NZIn (vi5095) — imNZ, } (32)
2(2—6in ! n(vy5v25vs v
- - 4+4Lg+NE(2-6 :]\;chrQl (v15v25v35)) 7%(2%2111(%))
2x2 = Ne { s . 444Lg+N2(2—6im+ A4’ +2In(v15v05v35)) |
- (ean()
(33)

and
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For the N. = 3 case, the last block becomes even simpler: Igxg = [1x1 ®
I's«s. After performing the limit X’ = 0, matrices take the following form:

;o Os 1
Lo9-Qag (£'=0) = ?TR x N,

xdiag {1+ (1 — NZ) L + 2NZ Invys — in N,
A/
1+ Lg+ N2 (1 —i7r+2+21n1115> :

1+ (1= N2)Lg+2N2Invis — inNZ,
2

1+ Lg+ % (2 = 6im + A+ 21n (vi5v35))
2

N,
L+ Ly + = (2 —6im + A’ +2In (vi5v35)) ,
Al
1—|-L5—1—NC2 (1—i7r+2+21nv15>7

14+ Lg+ No(No—1) (14 A +4Invis) — imNe (Ne + 1) + NeInwss,
2

1+ Lg+ % (2 = 6im + A"+ 21In (vi5v35))

N,
1+ L+ ? (Ne+1) (2+ A +4Invs) —imNe (Ne — 1) — Ne Invgs,

N2
1+ L+ TC (2= 6im + A"+ 21In (vi50s5)) ,
1+ Lg+ N<:2 (Inwvgs — 2’L7T)} . (35)

3.2.1. Analysis of the eigenvalues for gg — QQg

In this subsection, we perform an analogous analysis of the eigensystem
for gg — QQg to the case of ¢q¢ — QQg. The set of the eigenvalues is
richer then in the scattering process of the quark and antiquark due to the
larger colour basis. For § = 90°, the real parts of the regularized eigenvalues
are shown in Fig. 5 and the imaginary parts are shown in Fig. 6. The singular
matrix in B34 has a form of%xdiag (—%, —%, %, 1—12, %, 1—12, 1—12, %, 1—12, %, 1—12)
in this case. One finds also one value of the leading small-5 behaviour of

the eigenvalues, which is the same as in the quark channel
M8 — Glog 3. (36)

After the procedure of regularization (analogous to the ¢g scattering case),
one can see some similarities for both the scattering angles. In the case of
0 = 90°, the eigensystem consists of 6 different eigenvalues. The degenerate
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eigenvalues are \;1 = Ao, A3 = Ay = A5 = Xg and Ag = Ag. The real parts
of the eigenvalues are nearly constant up to S = 0.6 and all the imaginary
parts are constant in whole range of 5. The results for § = 30° are shown
in Fig. 7 (the real parts of eigenvalues) and in Fig. 8 (the imaginary parts
of eigenvalues). The singular part of the eigenvalues at 6 = 30° is the same
as for # = 90°. The degeneracy of the eigensystem is lower (the degeneracy
between eigenvalues 4, 5, 6, 7 is reduced to the separate degeneracy Az = Ay
and A5 = Ag). The real parts of eigenvalues are nearly flat for 5 < 0.5, then
they grow rapidly. Tm(A3)") (Im(MJ)")) is a growing (decreasing) function
of 8. The imaginary parts of the remaining eigenvalues are constant.

Re (/\“g=“")°) for gg — QQg
2 T T T T

— reg,90°
Re (AT

:
I — reg,90° L
1 Re (A} :

. reg,90°
Re )‘4,5.6,7

Re ()\reg.g[)")

0 01 02 03 04 05 06 07 08 09 1

Re (X&) for gg — QQg

0 T T T T
—Re )\geg,QOD
“1 [ Re (g
. “" Re )\rl%g,goo
2 2
=
EREN
4l

Fig. 5. The real parts of the regularized eigenvalues of I's for gg — QQg at 6 = 90°.



Soft Anomalous Dimension Matrices in Heavy Quark—Antiquark . .. 1861

Im (%) for gg — QQg

- 1 T L R e— Feccedacaea [ leemmcemmen

oL |—Im (A%, 567) |
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OF=— Im (A7) fremmmmmmmmmmmmmmm s -
e mo

o —2F ... 290° N
3 Im ( )

= 4 |

_6 . -

8l |

710 1 1 1 ! ! ! L L L
01 02 03 04 05 06 07 08 09 1
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Fig. 6. The imaginary parts of the eigenvalues of Ik for gg — QQg at 8 = 90°.

Re (A230%) for gg — QQg

Re (/\rcg,iilﬁ) for g9 — QQQ
—Re )\:ieg.SOO ..'
5 reg,30° .
— Re (A%
“== Re (Ao’ ____—"
2 0L T
I
=
o
_5F |
i \J
0 01 02 03 04 05 06 07 08 09 1

Fig. 7. The real parts of the regularized eigenvalues of I's for gg — QQg at 6 = 30°.
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Im (A*°) for gg — QQg
2¢ I L el
— Im(Ny) | T e
0—=—1Im ()‘20456) .
- Im (A)
— Im (Agogf)
- Im (A7)
(i)

. 30°
Im (A7)

Fig.8. The imaginary parts of the eigenvalues of Ik for gg — QQg at § = 30°.

4. Discussion and summary

In this paragraph, we compare the calculated regularized eigenvalues
X% of the SAD matrices to the SAD eigenvalues for processes ¢q7 — QQ
and gg — QQ in the small-3 region. Note that the full eigenvalues for 2 — 3
processes contain, in addition to the regular parts, a negative singular term
6log B for the gq and gg channel. The logarithmic terms combine with the
dominant regular terms into even larger negative terms of the eigenvalues,
that is they lead to stronger effects of gluon radiation. For the ¢q7 — QQ
process, the real parts of the two at 3 — 0 tend to —1.5%* and 0. Recall
that for the case of q7 — QQg, the largest (negative) SAD eigenvalue reads
Re (A*897) = —2.5% (for § = 90°) and Re (A™83") = —52 (for 6 = 30°).
It means that the effect of soft gluon radiation for ¢ — QQg is almost
two times stronger (the 90° case) or three times larger (the 30° case). In
the gluonic case the radiation effects are even stronger. For gg — QQg,
we obtained Re ()\reg,goo) = —4% (for § = 90°) and Re ()\reg,30°) = —8%
(for # = 30°), so the radiation is enhanced by factors three and five, cor-
respondingly, with respect to the gg — QQ process. The imaginary parts
of eigenvalues cancel out in the 8 — 0 regime, so we will not discuss them.
These results imply that the soft gluon radiation is a source of enhanced
corrections for the heavy-quark pair production in association with a gluon
jet.

In this paper, we have derived the one-loop soft anomalous dimension
matrices for ¢q¢ — QQg and gg — QQg. We presented the SAD matrices
for an arbitrary scattering angle 6 of a clustered pair of heavy quark and
antiquark with respect to the incoming parton axis in the CMS frame. We
also analysed the spectrum of the eigenvalues of the SAD matrices in details
for two kinematic configurations of § = 90° and 30°, performing explicit
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numerical calculations of the SAD eigenvalues. Comparing the behaviour of
the eigensystem of SAD matrices for processes q7 — QQg and gg — QQg,
one finds some similarities. For example, at § = 90°, there is a constant
behaviour in § for the imaginary part of eigenvalues in both reactions. When
the kinematic configuration becomes less symmetrical (the 6 = 30° case),
the set of eigenvalues with a flat S-dependence is reduced. The obtained
results are a step towards implementing the soft resummation procedure for
QQ-jet production in hadron colliders, and improving accuracy of theoretical
predictions.
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