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SIMPLIFIED DIRAC–COULOMB EQUATIONS
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A description of N -electron systems on the level of Dirac–Coulomb
(DC) equation in many cases is either unfeasible or unnecessary. In this
work, the N -particle DC equation has been simplified. The simplified DC
Hamiltonians, defined on a reduced N -electron Dirac spinor space, are cor-
rect to the order of α2. Simplified DC equations retain linearity and do
not introduce any inverse operators and singularities. The solutions of the
corresponding eigenvalue problem are correct to α2, but they also con-
tain terms of higher order. In the case of one-particle, the simplified DC
Hamiltonian is equal to the exact Dirac one. As an example, the simplified
eigenvalue problems have been solved for the case of two noninteracting
electrons. The energies are more accurate than the ones derived from the
Pauli approximation (due to the higher order terms). The method may be
easily extended to obtain Hamiltonians correct to an arbitrary order in α.
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1. Introduction

The description of some part of the chemical systems needs to be done
within the relativistic framework. This is being done from two opposite
directions. One of them starts from the non-relativistic approach, then it
is extended by the appropriate relativistic corrections, which due to the
convergence problems and the appearance in some of them nonintegrable
singularities, may be used in the limited way. These features limit essentially
the accuracy of such approaches. This sort of quantum mechanical treatment
belongs to the general group of one- and two-component approaches [1–11].
† Corresponding author: lukaszsyrocki@umk.pl
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This group contains also more accurate methods in which the dependence
on the small components of Dirac bispinor is eliminated by bringing the
equations to the nonlinear form.

From the other side when the group of two component approaches fail,
the fully relativistic Dirac–Coulomb (DC) or Dirac–Coulomb–Breit (DCB)
equations need to be used [8–10]. These equations also posses their own un-
wanted features and limitations [12, 13] which sometimes make them prob-
lematic in use. As we show here, it is possible to reduce the original many
electron DC equation to the simplified one which is correct up to α2 of all rel-
ativistic corrections, where the awkward properties of the original equation
are minimized and the simple linear structure is retained with no singulari-
ties and inverse operators involved.

The resulted reduced DC equation may be solved within one-electron
approximation framework in which the N -electron wave functions are con-
structed from products of one-electron bispinors. And what is more ade-
quate to the case, it may also be solved beyond the one-electron model,
where explicit many electron functions are used, like e.g. explicitly correlated
functions. Such approaches which are not based on the one-electron approx-
imation were applied to the DC equation in a very limited way [14–19]. The
present formulation of reduced DC Hamiltonians aims in the application of
such approaches in very accurate relativistic calculations of several electron
systems. Let us notice that the Direct Perturbation Theory [20, 21], in prin-
ciple, does not need to employ the one-electron model [22] and may as well
be applied to simplified Hamiltonians.

The energy spectrum of a one-electron Dirac Hamiltonian can be di-
vided into two parts: the positive one and the negative one. The posi-
tive spectrum, present also in the Schrödinger model, is composed of the
positive continuum extending above 0 energy threshold, and the discrete
energy levels located below this continuum. The negative part, extending
below −2mc2, is composed of the negative continuum. In the case of an
N -electron system, additionally to the N -electron positive spectrum, com-
posed of N one-electron positive spectra, the spectrum of the Hamiltonian
contains also 2N − 1 superpositions of the one-electron positive and nega-
tive spectra. These 2N − 1 spectra can be collected in N groups associated
with N thresholds −2mc2,−4mc2, . . . ,−2Nmc2. Each of these thresholds
is associated with a term in the N -electron DC Hamiltonian proportional,
respectively, to α2, α4, . . . , α2N [23–25]. Their presence obstructs, in an
essential way, calculations which are not based on the one-electron model
[12, 13]. As we noticed earlier, the main objective of this work is to con-
struct a relativistic Hamiltonian correct to α2 with a spectrum free of all
negative-energy continua except the one associated with the α2 terms in the
Hamiltonian. One of the most important features of the approximate Hamil-
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tonian is its linear and nonsingular character. It is expected that applications
of this Hamiltonian in numerical calculations would lead to a reduction of
their complexity, for example, by dimension reduction of respective eigen-
value problem and restriction of the continuum dissolution problem [26] to
the one Brown–Ravenhall continuum. The applications may also lead to
new computational algorithms.

2. Dirac–Coulomb Hamiltonian

Two noninteracting electrons may be described by the two-particle Dirac
Hamiltonian

Ĥ[2] = Ĥ[1] ⊗ Î[1] + Î[1] ⊗ Ĥ[1] ≡ Ĥ[2](1) + Ĥ[2](2) = Ĥ[2](1, 2) (1)

composed of two one-electron Dirac Hamiltonians Ĥ[1]. Subscripts in square
brackets [N ] refer to the N -particle spinor space on which an operator is
defined. In the expression, a specific particle is identified by the position
of the one-particle operator in the pertinent Kronecker product. Then,
Ĥ[2](1) ≡ Ĥ[1] ⊗ Î[1] ≡ Ĥ[1](1) ⊗ Î[1](2). Therefore, for simplicity, the in-
dices identifying particles will be in most cases omitted.

The Hamiltonian Ĥ[1] and the unit operator Î[1] are defined on the one-
electron Dirac space H[1]. It is convenient to express the elements of H[1] as

Ψ[1] =

[
Φl

Φs

]
,

where Φl and Φs are two-component Pauli spinors traditionally referred to,
respectively, as large and small components of the wave function [27, 28].
In the case of electrons or, in general, spin 1/2 identical fermions, Hamilto-
nian (1) is defined on a space

HA
[2] =

[
H[1] ⊗H[1]

]A
, (2)

where the superscript A stands for the antisymmetric part of the product.
In the standard Dirac–Pauli representation,

Ĥ[1] =

[
v(1) Î(1) cσp̂

cσp̂
[
v(1)− 2mc2

]
Î(1)

]
, (3)

where subscripts in the round brackets (N) refer to the number of particles
described by the two-component Pauli spinors. The operators Î(1) and σ are
defined on the two-dimensional one-particle Pauli space, the external poten-
tial is described by a scalar function v and p̂ is the one-particle momentum
operator. The remaining symbols have their traditional meaning.
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In order to describe a realistic physical system, it is necessary to include
an interaction between electrons. Since a Lorentz-invariant interaction po-
tential cannot be expressed in a finite form, we have to use approximate
model potentials. The most commonly used is either the non-relativistic re-
pulsive Coulomb potential g(1, 2) or accurate to α2 Breit potential. For our
aims, it is sufficient to assume that the interaction potential is described by a
scalar function of coordinates of two particles. The function g(1, 2) has to be
invariant with respect to the transposition of the particles. A generalization
of the formalism to account for the Breit terms is rather straightforward. For
simplicity, we assume that there is no external vector potential and, conse-
quently, the total potential for two electrons or spin 1/2 identical fermions
is simply given by

V̂[2] = V (1, 2) Î[2] ,

where V (1, 2) = v(1) + v(2) + g(1, 2) is a scalar function.
After including the interaction, the two-electron Hamiltonian (1) may be

expressed as
ĤDC

[2] = Ĥ0
[1] ⊗ Î[1] + Î[1] ⊗ Ĥ0

[1] + V̂[2] , (4)

where Ĥ0 is the free-particle Dirac Hamiltonian

Ĥ0
[1] =

[
0̂ cσp̂

cσp̂ −2mc2 Î(1)

]
. (5)

The Hamiltonian ĤDC
[2] is referred to as the Dirac–Coulomb (DC) Hamilto-

nian. In (5) and hereafter, symbol 0̂ denotes a zero operator.
After executing the Kronecker product, the DC Hamiltonian may be

expressed in the form of (cf. [14, 15, 27, 28])

ĤDC
[2] =


V Î(2) cσp̂2 cσp̂1 0̂

cσp̂2
(
V −2mc2

)
Î(2) 0̂ cσp̂1

cσp̂1 0̂
(
V −2mc2

)
Î(2) cσp̂2

0̂ cσp̂1 cσp̂2
(
V −4mc2

)
Î(2)

 ,
(6)

where operators

σp̂1 ≡ σp̂⊗ Î(1) ,
σp̂2 ≡ Î(1) ⊗ σp̂

are defined on the four-dimensional two-particle Pauli space.
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The DC Hamiltonian may also be rewritten as

ĤDC
[2] =


V Î(2) c T̂{2} 0̂

c T̂ †{2}
(
V − 2mc2

)
Î{2} c T̂ ′ †{2}

0̂ c T̂ ′{2}
(
V − 4mc2

)
Î(2)

 , (7)

where

T̂{2}
def
= [σp̂2, σp̂1] ,

T̂ ′{2}
def
= [σp̂1 , σp̂2] (8)

are rectangular 4× 8 matrices, and

Î{2}
def
= Î(2) ⊕ Î(2) . (9)

The eigenfunctions of the DC Hamiltonians (7) and (6) may be expressed as

Ψ[2] =

 Φll

Φ{ls}
Φss

 ≡

Φll

Φls

Φsl

Φss

 , (10)

where

Φ{ls} =

[
Φls

Φsl

]
, (11)

and subscripts in braces [Eqs. (7)–(11)] mean that the domain of the operator
is spanned by Φ{ls}.

The antisymmetry of the spinor wave function (10) is equivalent to the
following set of conditions:

Φll ≡ Φll(x1,x2) = −Φll(x2,x1) ,

Φss ≡ Φss(x1,x2) = −Φss(x2,x1) (12)

and
Φsl(x1,x2) = −Φls(x2,x1) , (13)

where x1,x2 denote the position and the Pauli-spin coordinates of the elec-
trons [24, 25]. In the representation used in this paper, each component Φxy

may be expressed as a Kronecker product of two Pauli spinors, i.e. it is a
four-component spinor. Consequently, Ψ[2] is a 4×4 = 16 component spinor.
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In a general N -particle case, the DC Hamiltonian may be written as a
4N × 4N matrix ĤDC

[N ] consisting of components

[
ĤDC

[N ]

]
ū,v̄

= δ̂ū,v̄
[
V − 2Nsmc

2
]
+ c

N∑
i=1

δ̂iū,v̄ (σp̂i) , (14)

where indices ū, v̄ stand for N -element strings of indices l and s, Ns ≡ Ns(ū)
is equal to the number of small components in the string ū

δ̂iū,v̄ =

{
Î(N) , if ū and v̄ differ in the ith component only ,
0̂ , otherwise ,

and symbol δ̂ū,v̄ has its standard meaning, i.e.

δ̂ū,v̄ =

{
Î(N) , if ū = v̄ ,

0̂ , if ū 6= v̄ .

Hamiltonian (14) acts in a space of 4N -component antisymmetric functions
Ψ[N ]. Similarly as in Eq. (10), a function Ψ[N ] may be decomposed to 2N

Pauli components Φū indexed by strings ū. Every Pauli component Φū

belongs to a 2N -dimensional Pauli spinor space spanned by the N -fold Kro-
necker products of one-particle two-component Pauli spinors. For a given
Hamiltonian (14), we can write its eigenvalue equation as a set of 2N equa-
tions

N∑
i=1

c (σp̂i)Φūi +
[
V − E − 2Nsmc

2
]
Î(N) Φū = 0 , (15)

where ūi is the string which differs from ū in its ith component. A detailed
description of the structure of the DC Hamiltonian is given in Ref. [23].

3. Partition of the Dirac–Coulomb Hamiltonian

A partition of the Dirac Hamiltonian to parts proportional to powers of
fine structure constant α has been explored during the last three decades
by several authors. The most important effect of these studies was the
formulation of the formally correct relativistic perturbation theory, often
referred to as the Direct Perturbation Theory [20, 21]. The Dirac eigenvalue
equation

Ĥ[1] Ψ[1] = E Ψ[1] (16)

after performing the transformation(
Ĉ[1]Ĥ[1]Ĉ[1]

)(
Ĉ−1[1] Ψ[1]

)
= E Ĉ2

[1]

(
Ĉ−1[1] Ψ[1]

)
, (17)
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with

Ĉ[1] =

[
Î(1) 0̂

0̂ α Î(1)

]
becomes (

ĤL
[1] + α2R̂1

[1]

)
Ψ̃[1] = E

(
Ĝ0

[1] + α2Ĝ1
[1]

)
Ψ̃[1] , (18)

where Ψ̃[1] = Ĉ−1[1] Ψ[1],

ĤL
[1] =

[
vÎ(1) σp̂

σp̂ −2mÎ(1)

]
, R̂1

[1] =

[
0̂ 0̂

0̂ vÎ(1)

]
,

and
Ĝ0

[1] = diag
[
Î(1), 0̂

]
, Ĝ1

[1] = diag
[
0̂, Î(1)

]
.

In the non-relativistic limit (α = 0), equation (18) transforms into Lévy-
Leblond (LL) equation [29]

ĤL
[1] Ψ̃[1] = E Ĝ0

[1] Ψ̃[1] , (19)

with semimetric Ĝ0
[1]. By the elimination of two small components of the

four-component spinor Ψ̃[1], we can easily transform equation (19) into the
Schrödinger equation.

Transformation (17) plays only an auxiliary role in the derivation and
shows the magnitude of the relativistic correction. The same partition of
the Dirac equation may be obtained without this transformation [20]. The
resulting formalism has been used to perturbative solving of several one-
and two-particle Dirac eigenvalue problems with α2 being the perturbation
parameter [20].

A similar partitioning technique may be applied to the eigenvalue prob-
lem of a many-particle DC Hamiltonian. In the case of a two-particle Hamil-
tonian (4), the analog of transformation (17) is given by the matrix

Ĉ[2] =

[
Î(1) 0̂

0̂ α Î(1)

]
⊗

[
Î(1) 0̂

0̂ α Î(1)

]
≡


Î(2) 0̂ 0̂ 0̂

0̂ α Î(2) 0̂ 0̂

0̂ 0̂ α Î(2) 0̂

0̂ 0̂ 0̂ α2 Î(2)

 .
The resulting partition of the DC equation reads [22](

ĤL
[2] + α2R̂1

[2] + α4R̂2
[2]

)
Ψ̃[2] = E

(
Ĝ0

[2] + α2Ĝ1
[2] + α4Ĝ2

[2]

)
Ψ̃[2] , (20)
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where

ĤL
[2] =


V Î(2) σp̂2 σp̂1 0̂

σp̂2 −2m Î(2) 0̂ 0̂

σp̂1 0̂ −2m Î(2) 0̂

0̂ 0̂ 0̂ 0̂

 ,

R̂1
[2] =


0̂ 0̂ 0̂ 0̂

0̂ V Î(2) 0̂ σp̂1
0̂ 0̂ V Î(2) σp̂2
0̂ σp̂1 σp̂2 −4m Î(2)

 , R̂2
[2] =


0̂ 0̂ 0̂ 0̂

0̂ 0̂ 0̂ 0̂

0̂ 0̂ 0̂ 0̂

0̂ 0̂ 0̂ V Î(2)

 ,
and

Ĝ0
[2] = diag

[
Î(2), 0̂, 0̂, 0̂

]
,

Ĝ1
[2] = diag

[
0̂, Î(2), Î(2), 0̂

]
,

Ĝ2
[2] = diag

[
0̂, 0̂, 0̂, Î(2)

]
.

Depending on the required accuracy of the results, one can set in equation
(20) α = 0, neglect terms proportional to α4 or include all terms. In the first
case, equation (20) reduces to the two-particle LL equation, corresponding
to the Schrödinger equation. The neglected terms are proportional to α2 '
5× 10−5. In the second case, terms R̂2

[2] proportional to α
4 ' 3× 10−9 are

neglected. In this context, it is worthwhile to note that the Breit interaction
is correct up to α2 only.

An analogous partitioning of the eigenvalue equation may be performed
in a general N -particle case. The matrix

Ĉ[N ] =

[
Î(1) 0̂

0̂ α Î(1)

]⊗N
≡
[
αNs δ̂ū,v̄

]
transforms equation (15) into(

ĤL
[N ] +

N∑
k=1

α2k R̂k[N ]

)
Ψ̃[N ] = E

(
N∑
k=0

α2k Ĝk[N ]

)
Ψ̃[N ] , (21)

where elements of the matrix operators R̂k[N ] are equal to[
R̂k[N ]

]
ū,v̄

= δ̂ū,v̄ [δk,Ns V − δk+1,Ns 2(k + 1)m]

+δ2k+1,Nss

N∑
i=1

δ̂iū,v̄ (σp̂i) , (22)
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with R̂0
[N ] ≡ ĤL

[N ] being the N -particle LL Hamiltonian, and the elements
of Ĝk[N ] equal to [

Ĝk[N ]

]
ū,v̄

= δk,Ns δ̂ū,v̄ . (23)

The symbol Nss ≡ Nss(ū, v̄) = Ns(ū) +Ns(v̄) in equation (22) denotes the
number of small components in both strings: ū and v̄. In the non-relativistic
limit of α = 0, equation (21) reduces to the N -particle LL equation

ĤL
[N ] Ψ̃[N ] = E Ĝ0

[N ] Ψ̃[N ] .

4. Hamiltonians accurate to α2

The two-particle Hamiltonian accurate to α2 may be obtained by neglect-
ing the α4 correction in equation (20). The same results may be obtained
by dropping out V in the third row of the two-particle Hamiltonian (7) and
by assuming the semimetric

Q̂[2] = diag
[
Î(2), Î(2), Î(2), 0̂

]
.

The resulting eigenvalue equation reads

ĤQ
[2] Ψ[2] = E Q̂[2] Ψ[2] , (24)

where

ĤQ
[2] =

 V Î(2) c T̂{2} 0̂

c T̂ †{2} −2mc2 Î{2} 0̂

0̂ 0̂ 0̂

+

 0̂ 0̂ 0̂

0̂ V Î{2} c T̂ ′ †{2}

0̂ c T̂ ′{2} −4mc2 Î(2)

 (25)

due to equation (20) consists of the LL Hamiltonian and the α2 correction.
The third row of (24) gives

c T̂{2} Φ{ls} − 4mc2Φss = 0 . (26)

The last relation allows for the elimination of Φss from (24). The resulting
equation may be expressed as[

V Î(2) c T̂{2}

c T̂ †{2} (V − 2mc2) Î{2} +
1
2mK̂{2}

] [
Φll

Φ{ls}

]
= E

[
Φll

Φ{ls}

]
, (27)

where

K̂{2}
def
=

1

2
T̂ †{2}T̂{2} =

1

2

[
p̂21 (σp̂1) (σp̂2)

(σp̂2) (σp̂1) p̂22

]
, (28)

p̂21 = p̂
2 ⊗ Î(1) and p̂22 = Î(1) ⊗ p̂2.
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Equations (24) and (27) have been derived without assuming antisym-
metry of the two-particle wave function Ψ[2] [cf. equation (10)]. If Ψ[2] is
antisymmetric then, according to (12), Φss = Â(2)Φss, where Â(2) is the two-
particle idempotent antisymmetrizer. Consequently, equation (26) becomes

c Â(2)T̂{2} Φ{ls} − 4mc2Φss = 0 , (29)

and in equation (27), K̂{2} has to be replaced by

K̂ ′A{2}
def
=

1

2

[
(σp̂1) Â(2) (σp̂1) (σp̂1) Â(2) (σp̂2)

(σp̂2) Â(2) (σp̂1) (σp̂2) Â(2) (σp̂2)

]
.

It is easy to see that K̂ ′A{2} and

K̂A
{2} =

[
Ap̂21 0̂

0̂ Ap̂22

]
, (30)

where
Ap̂2i

def
= (σp̂i) Â(2) (σp̂i) ,

when acting on Φ{ls} corresponding to an antisymmetric wave function [equa-
tion (13)], give the same result. Consequently, in the space of antisymmetric
wave functions, K̂ ′A{2} = K̂A

{2}.
The N -particle DC equation accurate to α2 is of the same form as in the

two-particle case (24), i.e.

ĤQ
[N ] Ψ[N ] = E Q̂[N ] Ψ[N ] , (31)

with semimetric given by

Q̂[N ] = Ĝ0
[N ] + Ĝ1

[N ] = diag

Î(N), Î(N), . . . , Î(N)︸ ︷︷ ︸
N+1

, 0̂, 0̂, . . . , 0̂︸ ︷︷ ︸
2N−(N+1)

 .
The Hamiltonian ĤQ

[N ] consists of elements[
ĤQ

[N ]

]
ū,v̄

= V δ0,Ns δ̂ū,v̄ +
(
V − 2mc2

)
δ1,Ns δ̂ū,v̄ − 4mc2δ2,Ns δ̂ū,v̄

+ c

N∑
i=1

(δ1,Nss + δ3,Nss) δ̂
i
ū,v̄ (σp̂i) .
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Equation (31) may be rewritten in a more explicit form as

(V − E)Φū0 + c
∑N

i=1 (σp̂i)Φū0
i
= 0 , (32)(

V − E − 2mc2
)
Φū0

i
+ c (σp̂i)Φū0 + c

∑N
j=1

(j 6=i)

(
σp̂j

)
Φū0

i,j
= 0 , (33)

−4mc2 Φū0
i,j

+ c (σp̂i)Φū0
j
+ c

(
σp̂j

)
Φū0

i
= 0 , (34)

where 1 ≤ i, j ≤ N and i 6= j. The string ū0 is defined by the condition
Ns(ū

0) = 0 and ūi,j is the string which differs from ū in its ith and jth

components, if i 6= j, and ūi,j = ū, if i = j. Equation (34) yields

Φū0
i,j

=
1

4mc

[
(σp̂i)Φū0

j
+
(
σp̂j

)
Φū0

i

]
. (35)

By substituting it to equation (33), we obtain

(
V −E−2mc2

)
Φū0

i
+c (σp̂i)Φū0 +

1

4m

N∑
j=1

(j 6=i)

[
p̂2jΦū0

i
+
(
σp̂j

)
(σp̂i)Φū0

j

]
= 0 .

(36)
Finally, combining equations (32) and (36), we get the N -particle equation
accurate to α2[
V Î(N) c T̂{N}

c T̂ †{N} (V − 2mc2) Î{N} +
1
2mK̂{N}

] [
Φū0

Φ{ls;N}

]
= E

[
Φū0

Φ{ls;N}

]
,

(37)
where

T̂{N}
def
=
[
σp̂N , σp̂N−1, . . . ,σp̂1

]
,

and[
K̂{N}

]
v̄,w̄

def
=

1

2

N∑
i,j=1

(i 6=j)

(
δ̂v̄,ū0

i
δ̂w̄,ū0

i
p̂2j + δ̂v̄,ū0

i
δ̂w̄,ū0

j

(
σp̂j

)
(σp̂i)

)
, (38)

where v̄, w̄ ∈ {ū; Ns(ū) = 1}.
As in the two-particle case, in the space of antisymmetric functions,

K̂{N} appearing in ĤQ
[N ] may be replaced by a simpler equivalent operator.

If Ψ[N ] is antisymmetric, then Φū0(x1,x2, . . . ,xN ) is antisymmetric in all
N variables and

Φ{ls;N} =


Φū0

N

Φū0
N−1

...
Φū0

1
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consists of N -electrons Pauli spinors, where each spinor Φū0
i
is antisym-

metric in (N − 1) variables (x1,x2, . . . ,xi−1,xi+1, . . . ,xN ). Moreover, the
components Φū0

i
are linked by the relation [24, 25]

Φū0
i
(x1,x2, . . . ,xi, . . . ,xj , . . . ,xN ) = −Φū0

j
(x1,x2, . . . ,xj , . . . ,xi, . . . ,xN ) .

In general, all components Φū of an antisymmetric N -particle wave function
Ψ[N ] are antisymmetric in variables xil corresponding to the large component
indices il in the string ū and antisymmetric in variables xis corresponding
to the small component indices is. Let Âū be the projection operator on
the subspace of functions antisymmetric in the large component indices and,
separately, antisymmetric in the small component indices. Now, for Φū0

i,j
=

Âū0
i,j
Φū0

i,j
, equation (35) becomes

Φū0
i,j

=
1

4mc
Âū0

i,j

[
(σp̂i)Φū0

j
+
(
σp̂j

)
Φū0

i

]
. (39)

Similarly, equation (36) reads(
V − E − 2mc2

)
Φū0

i
+ c (σp̂i)Φū0

+
1

4m

N∑
j=1

(j 6=i)

[(
σp̂j

)
Âū0

i,j

(
σp̂j

)
Φū0

i
+
(
σp̂j

)
Âū0

i,j
(σp̂i)Φū0

j

]
= 0 . (40)

Further simplification of equation (40) gives

(
V − E − 2mc2

)
Φū0

i
+ c (σp̂i)Φū0 +

1

2m

 N∑
j=1

(j 6=i)

Ap̂2j,(i)

Φū0
i
= 0 , (41)

where
Ap̂2j,(i)

def
=
(
σp̂j

)
Âū0

i,j

(
σp̂j

)
.

Finally, equations (39) and (41) lead to an equation analogous to (37) with
operator K̂{N} replaced by

[
K̂A
{N}

]
v̄,w̄

def
=

N∑
i=1

δ̂v̄,ū0
i
δ̂w̄,ū0

i

N∑
j=1

(j 6=i)

Ap̂2j,(i) . (42)
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5. Further simplifications

A further simplification of equation (37) may be obtained by replacement
of Ap̂2j,(i) in (42) by the ordinary momentum operators p̂2j . The components
of the simplified operator K̂A

{N}, denoted K̂
d
{N}, read[

K̂d
{N}

]
v̄,w̄

def
=

N∑
i=1

δ̂v̄,ū0
i
δ̂w̄,ū0

i

N∑
j=1

(j 6=i)

p̂2j . (43)

As we shall see in Section 7, this replacement leads to an error of the order
of α6. In order to understand the procedure leading with this simplification,
let us now consider the case of two noninteracting particles, i.e. equation
(27) with V = v(1) + v(2). In this case, each subsystem (each particle)
is described separately by the Hamiltonians Ĥ[2](1) and Ĥ[2](2) [cf. (1)].
Neglecting in Ĥ[2](i) (i = 1, 2) terms proportional to α4, we get the simplified
Hamiltonians

ĤQ
[2](i)=

 v(i) Î(2) c T̂{2}(i) 0̂

c T̂ †{2}(i) −2mc
2 Î{2} 0̂

0̂ 0̂ 0̂

+
 0̂ 0̂ 0̂

0̂ v(i)Î{2} c T̂ ′ †{2}(i)

0̂ c T̂ ′{2}(i) −4mc
2 Î(2)

 , (44)

where

T̂{2}(1) =
[
0̂, σp̂1

]
, T̂ ′{2}(1) =

[
σp̂1, 0̂

]
,

T̂{2}(2) =
[
σp̂2, 0̂

]
, T̂ ′{2}(2) =

[
0̂, σp̂2

]
.

In consequence, we obtain two equations

ĤQ
[2](i) Ψ[2](i) = Ei Q̂[2] Ψ[2](i) , i = 1, 2 , (45)

equivalent to equation (24), where the wave function

Ψ[2](i) =

 Φll(xi)
Φ{ls}(xi)
Φss(xi)


depends on the one-particle coordinates, xi, only. By elimination of the
small–small components Φss(xi) from equations (45), and by adding the
resulting one-particle Hamiltonians to obtain the two-particle one, we get
an equation analogous to (27), in which K̂{2} has been replaced by

K̂d
{2} =

[
p̂21 0̂

0̂ p̂22

]
. (46)

We have to stress that this equation cannot be derived directly from (4),
but only by separate simplifying of the one-particle equations.
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6. A physical interpretation of the simplified DC Hamiltonian

In order to better understand the meaning of the reduction of the DC
Hamiltonian (4) to its simplified form (25), let us consider the part of the
Hamiltonian (1) describing the first particle, i.e. Ĥ[2](1). It can be expressed
in the form of

Ĥ[2](1) = Ĥ[1] ⊗
(
Î(1) 0̂

0̂ 0̂

)
+ Ĥ[1] ⊗

(
0̂ 0̂

0̂ Î(1)

)
.

On the other hand, the simplified Hamiltonian (44) can be written as

ĤQ
[2](1) = Ĥ[1] ⊗

(
Î(1) 0̂

0̂ 0̂

)
+ CĤL

[1] ⊗
(

0̂ 0̂

0̂ Î(1)

)
,

where
CĤL

[1] ≡ Ĉ−1[1] Ĥ
L
[1]Ĉ

−1
[1] =

[
v(1) Î(1) cσp̂

cσp̂ −2mc2 Î(1)

]
(47)

is the LL Hamiltonian, equivalent to ĤL
[1] appearing in equation (19). As one

can see, the first term in ĤQ
[2](1) gives a complete (relativistic) contribution

due to the first particle to the part of the wave function in which appears
the large component of the second particle, and the second term gives a
simplified (non-relativistic) contribution due to the first particle to the part
of the wave function in which appears the small component of the second
particle. An analogous interpretation is valid for the part ĤQ

[2](2) describing
the second particle.

7. An example: two free particles

Plain waves

If V ≡ 0, then the Hamiltonian commutes with (σp̂i) and we can look
for the plane wave solutions: either

Ψ[2] = e
i
~ (p1r1+p2r2) (Θll, Θls, Θsl, Θss)

T (48)

[for Hamiltonians (6), (7), (25)], or

Ψ[2] = e
i
~ (p1r1+p2r2) (Θll, Θls, Θsl)

T , (49)

[for Hamiltonians of the type presented in equation (27)], whereΘll, Θls, Θsl,
Θss are two particle Pauli spinors and T denotes transposition. The eigen-
value problems for the DC Hamiltonian (6) and for the simplified Hamilto-
nian (25) [equivalent to equation (27) with the operator (28)], reduce to
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wllwss − 4p21p

2
2

)
Θll = 0 ,

wssΘss = 2 (σp1) (σp2)Θll ,(
E + 2mc2

)
Θls = c [(σp2)Θll + (σp1)Θss] ,(

E + 2mc2
)
Θsl = c [(σp1)Θll + (σp2)Θss] , (50)

where

wll = c−2E
(
E + 2mc2

)
−
(
p21 + p22

)
,

wss = c−2
(
E + 2mc2

) (
e+ 4mc2

)
−
(
p21 + p22

)
,

with e = E in the case of the DC Hamiltonian (6), and e = 0 for the
simplified Hamiltonian (25). The requirement of Θll 6= 0 reduces equation
(50) to (

wllwss − 4p21p
2
2

)
= 0 , (51)

which for e = E gives four eigenvalues

E = ±
√
p21 +m2c4 ±

√
p22 +m2c4 − 2mc2 . (52)

Four solutions (52) can be associated with three continua resulting from the
superposition of the one-particle positive (+ sign) and negative (− sign)
continua: the first one, E ≈ 0, is associated with two one-particle positive
continua (++ sign), the next continuum, E ≈ −2mc2, is associated with
positive and negative one-particle continua (+− and −+), and the last one,
E ≈ −4mc2, with the negative continua (−−). (The approximate rela-
tions for E are valid for small p1 and p2.) For e = 0, equation (51) is the
third-order algebraic equation and its solutions may be expressed using the
Cardan formulae. Because of their complexity, we restrict the discussion
to a qualitative analysis. As one should expect, the solutions are close to
three highest eigenvalues given by equation (52): one is close to the posi-
tive root (++ positive continuum), and the two remaining ones are close to
E ≈ −2mc2 (+− and −+ first negative continuum).

Very similar roots to those of equation (27) with operator (28) are ob-
tained by solving this equation with operator (46). In this case, equation
(27) reduces to three algebraic equations[

c2p22

(
E+2mc2− p21

2m

)−1
+c2p21

(
E+2mc2− p22

2m

)−1
−E

]
Θll=0 , (53)

Θls = c

(
E + 2mc2 − p21

2m

)−1
(σp2)Θll,

Θsl = c

(
E + 2mc2 − p22

2m

)−1
(σp1)Θll .
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If Θll 6= 0, equation (53) leads to

c2p22

(
E + 2mc2 − p22

2m

)
+ c2p21

(
E + 2mc2 − p21

2m

)
−E

(
E + 2mc2 − p21

2m

)(
E + 2mc2 − p22

2m

)
= 0 .

The same dispersion relations for the considered equations can be easily
obtained for the antisymmetrized functions (48) and (49).

In the case of the N -particle DC Hamiltonian (14), we get 2N roots
belonging to (N+1) continua: E ≈ 0,−2mc2,−4mc2, . . . ,−2Nmc2. For the
simplified Hamiltonians [equation (37)], we get only (N +1) roots belonging
to two continua: E ≈ 0 and E ≈ −2mc2. The dispersion relation for the
positive energy and momenta p1 and p2 for the Pauli energy EP, DC energy
EDC, and energies derived from the simplified Hamiltonians (28) and (46)
(respectively, EA and Ed) are given by the following equations:

EP =
p21 + p22
2m

− p41 + p42
8m3

α2 ,

EDC = EP +
p61 + p62
16m5

α4 − p81 + p82
128m7

α6 +O
(
α8
)
,

EA = EDC +
p21p

2
2

(
p21 + p22

)
32m5

α4−
p21p

2
2

(
7p41 +10p21p

2
2 +7p42

)
256m7

α6+O
(
α8
)
,

Ed = EDC +
p21p

2
2

(
p21 + p22

)
32m5

α4 −
3p21p

2
2

(
p21 + p22

)2
128m7

α6 +O
(
α8
)
.

As one can easily check,

EP
α4

< EDC
α4

< EA
α6

< Ed ,

where in each inequality, the magnitude of terms by which the corresponding
energies differ is indicated. Besides, |EP−EDC| > |Ed−EDC| and EA−Ed =
O(α6).

8. Conclusions

Though the eigenvalue problems of the simplified Hamiltonians is dif-
ficult to solve analytically even for two noninteracting electrons, they may
be easily applicable and very useful for numerical solutions of the eigen-
value equations for many-electrons systems, e.g. in atomic, molecular and
solid state physics. One of the advantages of the simplified equations is
the (N +1)× 2N component structure of the corresponding wave functions,
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compared to 2N × 2N component structure of the DC wave functions. How-
ever, the spinor structure of obtained reduced DC equations is significantly
reduced, the new equations retain linear structure of the original DC equa-
tion and still posses intrinsic relativistic character. In contrast to the DC
Hamiltonian which has (N +1) bands of eigenvalues associated with energy
thresholds E = 0, −2mc2, . . . , −2N mc2, the simplified Hamiltonians have
only two bands of eigenvalues with thresholds E = 0 and E = −2mc2. The
positive energy band, containing the bound states, is of the primary interest
in majority of studies. The simplification of the DC equation has been per-
formed on the level of the N -particle equation and it is valid for an arbitrary
potential V describing interactions between particles. Therefore, the sim-
plified equations posses an appealing feature of treating all interactions in
a uniform way. It is worthwhile to note that the same reduction procedure
can be performed in the case of Dirac–Coulomb–Breit Hamiltonian, which
includes all relativistic effects of interacting electrons up to α2 order. The
non-separability of the simplified equations for noninteracting systems is not
crucial in practice but disappointing. A search for another, separable form
of the simplified Hamiltonian is certainly an interesting challenge.

The formalism presented in this paper can easily be extended to higher
orders in α. However, already the α4 accuracy, in majority of cases, carries
corrections which are less significant then the QED effects. In the case of
the α4-accurate Hamiltonians, the 2N × 2N -dimensional spinor structure is
reduced to

[
1 +

(
N
1

)
+
(
N
2

)]
× 2N structure. Moreover, the addition of the

α4 correction adds only one more continuum (≈ −4mc2) to the spectrum.
In general, it seems to be more pragmatic to treat α4 terms by means of the
direct perturbation method.

At the end, let us mention that on every level of simplification of the DC
equation, the form of wave function is suitable for using non-separable basis
as for example explicitly correlated functions [15–19, 22]. This is particularly
useful when approaches based on non-relativistic equation fail and the elec-
tron correlation plays significant role in the system. Also quasi-relativistic
methods based on the Fouldy–Wouthuysen transformation [6, 30] may be
applied to solving the simplified N -electron eigenvalue problem on every
level of approximation.

The authors thank Jacek Karwowski for numerous discussions and for
his critical reading of the manuscript. This work has been done under grants
Nos. 2011/01/D/ST2/01286 and 2017/25/B/ST2/00901 of the National Sci-
ence Centre, Poland (NCN).
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