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The effect of quark–antiquark potential on the dissociation energy and
critical screening length of heavy meson such as bb̄ and cc̄ have been inves-
tigated when the respective meson is in Quark–Gluon Plasma (QGP). The
different types of interquark potential have been used, which get screened
in the QGP medium. The dissociation energy and critical screening length
have been studied for both ground and excited states. It has been observed
that the form of interquark potential has a substantial effect on the criti-
cal screening length when the meson is in QGP. A comparison with other
theoretical studies is made.
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1. Introduction

It is well-known that the strongly interacting matter with a very high
density undergoes a transition to a state of deconfined quarks and gluons.
Deconfinement takes place if the color screening dissolves the binding po-
tential between quark and quark or quark and antiquark. The J/ψ or Υ
have much smaller radii than the radii of usual mesons and nucleons, due
to which the bound state remains unaffected in QGP unless and until the
temperature or the density becomes so high that the binding of bound state
gets broken. The suppression of J/ψ is one of the signals for quark decon-
finement [1]. To investigate quark plasma formation experimentally, it is
essential to depend on color screening and deconfinement. In QGP medium,
the string tension between a charm c and a charm antiquark c̄ disappears
and quarks and gluons are deconfined. Only the Coulomb type of color
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interaction exists between c and c̄. After the deconfinement of J/ψ, it is
impossible to create it by hadronization of plasma. Matsui [2] has discussed
the heavy quark J/ψ suppression as a signature of quark–gluon plasma for-
mation. Considering the various attributes of deconfinement test, Satz [3]
has concluded that the J/ψ peak in the spectrum of lepton pairs which
are emitted during nuclear collisions can give important and required infor-
mation. At ultra-relativistic energies, dynamical analysis of matter during
nuclear collision has been done by Matsui [4]. He also studied J/ψ suppres-
sion as a signature of QGP formation. Ruuskanen and Satz [5] have studied
the dependence of longitudinal momentum of J/ψ suppression and observed
its effects on nuclear collision experiments. Karsch and Petronzio [6] have
used the concept of QGP to analyze the nuclear size which depends on J/ψ
suppression in heavy-ion collisions and studied the transfer energy related
to this heavy-ion collision. Karsch et al. [7] have observed the dependence
of the dissociation energies, the binding radii and the masses of heavy-quark
resonances on the color screening length rD of the medium and concluded
that no binding exists below rD. Hence, in high-energy heavy-ion collisions,
the suppression of J/ψ production may be considered as a symbol for the
presence of quark–gluon plasma. Liu and Dong [8] have studied the binding
and dissolution for the cc̄ and bb̄ bound states using different quark potentials
in a non-relativistic approximation. They have estimated the critical value
of the screening length using the Debye screening effect. They have also
estimated the critical temperature Tc of medium. Stubbins [9] has used the
generalized variational method to investigate energies for the Yukawa and
Hulthen potentials. A number of works have been done on the heavy-meson
dissociation in the recent time. Park [10] has investigated the heavy-meson
dissociation in light-quark medium and discussed the mechanism of dissoci-
ation. He has observed that dissociation length decreases with increase of
chemical potential in QGP, whereas in hadronic phase, they behave in an
opposite way. Braga et al. [11] have studied thermal behavior of cc̄ and bb̄
by using a holographic model and studied the effect of magnetic field on
the thermal spectrum of heavy meson, whereas Blaizot et al. [12] investi-
gated the heavy-quark formation, dissociation in QGP in the framework of
Langevin equation. They have pointed out that formation of bound states
occurs if enough heavy quarks are present in the system, whereas dissocia-
tion occurs due to screening of the potential in the plasma. Gau et al. [13]
studied charmonium cc̄ wave function at finite temperature using relativistic
Schrödinger equation for spin singlet and triplet. They found that relativis-
tic correction to the J/ψ dissociation temperature in QGP is between 7% to
13%. They have studied wave function S,D states. They have obtained that
with temperature both the S and D wave function expands. Adil et al. [14]
have investigated medium-induced dissociation probability of heavy meson
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and found that it is sensitive to the opacity of the quark–gluon plasma and
time dependence of its formation and evolution. A comprehensive review of
QCD, QGP and heavy quark–meson suppression and production is done by
Kisslinger [15].

In the present work, we have investigated the effect of qq̄ potential on
dissociation energy of bb̄ and cc̄ mesons in QGP. It is well-known that a
number of phenomenological potentials have usually been used to describe
the inter-quark potential. The respective potentials get screened in QGP
due to interaction with different particles. It is very important to study
how the form of the inter-quark potential affects the dissociation energy
and, subsequently, affects the critical screening length of the heavy mesons
while they are in QGP medium. We use a variational method to study
the system and a trial wave function has been used. The dissociation energy
and critical screening lengths have been estimated for different form of inter-
quark potential. A study with the variation of variational parameter of the
trial wave function has also been made. The critical screening length at
which dissociation energy vanishes has been extracted for bb̄ and cc̄ mesons
for their ground and excited states.

2. Methodology

The Hamiltonian for a qq̄ system in non-relativistic approach can be
represented as

H(r, T ) =
~p 2

2mre
+ Vqq̄(r,T ) , (1)

where mre is the reduced mass of the qq̄ system, Vqq̄ (r, T ) is the inter-quark
binding potential. The exact nature of the binding potential of qq̄ system
is not known but a number of phenomenological potentials are suggested
which are very successful in describing the binding energy of the system.
We have considered four different quark–antiquark potentials such as Cor-
nell potential, Rosener potential, harmonic potential, and a combination of
potential for our study. The expression for the potentials run as:

(i) Cornell potential [7]

V (r, 0) = −αs

r
+K

′
r , (2)

whereK ′ is the coefficient for confinement and is taken to be 0.92 GeV2

[16], αs is the parameter proportional to the strong coupling constant
which is 0.471 [7], and r is radius of heavy mesons.
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(ii) Rosner potential [17]

V (r, 0) = −A(r−α − 1)

α
+B (3)

with α = 0.12, A = 0.801 GeV and B = −0.772 GeV.

(iii) Harmonic potential [18]

V (r, 0) = δr2 (4)

with δ = 0.08 GeV3.

(iv) A combination of harmonic, linear and Coulomb potential [19, 20]

V (r, 0) = ar2 + br − c/r (5)

with a = 0.142 GeV3, b = 0.465 GeV2 and c = 0.471.

In QGP environment of quarks and gluons, the inter-quark potential gets
modified due to the color screening so that the qq̄ aforesaid potentials can
be represented as:

V (r, T ) = −Ze
−λr

r

[
−αs

r
+K

′
r
]
, (6)

V (r, T ) = −Ze
−λr

r

[
−A(r−α − 1)

α
+B

]
, (7)

V (r, T ) = −Ze
−λr

r

[
δr2
]
, (8)

V (r, T ) = −Ze
−λr

r

[
ar2 + br − c/r

]
, (9)

where Z is a constant equal to 1 GeV−1 and λ is a temperature-dependent
screening parameter. We have parameterized the temperature dependence
of λ as λ(T ) = λ(0)[1 − T/Tc]

−0.2 [21]. The value of λ(0) has given input
as 0.2 GeV from [7]. Solution of equation (1) with the potential in (2), (3),
(4) and (5) will lead to a temperature-dependent binding energy. To get an
expression for binding energy, we have considered a trial wave function from
the work of Stubbins [9] with a spherical component which runs as

Ψk = Bkr
ke−(β/2)Yl,m(θ, φ) , (10)

where k = 0, 1, 2, . . . and l = 0, 1, . . ., and Bk is normalization constant and
can be represented as

Bk =

[
β2k+3

(2k + 2)!

]1/2

, (11)
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where β is variational parameter [9]. Schördinger equation with related
eigenvalue can be represented as [7]

[H(r, λ(T ))− En,l(λ(T ))]ΨK(r, λ(T )) = 0 , (12)

where n is the principal quantum number and l is the orbital quantum
number such that l ≤ (n − 1). Dependence of λ on temperature leads to a
temperature-dependent eigenenergy.

The dissolution energy is the quantity which accounts the vanishing of
bound states. At a fixed value of λ(T ), the dissolution energy of the bound
state can be defined as [7]

En,ldis(λ(T )) = Vqq̄(r →∞, λ(T )) + En,l(λ(T )) . (13)

At r →∞, equation (13) reduces to

En,ldis(λ(T )) = En,l(λ(T )) . (14)

The value of dissolution energy is positive for bound states and is nega-
tive for continuum, and leads to the condition

En,ldis(λc(T )) = 0 . (15)

Equation (15) gives the critical value of λ(T ), beyond which for given
quantum number, there are no bound states. We have considered first three
radial excitation corresponding to J/ψ and Υ for n = 1, l = 0, ψ′ and Υ ′

for n = 2, l = 0 and ψ′′ and Υ ′′ for n = 3, l = 0 and χc and χb for n = 2,
l = 1. We have derived the binding energies of the above-mentioned states
and the expressions for binding energies of ground states, first and second
excited states for four different potentials are obtained as

(i) Cornell potential

(a) 1s-State

EBE = −2πβ3

[
2K

′

(β + λ)3
− αs

(β + λ)

]
+
πβ2

2mr
, (16)

(b) 2s-State

EBE = −πβ
5

3

[
12K

′

(β + λ)5
− αs

(β + λ)3

]
+
πβ2

6mr
, (17)

(c) 3s-State

EBE = −2πβ7

15

[
30K

′

(β + λ)7
− αs

(β + λ)5

]
+

πβ2

10mr
, (18)
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(ii) Rosner potential

(a) 1s-State

EBE = −2πβ3

[
(A/α) + C

(β + λ)2

]
+
πβ2

2mr
, (19)

(b) 2s-State

EBE = −πβ
5

3

[
(A/α) + C

(β + λ)3

]
+
πβ2

6mr
, (20)

(c) 3s-State

EBE = −2πβ7

3

[
(A/α) + C

(β + λ)5

]
+

πβ2

10mr
, (21)

(iii) Harmonic potential

(a) 1s-State

EBE = −
[

12πβ3a

(β + λ)4

]
+
πβ2

2mr
, (22)

(b) 2s-State

EBE = − 20πβ5a

(β + λ)6
+
πβ2

6mr
, (23)

(c) 3s-State

EBE = − 28πβ7a

(β + λ)8
+

πβ2

10mr
, (24)

and

(iv) A Combination of harmonic, linear and Coulomb potential

(a) 1s-State

EBE = − 2πβ3

(β + λ)

[
6a

(β + λ)3
+

2b

(β + λ)2
− c
]

+
πβ2

2mr
, (25)

(b) 2s-State

EBE = −πβ5

[
20a

(β + λ)6

4b

(β + λ)5
− c

3(β + λ)3

]
+
πβ2

6mr
, (26)

(c) 3s-State

EBE = −2πβ7

[
14a

(β + λ)8
+

2b

(β + λ)7
− c

15(β + λ)5

]
+

πβ2

10mr
. (27)



Quark Binding Potential and QGP 1871

We have estimated the critical λ(λc(T )) and critical radius using equa-
tion (15) with different values of variational parameter β and the results are
furnished in Tables I, II, III and IV.

Table I–IV display our results of variation of screening length with vari-
ational parameter. Variational technique has provided an effective frame-
work for spectroscopic studies of full-hadron spectrum and a good candidate
for investigation of strongly interacting system and gauge theories. The
variational method has seen significant success in spectroscopic studies of
hadronic system. A number of work have been done in QCD, lattice QCD
applying the variational approach [22–24], and found to offer a more efficient
method for the determination of nuclear matrix element [25]. Vega et al. [26]
have studied the Cornell potential using a trial wave function and super sym-
metric quantum mechanics. The parameters are changed applying successive
transformation to obtain the wave function at the origin. Ghalenvi et al. [27]
have studied baryon–meson properties using trial wave function, whereas
Chot et al. [28] have studied ground state masses with hyperfine interaction
in QCD-motivated effective Hamiltonian using a trial wave function. We
have used a trial wave function to estimate the binding energy of mesons in
QGP and studied the variation of λc with variational parameter.

TABLE I

Temperature-dependent critical screening lengths λc in GeV with different values
of variational parameter (β) in GeV using the Cornell potential.

States β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5
[GeV] [GeV] [GeV] [GeV] [GeV]

J/ψ (n = 1, l = 0) λc [GeV] 0.6391 0.7048 0.7127 0.6924 0.6577
rc [fm] 0.3139 0.2873 0.2806 0.2888 0.3041

ψ
′

(n = 2, l = 0) λc [GeV] 0.3274 0.4437 0.5189 0.5706 0.5975
rc [fm] 0.6108 0.4509 0.3854 0.3503 0.3347

ψ
′′

(n = 3, l = 0) λc [GeV] 0.2042 0.2963 0.3632 0.4140 0.4466
rc [fm] 0.979 0.6749 0.5506 0.3545 0.4478

χc (n = 2, l = 1) λc [GeV] 0.3641 0.4395 0.5153 0.5682 0.5771
rc [fm] 0.5493 0.4550 0.3881 0.3519 0.3465

Υ (n = 1, l = 0) λc [GeV] 0.9341 1.0353 1.0506 1.0315 0.9938
rc [fm] 0.2141 0.1932 0.1903 0.1939 0.2012

Υ
′

(n = 2, l = 0) λc [GeV] 0.4331 0.6197 0.7342 0.8244 0.9146
rc [fm] 0.4618 0.3227 0.2724 0.2426 0.2187

Υ
′′

(n = 3, l = 0) λc [GeV] 0.2639 0.3910 0.4860 0.5641 0.6197
rc [fm] 0.8442 0.5115 0.4115 0.4831 0.3227

χb (n = 2, l = 1) λc [GeV] 0.5023 0.5893 0.7160 0.8132 0.8551
rc [fm] 0.3981 0.3394 0.2793 0.2459 0.2339
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TABLE II

Temperature-dependent critical screening lengths λc in GeV with different values
of variational parameter (β) in GeV using the Rosner potential.

States β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5
[GeV] [GeV] [GeV] [GeV] [GeV]

J/ψ (n = 1, l = 0) λc [GeV] 1.12 1.536 1.827 2.057 2.248
rc [fm] 0.178 0.130 0.109 0.097 0.088

ψ
′

(n = 2, l = 0) λc [GeV] 0.095 0.191 0.287 0.384 0.480
rc [fm] 2.105 1.047 0.697 0.521 0.417

ψ
′′

(n = 3, l = 0) λc [GeV] 0.089 0.180 0.271 0.362 0.453
rc [fm] 2.247 1.111 0.738 0.552 0.441

χc (n = 2, l = 1) λc [GeV] 0.07 0.182 0.283 0.379 0.478
rc [fm] 2.857 1.099 0.707 0.528 0.418

Υ (n = 1, l = 0) λc [GeV] 2.05 2.93 3.55 4.05 4.475
rc [fm] 0.0975 0.0682 0.056 0.049 0.044

Υ
′

(n = 2, l = 0) λc [GeV] 0.182 0.347 0.573 0.762 0.955
rc [fm] 1.099 0.535 0.349 0.262 0.209

Υ
′′

(n = 3, l = 0) λc [GeV] 0.137 0.279 0.423 0.566 0.708
rc [fm] 1.459 0.717 0.473 0.353 0.282

χb (n = 2, l = 1) λc [GeV] 0.145 0.341 0.51 0.743 0.936
rc [fm] 1.379 0.586 0.392 0.269 0.213

TABLE III

Temperature-dependent critical screening lengths λc in GeV with different values
of variational parameter (β) in GeV using the harmonic potential.

States β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5
[GeV] [GeV] [GeV] [GeV] [GeV]

J/ψ (n = 1, l = 0) λc [GeV] 0.4893 0.5034 0.4789 0.4371 0.3846
rc [fm] 0.4087 0.3973 0.4176 0.4575 0.52

ψ
′

(n = 2, l = 0) λc [GeV] 0.3237 0.4041 0.4409 0.4556 0.4567
rc [fm] 0.6178 0.4949 0.4536 0.4389 0.4379

ψ
′′

(n = 3, l = 0) λc [GeV] 0.2297 0.3093 0.3567 0.3863 0.4041
rc [fm] 0.8707 0.6466 0.5607 0.5177 0.4949

χc (n = 2, l = 1) λc [GeV] 0.2923 0.4006 0.4343 0.4518 0.4539
rc [fm] 0.6842 0.4992 0.4573 0.4427 0.4406

Υ (n = 1, l = 0) λc [GeV] 0.6931 0.7444 0.7476 0.7266 0.6911
rc [fm] 0.2885 0.2687 0.2675 0.2752 0.2894

Υ
′

(n = 2, l = 0) λc [GeV] 0.4118 0.5335 0.6004 0.6413 0.6656
rc [fm] 0.4857 0.3749 0.3331 0.3118 0.3005

Υ
′′

(n = 3, l = 0) λc [GeV] 0.2759 0.3899 0.4602 0.5108 0.5475
rc [fm] 0.7249 0.5129 0.4345 0.3915 0.3653

χb (n = 2, l = 1) λc [GeV] 0.3511 0.5023 0.5806 0.6305 0.6508
rc [fm] 0.5696 0.3981 0.3445 0.3172 0.3073
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TABLE IV

Temperature-dependent critical screening lengths λc in GeV with different values
of variational parameter (β) in GeV using potential (iv).

States β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5
[GeV] [GeV] [GeV] [GeV] [GeV]

J/ψ (n = 1, l = 0) λc [GeV] 0.6656 0.7095 0.7014 0.6679 0.6204
rc [fm] 0.3005 0.2819 0.2851 0.2994 0.3224

ψ
′

(n = 2, l = 0) λc [GeV] 0.3910 0.5075 0.5759 0.6194 0.6464
rc [fm] 0.5115 0.3941 0.3473 0.3229 0.3094

ψ
′′

(n = 3, l = 0) λc [GeV] 0.2599 0.3626 0.4319 0.4813 0.5185
rc [fm] 0.7695 0.5516 0.4631 0.4155 0.3857

χc (n = 2, l = 1) λc [GeV] 0.3612 0.5023 0.5721 0.6162 0.6435
rc [fm] 0.5537 0.3081 0.3496 0.3245 0.3108

Υ (n = 1, l = 0) λc [GeV] 0.9183 0.9822 0.9767 0.9404 0.8878
rc [fm] 0.2178 0.2036 0.2048 0.2127 0.2253

Υ
′

(n = 2, l = 0) λc [GeV] 0.4928 0.6683 0.7784 0.8551 0.9112
rc [fm] 0.4058 0.2997 0.2569 0.2339 0.2195

Υ
′′

(n = 3, l = 0) λc [GeV] 0.3169 0.4507 0.5510 0.6271 0.6877
rc [fm] 0.6311 0.4437 0.3629 0.3189 0.2908

χb (n = 2, l = 1) λc [GeV] 0.4632 0.6271 0.7677 0.8325 0.8973
rc [fm] 0.4318 0.3189 0.2605 0.2402 0.2228

3. Conclusions

In the present work, we have investigated the dissolution energy of heavy
quarkonia bb̄ and cc̄ considering the effect of QGP medium in the interquark
potential of the heavy mesons. We have used variational method to get the
expression for energy and studied the critical parameter with the variation
of the variational parameter of the trial wave function. We have also sug-
gested an empirical form of temperature-dependent screening parameter by
the relation λ(T ) = λ(0)[1− T/Tc]

−0.2 with the critical exponent 0.2 in our
work. The study of critical phenomena and corresponding scaling behavior
of phase transition get a new impetus with the recent experimental develop-
ment of studying low temperature physics. The quasi-particle effective mass
have been studied by parameterizing the behavior as m∗ = m(0)[1− T

Tc
]β

[21]. Usually, the critical point is reached by tuning the thermodynamic pa-
rameters. The renormalization group theory does not restrict the continuous
variation of critical exponent which leads to the weak universality. Crystal
behavior shows asymmetry in critical exponent (α) with (α) = −0.2 ± 0.3.
The critical exponent for T < Tc for fluid varies from 0.1 to 0.2 [29]. The
mean-field prediction of (α) = 0.5 does not match with experimental value
of 0.3 for fluid. The critical exponent is suggested to be 0.1 for CO2, whereas
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for Xe, the value is ∼ 0.2 which does not violate the Rushbrooke or Griffith
inequality. We have used critical exponent as treating the QGP as a fluid and
have studied the phase transition to estimate the critical screening length
for heavy-meson dissociation in QGP. The variation of dissociation energy
with the variational parameter have been studied for ground states, first and
second excited states of the heavy mesons. We have estimated the critical
values of the screening parameters and critical radii for the states consid-
ering variational parameter β varying from 0.1 GeV to 0.5 GeV. Liu et al.
[8] have studied the quark binding potential in QGP for various values of
power of potential between quark and antiquark and studied J/ψ suppres-
sion. They have estimated the screening masses and Debye screening radii
with temperature-dependent different types of potentials and studied the
values with different values of screening parameter. In the current work,
we have studied screening lengths and screening radii with the variation
of variable parameter. Variational method is a useful tool to estimate the
ground state energies and also excited states. It may be mentioned that the
variational method together with physically motivated trial wave function
provide a powerful tool to study the systems under extreme condition and
can be more robust in situation where it is difficult to determine a good un-
perturbed Hamiltonian. In the current work, it has been observed that the
value of critical screening lengths with variational parameter β = 0.2 GeV
estimated in the present work with Cornell potential agree well with the es-
timation of Liu et al. [8] with the value of screening parameter equal to 1.0
with model (i). More comparative study will be done with this variational
approach in our future work.

The authors are thankful to the University Grants Commission, New
Delhi, India, for financial support.
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