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The adaptive dual synchronization of chaotic (hyperchaotic) complex
systems with uncertain parameters has been investigated. The analytical
control functions are derived using a theorem to synchronize the chaotic
(hyperchaotic) solutions of these systems. The adaptive dual synchro-
nization between the chaotic complex Chen and Lorenz systems is in-
troduced as an example, and another example is used to test the valid-
ity of the technique of this paper. Other examples of chaotic or hyper-
chaotic complex systems can be similarly studied. Based on the up-to-date
laws, the parameters of the drive systems can be identified. The image en-
cryption technique based on the adaptive dual synchronization of chaotic
complex Chen and Lorenz systems is presented for gray and color images
in the same time. Meantime, in the receiver side, information can be recov-
ered successfully by adaptive technique. The presented technique is robust
with respect to different levels of white Gaussian noise. The communica-
tion channel as well as the effect of the increase of noise are big challenge
which have not been considered. Numerical simulations are given to verify
the feasibility of our proposed synchronization and better performance of
image encryption technique in terms of histogram, robustness to noise and
visual imperceptibility.
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1. Introduction

Chaotic systems play an important role in dynamical systems due to
their interesting and complex dynamical behaviors. The chaotic system is
a three- or higher dimensional system, which has one positive Lyapunov
exponent, and has more complex and rich dynamics. The chaotic systems
may be important in some sciences such as information processing, com-
puting, telecommunications and electrical engineering [1–4]. Several chaotic

(1923)



1924 G.M. Mahmoud et al.

systems have been studied, such as chaotic Rössler, Lü, Lorenz, Chua and
Chen systems [5–9]. Mahmoud et al. studied the chaotic complex Chen, Lü
and Lorenz systems in [10, 11].

In the last four decades, chaos synchronization has became a hot research
topic. Synchronization between chaotic systems is more secure than chaotic
ones. Synchronization techniques have great potential for applications in
several fields such as physics, biological models, engineering applications,
secure communication, image encryption and neural networks [12–19]. There
exist many types of control to achieve synchronization such as active control,
nonlinear feedback control, adaptive control, tracking control, delay feedback
control and open-plus-closed-loop control [20–29].

With the rapid growth of the Internet and wireless networks, informa-
tion security becomes more and more important and it is a critical issue. In
particular, image encryption has received a great deal of increasing inter-
est, due to the fact that most of image data are required to be confidential
between the sending side and the receiver end, such as some military im-
ages, architectural drawings, medical imaging, and so on. During the last
several decades, numerous encryption algorithms have been proposed in the
literature based on different principles [30–32]. Among them, chaos-based
encryption techniques is considered good for practical applications as these
techniques provide a good combination of speed, high security, high sensi-
tivity, complexity, etc.

The main aim of this paper is to synchronize two chaotic complex systems
with uncertain parameters as the adaptive dual synchronization. Based on
adaptive dual synchronization, we propose an image encryption algorithm
for both gray and color images at the same time.

This paper is organized as follows. In Section 2, the adaptive dual syn-
chronization (ADS) of chaotic complex systems with uncertain parameters is
studied. In Section 3, the ADS for chaotic complex Chen and Lorenz systems
is stated as an example. Another example is used to test the validity of the
technique of this paper using the hyperchaotic complex Lü and Liu systems.
The image encryption algorithm is given based on our presented synchro-
nization in Section 4. The availability of the proposed technique is verified
by numerical simulations. Different levels of white Gaussian noise are used
to evaluate the robustness of the presented scheme. Finally, conclusions are
given in Section 5.

2. ADS for chaotic complex systems

In this section, we extend the scheme of ADS of chaotic real systems [33]
to chaotic (hyperchaotic) complex systems with uncertain parameters. We
require one pair of two chaotic (hyperchaotic) complex systems for the drive
system and other pair for the response system. Let the drive systems be
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described as

ẋ1(t) = F 1(x1(t))A1 + f1(x1) , (1)
ẋ2(t) = F 2(x2(t))A2 + f2(x2) , (2)

where x1 ∈ Cn, x2 ∈ Cm, the matrices F 1 ∈ Cn×p1 and F 2 ∈ Cm×p2 ,
and the vectors A1 ∈ Cp1 , A2 ∈ Cp2 , f1(x1) ∈ Cn and f2(x2) ∈ Cm. We
can write systems (1)–(2) as

ẋ(t) = F (x(t))A+ f(x) , (3)

where ‘T’ stands for transpose

x = (x1, x2)
T , A = (A1, A2)

T , f(x) = (f1(x1), f2(x2))
T

and
F (x) =

(
F 1(x1) 0

0 F 2(x2)

)
.

The response systems are given as

ẏ1(t) = F 1(y1(t))Â1 + f1(y1) + u , (4)
ẏ2(t) = F 2(y2(t))Â2 + f2(y2) + v , (5)

where y1 ∈ Cn, y2 ∈ Cm, Â1 ∈ Cp1 , Â2 ∈ Cp2 represent the estimate
vectors of A1 and A2. u : Cn×Cn −→ Cn and v : Cm×Cm −→ Cm are
two vectors of control functions for the response systems (4)–(5). Systems
(4)–(5) can be written as

ẏ(t) = F (y(t))Â+ f(y) + U , (6)

where

y = (y1, y2)
T , Â =

(
Â1, Â2

)T
, f(y) = (f1(y1), f2(y2))

T , U = (u, v)T

and
F (y) =

(
F 1(y1) 0

0 F 2(y2)

)
.

Definition 1 The drive system (3) is said to be dual synchronization with
the response system (6), if

lim
t→∞
‖e‖ = lim

t→∞
‖y − x‖ = 0 . (7)
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Remark 1 The error signal of dual synchronization can be written as

e =

[
e1
e2

]
=

[
y1 − x1
y2 − x2

]
. (8)

Remark 2 If either x1 = y1 = 0 or x2 = y2 = 0, then dual synchronization
becomes a complete synchronization between two chaotic complex systems.

The error dynamical system of synchronization can be written as

ė = ẏ − ẋ . (9)

From systems (3) and (6), system (9) can be written as

ė = f(y)− f(x) + (F (y)− F (x))A+ F (y)eA + U , (10)

where eA = Â−A.

Theorem 1 The drive system (3) and the response system (6) can achieve
ADS if the vector of control functions is chosen as follows:

U = f(x)− f(y) + (F (x)− F (y))A−Ke , (11)

and the estimated parameters updating the law are selected as

ėA =
˙̂
A = −(F (y))He , (12)

where K = diag(k1, k2, . . . , kn+m) is diagonal gain matrix.

Proof: Let the Lyapunov function be selected as

V = 1
2

(
eHe+ eHA eA

)
, (13)

the time derivative of V can be written as

V̇ = 1
2

(
eH ė+ ėHe+ eHA ėA + ėHA eA

)
, (14)

and using Eqs. (10)–(12), Eq. (14) takes the form of

V̇ = −eHKe
≤ −kmin‖e‖2 , (15)

where kmin = min(k1, k2, . . . , kn+m). Based on the Lyapunov stability the-
orem, since V is positive definite and V̇ is negative definite, the drive sys-
tem (3) and the response system (6) achieve the ADS. 2
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3. Illustrative examples

In this section, we will test our synchronization scheme with two ex-
amples. the first one by taking a pair of chaotic complex Chen and Lorenz
systems and the other example for hyperchaotic complex Lü and Liu systems
[34, 35].

3.1. Example 1

We consider that the chaotic complex Chen and Lorenz systems are the
drive systems, respectively,

ẋ11 = a1(x12 − x11) ,
ẋ12 = a4x11 + a3x12 − x11x13 ,
ẋ13 = 1

2(x11x̄12 + x̄11x12)− a2x13 , (16)
ẋ21 = b1(x22 − x21) ,
ẋ22 = b3x21 − x22 − x21x23 ,
ẋ23 = 1

2(x21x̄22 + x̄21x22)− b2x23 , (17)

where x11 = xr11 + jxi11, x12 = xr12 + jxi12, x13 = xr13, x21 = xr21 + jxi21,
x22 = xr22 + jxi22, and x23 = xr23. If a1 = 35, a2 = 3, a3 = 12, a4 = 7,
b1 = 12, b2 = 30, b3 = 3, and the initial conditions of systems (16)–(17)
are x10 = x20 = (9.4735 + 9.4735j, 10.4211 + 10.4211j, 19.5689)T, then these
systems have chaotic solutions [10, 11] which are shown in Fig. 1.
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Fig. 1. Chaotic attractors of: (a) system (16) in xr12, xr11, xr13 space, (b) system (17)
in xi22, xr21, xr22 space.

We can write the two drive systems (16)–(17) in the form of Eq. (3) such
that: x = (x11, x12, x13, x21, x22, x23)

T, f(x) = [0,−x11x13, 0.5(x11x̄12 +
x̄11x12), 0,−x22−x21x23, 0.5(x21x̄22+x̄21x22)]

T, A=(a1, a2, a3, a4, b1, b2, b3)
T,
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and

F (x(t)) =


(x12 − x11) 0 0 0 0 0 0

0 0 x12 x11 0 0 0
0 −x13 0 0 0 0 0
0 0 0 0 (x22 − x21) 0 0
0 0 0 0 0 0 x21
0 0 0 0 0 −x23 0

 .

In similar way, we can write the corresponding two response systems as

ẏ11 = â1(y12 − y11) + u1 ,

ẏ12 = â4y11 + â3y12 − y11y13 + u2 ,

ẏ13 = 1
2(y11ȳ12 + ȳ11y12)− â2y13 + u3 , (18)

ẏ21 = b̂1(y22 − y21) + v1 ,

ẏ22 = b̂3y21 − y22 − y21y23 + v2 ,

ẏ23 = 1
2(y21ȳ22 + ȳ21y22)− b̂2y23 + v3 . (19)

The response systems (18)–(19) can be written in the form of Eq. (6), where
Â = (â1, â2, â3, â4, b̂1, b̂2, b̂3)

T, U = (u1, u2, u3, v1, v2, v3).
In the numerical simulation, we consider the same parameters and initial

conditions of the drive systems (16)–(17) of Fig. 1, and for response systems
(18)–(19), y10 = y20 = (9.4735 + 9.4735j, 10.4211 + 10.4211j, 19.5689)T and
the unknown parameters are chosen also the same as in Fig. 1. By applying
Theorem 1, the control functions (11) can be written as

U =

35(x12 − x11 − y12 + y11)− k1e11
y11y31 − x11x13 + 12(x12 − y12) + 7(x11 − y11)− k2e12

0.5(x11x̄12 + x̄11x12)− 0.5(y11ȳ12 + ȳ11y12) + 3(y13 − x13)− k3e13
12(x22 − x21 − y22 + y21)− k4e21

y22 + y21y23 − x22 − x21x23 + 3(x21 − y21)− k5e22
0.5(x21x̄22 + x̄21x22)− 0.5(y21ȳ22 + ȳ21y22) + 30(y23 − x23)− k6e23


,

(20)

whereK=diag(k1, k2, . . . , k6) = diag(5, 6, 7, 3, 4, 2) and e=(e11, e12, e13, e21,
e22, e23)

T = (er11 + jei11, e
r
12 + jei12, e

r
13, e

r
21 + jei21, e

r
22 + jei22, e

r
23)

T. The
results are shown in Figs. 2–5. Figures 2–3 show that the ADS errors
approach zero, while in Figs. 4–5, the estimate of unknown parameters
Â = (â1, â2, â3, â4, b̂1, b̂2, b̂3)

T converge to A = (a1, a2, a3, a4, b1, b2, b3)
T =

(35, 3, 12, 7, 12, 30, 3)T .
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Fig. 2. Synchronization errors for the drive system (16) and the response sys-
tem (18) versus t.
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Fig. 3. Synchronization errors for the drive system (17) and the response sys-
tem (19) versus t.
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Fig. 4. Parameters identified for the drive system (16).
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Fig. 5. Parameters identified for the drive system (17).

3.2. Example 2

Now, we will test our scheme with the hyperchaotic complex Lü and Liu
systems, which are written as

ż11 = c1(z12 − z11) + z14 ,

ż12 = c2z12 − z11z13 + z14 ,

ż13 = 1
2(z11z̄12 + z̄11z12)− c3z13 ,

ż14 = 1
2(z11z̄12 + z̄11z12)− c4z14 , (21)

ż21 = d1(z22 − z21) ,
ż22 = d2z21 + z21z23 − z24 ,
ż23 = −1

2(z21z̄22 + z̄21z22)− d3z23 + z24 ,

ż24 = 1
2d4(z21 + z̄21) + 1

2(z22 + z̄22) , (22)

where z11 = zr11 + jzi11, z12 = zr12 + jzi12, z13 = zr13, z14 = zr14, z21 =
zr21 + jzi21, z22 = zr22 + jzi22, z23 = zr23, and z24 = zr24. For c1 = 42, c2 = 25,
c3 = 6, c4 = 5, d1 = 10, d2 = 35, d3 = 1.4, d4 = 5, and the initial
conditions of systems (21)–(22) to be z10 = (−9.7108 − 0.1059j,−8.4210 −
0.0929j, 26.3764, 31.4969)T, z20 = (0.6654 + 0.0103j,−24.6381 − 0.2534j,
−66.9976, 18.5105)T, these systems have hyperchaotic solutions.

In similar way, we apply Theorem 1 between the drive systems (21)–(22)
and the corresponding response systems using the proposed technique. Then
we obtain the control functions and using numerical simulation, we can see
that the errors go to zero. The parameters identified for the drive systems
(21)–(22) are shown in Figs. 6–9. These results show that our technique
gives good results. Other chaotic (hyperchaotic) complex systems can be
similarly investigated.
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Fig. 6. Synchronization errors for the drive system (21) and the corresponding
response system versus t.
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Fig. 7. Synchronization errors for the drive system (22) and the corresponding
response system versus t.

0 5 10 15 20
0

10

20

30

40

50

t
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Fig. 8. Parameters identified for the drive system (21).
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Fig. 9. Parameters identified for the drive system (22).

4. Secure communication

In [17], the adaptive synchronization of chaotic real systems was pro-
posed and the proposed scheme was applied to color image encryption. In
our presented scheme, we investigate the adaptive dual synchronization of
chaotic complex systems. Based on ADS of chaotic complex systems, we
developed image encryption method for gray and color images and the sug-
gested technique is resistant to different levels of noise.

A brief description of secure communication scheme is presented in three
subsections. The first one is devoted to secure communication for gray-scale
images, while the secure communication for color images is described in the
second subsection. The conducted numerical experiments are described in
the third subsection.

4.1. Single parameter modulation-based image encryption scheme
of grayscale image

The presented scheme of grayscale image based on single parameter mod-
ulation is discussed through this subsection. A digital image of the size of
m×n, h(k, l) represents the intensity pixel value at the position (k, l), where
k = 1, 2, . . . ,m, l = 1, 2, . . . , n. The digital signals are modulated by choos-
ing the parameter a2. The two-dimensional matrix of pixels is transformed
into a one-dimensional integer between 0 and 255.

Let the matrix of pixel values of the plain image be given as follows:

H =


h11 h12 . . . h1n
h21 h22 . . . h2n
...

...
...

...
hm1 hm2 . . . hmn

 ,
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where m,n represent the image width and high, hkl is the intensity value
of image. Let H = [h11, h21, . . . , hm1, h12, . . . , hm2, . . . , h1n, . . . , hmn] =
[h1, h2, . . . , hmn], then each value hk of H is modulated into the parame-
ter a2 in the drive system (16) by a function f(h(r)), i.e.

S(t) = g(h(r)) =
hr

(10 d)
+ a2 , (23)

where r = 1, . . . ,mn, d = max(h(r))−min(h(r)), a2 = 3. The value of hr
(10 d)

is 0 or 0.1 which means that system (16) maintains the chaotic behavior
according to [10].

Moreover, the inverse function g−1(S̄(t)) can be obtained by the response
system (18) as

h̄r = g−1
(
S̄(t)

)
= 10

(
S̄(t)− a2

)
d , (24)

where r = 1, . . . ,mn, d = max(h(r))−min(h(r)).

4.2. Multi-parameters modulation-based image encryption scheme
of color image

In order to deal with color image, we convert the present color images
into three Red, Green and Blue (RGB) channel components by using the
RGB channels. The parameters b1, b2, b3 are chosen in the drive system (18)
as message carriers to transmit the RGB channels of the plain image using
the modulation equations given as

SR(t) = g(hR(r)) =
hRr

(10 dR)
+ b1 ,

SG(t) = g(hG(r)) =
hGr

(10 dG)
+ b2 ,

SB(t) = g(hB(r)) =
hBr

(10 dB)
+ b3 , (25)

where hRr
(10 dR) ,

hGr
(10 dG) ,

hBr
(10 dB)

∈ [0, 2.55]. This means that system (17) main-
tains the chaotic behavior according to [11].

Meanwhile, the inverse functions of (25) are given by the response system
(19) as

h̄Rr = g−1
(
S̄R(t)

)
= 10

(
S̄R(t)− b1

)
dR ,

h̄Gr = g−1
(
S̄G(t)

)
= 10

(
S̄G(t)− b2

)
dG ,

h̄Br = g−1
(
S̄B(t)

)
= 10

(
S̄B(t)− b3

)
dB , (26)

where r = 1, . . . ,mn, dR = max(hR(r)) −min(hR(r)), dG = max(hG(r)) −
min(hG(r)), dB = max(hB(r))−min(hB(r)), b1 = 12, b2 = 30, b3 = 3.
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4.3. Numerical experiments

In order to analyze and evaluate the performance of the secure commu-
nication system, the quality of recovered gray and color images is measured
by peek signal-to-noise ratio (PSNR) [36] and the structural similarity image
index (SSIM). A set of numerical experiments was performed to demonstrate
the efficiency of the image encryption scheme depending on ADS, with gray
Boat and color Peper image of the size of (256×256). The original gray im-
age is shown in Fig. 10 (a) and its gray distribution is depicted in Fig. 10 (b).
In Fig. 10 (c)–(d), the recovered image and its gray corresponding distribu-
tion are illustrated, obtained after using the proposed scheme respectively.
As shown in Fig. 10, the recovered image is very similar to the original
one. Similarly, the original Peper color image can be reconstructed by the
recovered three RGB channels and its RGB corresponding distribution is
illustrated in Fig. 11. It is noticed that the recovered color image is very
close to the original one.

Fig. 10. (a) The original image, (b) the histogram of original image, (c) the recov-
ered image, (d) the histogram of recovered image.
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Fig. 11. (a) The original color image, (b) the histogram of original color image,
(c) the recovered image, (d) the histogram of recovered image.

4.3.1. Peak signal-to-noise ratio analysis

To verify the decryption quality of the secure communication scheme,
the peak signal-to-noise ratio (PSNR) was used to measure the pixel distri-
bution with respect to the original image and a quantitative measure for the
recovered image. A PSNR with high values corresponds to a strong similar-
ity between the decrypted image and original ones. The PSNR is defined as
follows:

PSNR(h, hD) = 10 log10

[
(255)2

MSE

]
, (27)

where MSE is the mean square error and is defined as

MSE =
1

m× n

m∑
i=1

n∑
j=1

(hD(i, j)− h(i, j))2 , (28)

and h and hD represent the original and recovered image, respectively.

4.3.2. The structural similarity index

Another important criteria to evaluate quantitatively the recovered im-
age is the SSIM [37], which is used to measure the similarity between the
original and recovered image. The SSIM is defined as follows:
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SSIM(h, hD) =
(2µhµhD

+ C1)(2σhhD
+ C2)

(µ2h + µ2hD
+ C1)(σ2h + σ2hD

+ C2)
, (29)

where µh and µhD
are the average luminance value of original image h and

the watermarked image hD, respectively; σh and σhD
are the standard vari-

ance of h and hD, respectively. σhhD
is the covariance between h and hD,

C1 and C2 are small fixed positive constants adopted to avoid the denomi-
nators from being zero. The dynamic range of SSIM is [−1, 1], and the best
value 1 is achieved if and only if h = hD. The PSNR and SSIM are calcu-
lated for the recovered gray and color image with the original ones, then the
corresponding results are listed in Tables I and II.

TABLE I

The PSNR and SSIM values for gray Boat image.

Gray image PSNR SSIM

Boat 66.9787 0.9999
Boat Gaussian noise 0.02 66.9787 0.9999
Boat Gaussian noise 0.05 66.9645 0.9999
Boat Gaussian noise 0.1 66.8836 0.9999

TABLE II

The PSNR and SSIM values for color Peper image.

Color image PSNR SSIM

Peper 62.9431 0.9999
Peper Gaussian noise 0.02 62.8072 0.9999
Peper Gaussian noise 0.05 62.3304 0.9999
Peper Gaussian noise 0.1 61.4566 0.9999

In order to evaluate the robustness of the proposed scheme to different
levels of noise, the noise-free gray and color images of Boat and Peper are
used in this experiment, respectively. These gray and color images are con-
taminated by different levels of the white Gaussian noise, the original and
recovered noisy images are displayed in Figs. 10–13, which show that the
recovered noisy gray and color images are very similar to the original noisy
images.
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Fig. 12. (a)–(c) The original noisy image with 0.02, 0.05 and 0.1 Gaussian noise,
respectively, and (d)–(f) the recovered noisy image with 0.02, 0.05 and 0.1 Gaussian
noise, respectively.

Fig. 13. (a)–(c) The original noisy color image with 0.02, 0.05 and 0.1 Gaussian
noise, respectively, and (d)–(f) the recovered noisy image with 0.02, 0.05 and 0.1
Gaussian noise, respectively.



1938 G.M. Mahmoud et al.

5. Conclusion

The adaptive dual synchronization of chaotic complex systems with un-
certain parameters has been investigated. Using the Lyapunov stability
theory, analytical formula of control functions (11) has been derived. This
type of synchronization has been applied for the chaotic complex Chen and
Lorenz systems, and the results are shown in Figs. 2–5. Another example has
been stated to test the validity of our technique which is the synchronization
of the hyperchaotic complex Lü and Liu systems. By parameter modula-
tion, the chaos-based secure communication scheme has been introduced.
The original information signal has been transferred from the parameters of
the drive systems (16)–(17) to estimate parameters in the response systems
(18)–(19). The transfer information signal has been recovered accurately as
shown in Figs. 10 and 11. Experimental results verified the effectiveness of
the image encryption technique, robustness to noise and visual impercepti-
bility.
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