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Why life is complex and — most importantly — what is the origin of
the over abundance of complexity in nature? This is a fundamental sci-
entific question which, paraphrasing the late Per Bak, “is screaming to be
answered but seldom is even being asked”. In this article, we review recent
attempts across several scales to understand the origins of complex biolog-
ical problems from the perspective of critical phenomena. To illustrate the
approach, three cases are discussed, namely the large scale brain dynam-
ics, the characterization of spontaneous fluctuations of proteins, and the
physiological complexity of the cell mitochondria network.

DOI:10.5506/APhysPolB.49.1955

1. Introduction

In the last decade, we have witnessed an escalating interest in complex
biological phenomena at all levels including macroevolution, neuroscience at
different scales, and molecular biology. Potential progress is of paramount
importance, thus we shall examine a bit how we are currently proceeding
to carve these new areas, starting with asking whether biological phenom-
ena are more or less complex than other fundamental problems in physics.
The answer is not clear at first, however striking differences exist in the
approaches as well as in the sociology of both fields.

∗ Lectures notes from an introductory tutorial given at the LVIII Cracow School of
Theoretical Physics “Neuroscience: Machine Learning Meets Fundamental Theory”,
Zakopane, Poland, June 15–23, 2018.
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The history of physics records many important efforts in search for uni-
versality; large classes of phenomena must be explained in terms of a few fun-
damental laws. In contrast, biology more often seems to emphasise unique
and singular aspects; because not all organisms are alike, there is plenty
of diversity of species, families, etc. such that taxonomy ends up prevailing
over integration of knowledge. This apparent uniqueness of each biological
phenomena in some cases leads to overspecialization, which may, from time
to time, encourage the creation of a sub-discipline for each new group of
complex biological phenomena. Of course, this tendency prevents fruitful
dialog between biology and the rest of the sciences, thus leading to an expo-
nential increase of our knowledge about almost nothing, or in other words, to
the fragmentation of the biological scientific inquire into many disconnected
“cottage industries”.

Often it is also argued that biology could not be well-studied by physics,
because “the laws of physics are simple but nature is complex”. This is moti-
vated by the assumption that anything that “looks” complex originates from
laws that must also be complex. Thus, the idea that has been perpetuated is
that the complexity of nature is almost inaccessible, arguing that the diver-
sity and ever changing fluctuations shown by natural objects prevent their
study through mathematical tools. In contrast, others called attention to
the fact that [1]

“... if the complex dynamic phenomena that occur in the human
body were to arise in some inanimate physical system — let us
say in a laser, or liquid helium or a semiconductor — they would
be subjected to the most sophisticated experimental and theoretical
study.”

This article adheres to the spirit of the above quote and aims to illustrate
some successful attempts to study complex collective phenomena [2] with
approaches borrowed from statistical physics. Rather than going into the
details of each of the studies reviewed, the emphasis here will be put to dwell
in the logic behind adopting this approach to study biological function. An-
other cautionary note is that we are here preaching for the non-cognoscenti,
and as the topic is at the fringe of disciplines, surely physicists and biologists
alike will encounter boring passages on their most familiar topics.

The next sections will progressively introduce the problem of complexity
(Section 2) and how its origin can be related to critical phenomena. The ex-
amples were chosen with the intention to persuade the reader that the same
simple laws apply exactly to very different complex phenomena, a notion
known in physics as universality. After defining the issues, our own advances
in the use of this approach to study complexity in life will be discussed by
presenting three problems, starting with the description of our long-going
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work on brain dynamics [2] in Section 3. Then the issue of protein dynamics
will be discussed in Section 4 by reviewing our recent work [3] on the finite
size scaling analysis of structural protein data from a large database. After
that, in Section 5, we review an empirical and theoretical analysis [4] able
to uncover a critical fusion–fission balance in the mitochondrial network of
a cell. The paper concludes with a summary of the main message.

2. Complexity

2.1. Recipe for natural complexity: a bit of order and another bit of disorder

Given the fact that complexity is ubiquitous in nature, it is then obvious
to wonder about how it is built. It has long been suspected that the answer
to this question lies at the border between order and chaos. As denoted
in Frauenfelder [5] cartoon of Fig. 1, a bewildering variety of apparently
disconnected phenomena — all of them dubbed complex — exhibited an in-
termediate level of order and disorder; including life itself, brain, languages,
proteins, turbulence in fluids, slow dynamics of glasses, to name only a few.

Fig. 1. Neither the excessive disorder of a gas nor the extreme order of the molecules
of a solid are perceived as complex. Generally, complexity is perceived as having
intermediate levels of order and disorder, as illustrated in this cartoon four decades
ago by Hans Frauenfelder. It is in this intermediate region — exhibiting a mixture
of order and anarchy — where the most complex phenomena inhabit, including
life, language, proteins, turbulence, glassy states, etc. (From Frauenfelder [5].)

Clearly, something repetitive (as in the extreme order) does not seem dif-
ficult to explore, as would be the case of a crystalline structure. In the same
way, what does change erratically in anarchy, as is the case of the trajecto-
ries of the molecules of a gas, does not look complex. On the other hand,
something that occasionally stops being monotone (whether in space or in
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time) surprises us and becomes something intriguing and complex. That
fair and balanced mixture of order and disorder, or surprise and boredom,
is commonly the letter of presentation of complexity.

Everyday examples abound, let us take the case of music where there is
a balance between surprise and repetition, avoiding excessive monotony or
frequent surprise. Another example, involving spatial aspects, could be fin-
gerprints, all similar and different at the same time. We could ask ourselves
if the complexity of the mixture we observe is related to the complexity of
the mechanism that generates it. In other words: must we assume that
to manufacture the precise “mixture” that prevails in something complex,
requires new and more complex laws than those necessary to generate the
extreme order or the disorder? We will show that the same simple laws can
explain the simple and the complex.

2.2. Phases and universality

Perhaps being a daily experience, we fail to notice that matter in nature
comes to us in a few “phases” or states, for example water, mostly in three. It
is important to note that in spite of the great qualitative differences between
the three states, exactly the same physical laws govern the behavior of their
constituent molecules. A relatively small change, in temperature or pres-
sure, can originate very different collective behaviors of the same molecules.
In other words, monumental collective changes, which are reflected as dif-
ferent phases, do not require different molecules, not physical laws, neither
any fundamental change in the laws ruling the molecules “interactions”. Let
us inspect the case of water: vapor is a gas at the macroscopic level and if
we observe it with a powerful microscope, we could count billions of water
molecules moving crazily in any direction, the greater speed the higher tem-
perature of the vapor. If we slowly cool this gas, we will see that the same
molecules move slower, and that small groups begin to form. This occurs
because, as the temperature decreases, the mutual attractions between the
molecules begin to overcome the tendency to disorder that the thermal ag-
itation gives to them and the molecules tend to come together. Soon, the
small initial clusters continue to capture other molecules, forming drops of
water, when the temperature is below 100 degrees centigrade. If the tem-
perature continues to drop, the attractive forces between molecules begin to
play an increasingly important role in opposing the thermal agitation and at
0 degrees, they will be able to produce regular microscopic structures, thus
causing the solidification of water into ice. These two changes (condensation
or solidification and vice versa) are called in physics phase changes (or phase
transitions).
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Not more than a century ago, it was thought that these changes — now
described as phase transitions — mean different matters; a replacement of
one thing for another, steam for water and this later for ice, because matter
was considered to be continuous. This vision continued until, at the dawn
of the twentieth century, it was confirmed that matter were sets of atoms
and thus it became clear that despite large qualitative differences in the ap-
pearance of the phases, they involve the same molecules changing only their
conformation. It is interesting to note that coincidentally, Ramon y Cajal
also broke the existing idea that the brain was a syncytium, histologically
identifying the synapse and then demonstrating the discrete nature of the
nervous system.

Phase transitions occur in all the matter that surrounds us, and its study
has been systematized recently in a great variety of collective phenomena
that occur whenever a large number of non-linear elements interact. It is
known, for example, that the correlations between the parts that make up
a system obey statistically identical rules, regardless of whether the con-
stituent elements are neurons, ants, grains of sand or water molecules. In
all cases, the same theory explains how the system is ordered or disordered,
what types of collective behavior can be expected, how stable or unstable
they will be, how it can be disturbed, etc. The fact that all these disparate
phenomena obey the same laws is what is known in physics as universality.

To accept that the same laws govern and explain apparently very dis-
parate phenomena is a process of generalization not without difficulties. It
is enough to imagine Galileo Galilei trying to persuade the theologians that
the celestial bodies were governed by the same laws as a vulgar stone or
a bird feather. It was obvious that they would protest, “How to pretend
that those majestic celestial bodies circulating the heavenly spaces where
the gods reign will follow the same rules than these mundane objects?” To-
day, rationale of using the exact same laws to describe the oscillations of
a swing and the evolution of planets in its orbits is easily admitted, but
still only a minority is inclined to accept that the laws of physics must be
fundamental to understand the world of neuroscience. This explains the re-
luctance to admit that the interactions between a multitude of neurons can
trigger collective phenomenologies that are qualitatively equivalent to those
we observe, for example, as a product of the interaction between atoms of a
metal.

2.3. Complexity arises in between order and disorder

To describe the universal scenario of the complexity that emerges at a
phase transition, we will consider the prototypical case of magnetization, an
example of collective phenomena. The cartoon in Fig. 2 shows the behavior
of a piece of iron subjected to an external magnetic field as the temperature
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increases. Without going into much detail, the atoms tend to align their
magnetic moments with those of their immediate neighbors. In turn, this
tendency to order competes with the agitation that temperature produces.
If the temperature is low, the final state of the system will be ordered with
all spins oriented in the same direction.
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Fig. 2. Example of a phase transition, one of the most frequent mechanism that
generate complexity in nature. The two upper panels illustrate the change in the
magnetization and in the expected complexity of a ferromagnetic material as a
function of temperature. Below, examples for the three phases of the system: or-
dered (low temperature), disordered (high temperature) and close to the critical
temperature (complex). The lower graphs illustrate the distribution of the size of
the “islands” of equal orientation (i.e., those with the same color), which is very
homogeneous for extreme temperatures, but it is scale-free close to the critical tem-
perature. Complex systems by definition show this type of scale-free distributions,
which when plotted in double logarithm axis (as in the insert diagram) result in a
straight line.
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The degree of order–disorder of the system can be followed by choos-
ing the appropriate variable, in this case, it is the magnetization. This is
maximum when order prevails (that is, where the image acquires the config-
uration that is familiar to us: with a north and a south pole) and vanishes
when disorder prevails, that is when the neighbouring magnetic moments
are randomly oriented.

The examples in the three intermediate panels in Fig. 2 show an in-
stantaneous image of the state of the system, where black/white represents
north/south spin orientation. It can be seen that at very low temperatures
almost all spins coincide, meaning that order prevails; while at very high
temperatures, disorder prevails resulting in alternating small neighbouring
regions with opposite alignments. Although the spatial patterns we see are
different, they are homogeneous throughout the system. The complexity
of these patterns can be evaluated in many ways, for instance one of them
involves algorithmic complexity, estimated by computing the length of the
algorithm needed to describe that state. If the pattern to be evaluated is
repetitive and homogeneous — as in extreme temperature — then the com-
plexity will be vanishingly small. On the other hand, complexity is expected
to be high at temperatures close to the critical point, since the spatial pat-
terns correspond to non-homogeneous and complex mixtures of disorder and
order.

The patterns at critical temperature show a great deal of heterogeneity:
there are black “islands” (indicating a coincidence in the spins orientation)
of all sizes, which in turn contain white lagoons, which are also of all sizes.
This is contrary to what is observed at the extremes, close to the critical
point, there is no preferred size for island or lagoons, in fact the observed
patterns are “scale-free”. Scale-invariance also implies the largest complexity,
because it means the largest number of configurations. This absence of scale
results in a continuous function obeying a power law, P (S) ∼ 1/Sβ , where
β is the exponent that characterize the distribution of sizes S. This type of
function is distinctive of the behavior of complex systems, and it is easily
recognized when doing logarithms in both axes, a straight line is perceived,
as illustrated in the bottom central panel of Fig. 2.

Complexity can also be observed in the time domain analysing the tem-
poral fluctuations of the order parameter. The magnetization as a function
of time at both extremes of temperature exhibits very small fluctuations,
while close to the critical point shows episodes of apparent calm that are
interrupted from time to time by large variations. The variability of the
magnetization over time is also “scale-free”, a consequence of the fact that
in complex systems the spatial and temporal dynamics are not independent,
they are two sides of the same coin.
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The universality discussed here suggests that the way in which complex-
ity emerges in the example of the magnetization can be seen generically in
phase transitions at systems very different from one another. Indeed, many
examples can be found in the recent literature such as birds flocks, large
groups of neurons, stockbrokers interacting, etc. We will discuss three ex-
amples including important aspect of cerebral dynamics, as well as proteins
and mitochondrial dynamics, all governed by common universal principles.

2.4. Complexity is always critical

The preceding paragraphs summarize one of the lessons of statistical
physics: complexity and criticality are almost synonymous: what makes a
system complex are exactly the same properties exhibited by a system when
it approaches the critical point of an order–disorder phase transition. (Let
the reader ignore for the moment how a given system manages to reach
criticality.) The main point is that close to the critical point, the spatial
patterns exhibit a mixture of order and disorder: not all the microscopic
elements of the system do the same, nor does each one behave randomly.
In this way, the “repertoire” of patterns that the system is able to exhibit
increases.

Turning to the biological consequences of criticality, note that the com-
bination of collective tendencies of order and disorder is fundamental for
the adaptability of any collective: it needs a certain regularity to function,
but also it must be flexible and variable in order to adapt to changes in its
environment. For instance, let us think about the brain case: If all the neu-
rons behaved suddenly in the same way, we would be witnessing an epileptic
attack. In the other extreme, if each neuron behaved randomly, they will
be uncorrelated and there would be no exchange of information making im-
possible any concerted output. In both cases, extreme order or extreme
disorder, it is inconceivable that the brain could work.

3. The brain: could it be that its laws are simple?

The complexity of the brain fascinates everyone and sometimes it is ar-
gued that in such complexity lies our mere inability to understand its func-
tioning. Instead, a naive approach seemed more attractive to us. Beginning
with the initial works in the 90s in collaboration with the late Danish physi-
cist Per Bak, we proposed to look at the brain in terms of phase changes
and critical dynamics [6] as if the problem were any other physical phe-
nomena. Our small steps received a significant boost in 2003 by the Beggs
and Plenz [7] experiments which provided the first clear evidence of crit-
ical dynamics in neural data. They described, in cultures of neurons, a
phenomenon that they dubbed “neuronal avalanches”, a spatial pattern of
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electrical activation of the cerebral cortex in which cascades of activity with
peculiar statistics are propagated by the whole system. In this work, the
experimental setup allowed to follow the propagation of the neural events
through a grid of electrodes, which recorded any activation in their vicinity
(Fig. 3 (A)). When the sizes of these avalanches were studied, they found
that they do not exhibit any preferred value, they were, as in the example of
magnetism, scale-free. That is, when these avalanches are plotted on dou-
ble logarithm axes (see Fig. 3 (B)), a function that follows a straight line is
outlined. This finding, and its subsequent replications in various conditions,
sparked great interest and prompted research on the subject, across animal,
modelling and human scales.
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Fig. 3. Avalanches of neural activity are critical (and complex): Panel A: Avalanches
are clusters of neuronal discharges separated by periods of silence (in the upper
panel illustrated with points for each one of the 64 electrodes arranged in an 8× 8

grid). The avalanches’ duration and size are very variable. In this example, the
avalanche persists for 12 ms traveling trough 38 electrodes (number that defines its
size), as shown by the sequence in the three lower panels which shows the location
of the active electrodes in that step of time. Panel B: The distribution of the
avalanche size follows a power law (dashed line). The relative probability of an
avalanche of a given size is plotted. The size of the biggest avalanches is only
limited by the size of the system, as evidenced by the three examples recorded in
systems of 15, 30 or 60 electrodes. Redrawn from Beggs and Plenz [7].

To be brief, we will only refer to human experiments with neuroimaging
techniques, in which we have participated more actively. These recording
techniques use functional magnetic resonance (fMRI), which measures brain
activity indirectly by detecting changes in blood oxygenation, which is asso-
ciated with the metabolic consumption produced by the neuronal activity.
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The data obtained every second with this technique represents an image of
the whole brain parcelated in thousands of cubes of a few cubic millimetres
(the so-called voxels).

Using this type of data, we have explored how the resting brain contin-
uously approaches and moves away from the critical point. It is obvious to
ask what we could learn by observing a brain that is “doing nothing”, i.e.,
resting? The answer is in the spirit of the fluctuation–dissipation theorem:
the magnitude of the variance of the spontaneous fluctuations in a complex
system is nearly proportional to the response to an external perturbation.
We have investigated the properties of the brain spontaneous fluctuations
by extracting the moments in which the signal of the functional magnetic
resonance exceeds a given threshold [9–11]. This transformation generates
a “point process” which represents the relatively large events in time and
space. In spite of being an extreme simplification of the original time series,
it has been shown that is not accompanied by loss of information. Further-
more, the point process allows to follow then instantaneous brain activity
continuously with great fidelity. With this technique, it is possible to de-
scribe the brain dynamics following the evolution of these points in time and
space, as if they were stars in the sky. In analogy, we can look at the cor-
relation properties of these points, as if there were “constellations”: where,
how many, what sizes, how they move, etc.

This type of analysis revealed for the first time a series of very interesting
properties of the large scale brain dynamics [11], some of them summarized
in Fig. 4. At each time step, the total number of points (i.e., activated brain
sites) represents the degree of brain activity at that time. Looking at the
spatial distribution of the points, the level of clustering can be estimated.
Upon analysis it was immediately apparent that the number of clusters and
its size fluctuates in time, following a familiar pattern. As shown in panel A
of Fig. 4, the number of clusters obeys a non-monotonic relation with the
number of activated sites. In addition, the variability of the number of
clusters is larger near the peak of such relation.

This simple analysis suggests that the brain activity is always close to a
phase transition. To make these considerations quantitative, and to compare
them with other systems, an order parameter was defined and calculated
from the data. In this case, the order parameter is equivalent to the mag-
netization commented for the example in Fig. 2. Here, it is defined (at each
instant) as the size of the largest cluster of actives sites. In turn, the activ-
ity level, already defined, can be considered as a pseudo-control parameter
(equivalent to the temperature in Fig. 2). Now, by plotting the order pa-
rameter as a function of the control parameter, the sigmoid curve of panel B
of Fig. 4 appears, which suggests the existence of a phase change when the
level of activity increases. Confirming this indication, the variance of the
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Fig. 4. (Color online) Brain activity recorded using functional magnetic resonance
imaging exhibits fluctuations around a phase transition. Panel A: The number
of clusters of brain activity (vertical axis) as a function of the level of activity
shows a maximum (denoted by the vertical dotted line). Panel B: Order parameter
(gray/green symbols and its average indicated by empty circles connected with con-
tinuous/red line) and its variance (squares and continuous/black line) as a function
of the level of activity. The filled circles (whose maximum corresponds to that of
the data in Panel A) correspond to the frequency in which a given level of activity
is observed. Panel C: The probability density distribution of the brain activity
cluster sizes is scale-free. Redrawn from [11].

order parameter shows a maximum that locates the point of the possible
phase transition. Remember that the greatest variability is often observed
near criticality. Given that the level of activity fluctuates three orders of
magnitude, it is appropriate to ask how often the brain is close to criticality.
This is done by measuring the frequency with which the system is at each
level of activity. We found that, in effect, the brain spends relatively more
time (see filled circles in Fig. 4 (B)) around a transition zone of intermediate
level of activity. Finally, the graph of Fig. 4 (C) shows that the statistics of
the size of the clusters of activity follows a power law, which is characteristic
of criticality, as shown for the example of magnetism in Fig. 2.

The behavior described by the inverted-u-shaped curve in Fig. 4 (A) is
very common in physics, being another manifestation of universality. In the
studies of road traffic, the same functional form is observed for the relation
of the flow of vehicles passing through a control site as a function of the
density of vehicles occupying a given section of the road. As in Fig. 4 (A), it
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is typical to see that for relatively low densities, the flow of vehicles initially
grows proportional to the density of cars. That is, as more vehicles enter
the road, the flow through a given point increases. However, for a relatively
high density, the flow reaches a maximum, at which point the odious traffic
jams occur. Moreover, the variability of the traffic is maximum close to the
critical density, that is, the time it takes to travel the same route in different
days becomes highly variable.

Thus, the curves in Fig. 4 (A) and (B) show that the brain spontaneously
fluctuates between two extremes, one with low activity, where there are only
a few small clusters (such as a clear sky with a few small clouds) and the
other with high activity (dominated by a huge cluster — like overcast sky).

3.1. Consciousness

Defined as “. . . that thing which disappears in deep sleep (when on awak-
ening we cannot report where we were) and which reappears as we woke up”,
consciousness is hard to formalize. Giulio Tononi is perhaps one who has
worked harder into quantifying the subjective aspects of human conscious-
ness, through ingenious experiments and theoretical arguments [13, 14].
While admitting that it exists only in “first person”, his central theoreti-
cal argument establishes that consciousness is a state where the ability to
simultaneously integrate and segregate information is maximum. The simul-
taneity of these opposing properties could appear as a contradiction, how-
ever this coexistence, according with the theory, is necessary to explain the
most fundamental properties of conscious experience. In its original formu-
lation, Tononi imagines the interactions in the brain as in the three phases
or states of mater, one very segregated, one very integrated and the inter-
mediate, which contains a mixture of segregation and integration. The last
one corresponds to the conscious state (see Fig. 5 (A)). This formalism does
not need to open any judgment as to how such coexistence is achieved; in
other words, it does not propose a specific neuronal mechanism which may
endow the brain with such properties.

A decade ago, we already noticed [15] that there is a striking similarity
between the extremes of segregation or integration and the gas and solid
states of matter. It was apparent to us that the critical state, intermediate
to these extremes, meets the conditions required by Tononi for the conscious
state in his “Integrated Information Theory”. Then, we have proposed that
the solution to the problem of how different degrees of integration and/or
segregation are achieved in the brain is not related to changes on the interac-
tions but with changes in the correlations, such as what happen in a typical
second order phase transition. According to this notion, the structure of the
brain connectivity (i.e., the interactions) can be — at relatively fast time
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Fig. 5. According to the predominant theories, the conscious state is characterized
by the capacity of “maximum integration–segregation” of information. Panel A
shows the structural point of view used by Tononi in which different degrees of reg-
ularity in the interactions (or connections) of a neural network can confer more or
less capacity for segregation or integration. Panel B shows our dynamic alternative
by which, in principle, any of the three regimes — with more or less complexity
— can be generated dynamically by a system (without any change in connections)
able to undergo a continuous phase transition. The various colors/shades in the
three graphs identify the different clusters of activity, so that in the most ordered
one (top right) the entire brain is active, while in the more disordered (bottom
left) each region acts independently. Coherent clusters of all sizes can be seen only
at criticality (middle graph), a condition at which the best possible integration–
segregation balance is obtained. Adapted from [8].

scales — immutable, nevertheless the conscious state can be easily manip-
ulated by adjusting a single parameter. The ability of the same structure
of interactions to exhibit completely different correlations resembles similar
changes in phases demonstrated by the examples of water and ferromag-
netism. Note that Tegmark [16] reached independently similar conclusions,
starting from earlier complementary considerations [17].

According with our perspective, the conscious state corresponds to the
critical state, as illustrated by the cartoon in panel B of Fig. 5. It is im-
portant to note that we are not implying (at all) that any system that is
critical is also conscious, but that to be critical, it is a necessary condition
for a system to exhibit the segregation–integration properties advocated by
Tononi as crucial to endow a system with consciousness. The implication of
this relation deserves further exploration.
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3.2. New directions

The results of this line of work help to understand the spatiotemporal
dynamics of the brain, even when it is doing nothing in resting conditions.
The universality that we comment allows us to cross borders and include
funny analogies like “brain meteorology” when we describe these studies. In
that sense, an euphemism that we allow ourselves is to say that knowing
brain weather patterns in healthy conditions can allow us to understand
how pathological storms, droughts, etc., can occur and how to proceed to
recover a healthy brain weather.

Fundamental results usually give rise to more questions than answers.
In this sense, in addition to the study of the healthy brain under the optics
of statistical physics, we have recently investigated brain integrity in various
physio-pathological conditions. For example, our most recent work was ded-
icated to study functional magnetic resonance records in human volunteers
with different degrees of consciousness which were found to be analogous to
the qualitative changes observed in the phase transitions already discussed
here [18].

From that perspective, the state of vigilance would correspond to the
critical state, whereas the deep sleep or the loss of consciousness due to
general anaesthesia are consistent with a sub-critical state. On the other
hand, we have proposed that the alterations of the consciousness produced
by hallucinogens would correspond to a supercritical state if we consider
that the entropy of states is increased [19, 20].

A special mention must be made to the mathematical modelling of these
results [21]. In that work, a model was constructed by using the empirical
connectivity data between regions of the human brain (obtained from the
so-called Human Connectome project [22]) and the neuronal dynamics de-
scribed by a very simple non-linear dynamic rule. These results were able
to show that the totality of the resting state cerebral dynamics observed
experimentally can be replicated, just by tuning the model to a region close
to the critical point. In contrast, when the exactly same model was barely
mistuned outside, criticality failed to replicate the well-known dynamics of
the resting state networks, thus highlighting our idea that brain dynamics
emerges only close to criticality [12]. The model was recently revisited by
Rocha et al. [23] to investigate how re-normalization of the local interac-
tions may affect the macroscopic activity during rest and the formation of
functional networks.

Overall, these results open up the fascinating possibility of constructing
and exploring “virtual” computational brains, based on experimental data,
where we can investigate the consequences of injuries, alterations, resection
surgery, etc. It seems that the application of these ideas to the brain are ma-
turing, judging by the impact that scientific reports on the topic receives, by
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the appearance of new books condensing the results of different laboratories,
and by the increasing number of scientific meetings devoted to the subject
of criticality in the brain. Although a “theory of the brain” is extremely far
away, we believe that the transfer of methods of statistical physics to the
sciences of the brain is moving us in that direction.

4. Critical fluctuations in the native state of proteins

As discussed so far, the current perspective views the brain as emerging
from the interaction of an astronomical number of neurons, and able to adopt
different phases. In the same sense, the complex interaction of thousands of
proteins shares information and is the basis of cell metabolism, the central
and fundamental requirement for life. In this section, we will discuss how
some relevant aspects of this problem can be related to critical phenomena.

Proteins are unbranched chains of amino acids with different conforma-
tions, where the globular type is the most frequent in nature. The three-
dimensional folded structure, known as native states, makes proteins capable
of performing their biological functions. A globular protein carries out its
functions by switching from one structural conformation to another, even
transiently, for instance when it recognizes and binds with other molecules.
To achieve such performance, the structure of the native state of the protein
must be susceptible enough to sense the signal and flexible to switch to an-
other structure, but also be stable enough to warrant functional specificity
and structural robustness.

From the arguments exposed in the previous section, it should be clear
that the protein native state cannot be either too rigid or too flexible. The
required intermediate levels of flexibility for the proteins to function are very
similar to the properties seen in the vicinity of a critical point. When pro-
teins fold, they undergo a phase transition from state that has high entropy
and high free energy to a state of low entropy and low free energy. The
question here is whether the native state shares the generic properties of a
critical point [2, 6, 24–26].

Critical fluctuations in protein equilibrium dynamics has been empha-
sized already by a number of results, including the power-law relation be-
tween solvent-accessible surface area and volume of proteins [27], the fractal-
like structure of configuration space [28] and oscillation spectrum [29], the
slowness of relaxation in protein molecules [30, 31], the overlap between
the low-frequency collective oscillation modes and large-scale conformational
changes in allosteric transitions [32–34], critical water fluctuation near hy-
drated proteins [35], and so on. A few had already adventured to call
the native state an example of self-organized criticality as in the work by
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Phillips [36] or in the discussion on pairwise correlations between residues in
protein families [24]. Yet, a direct characterization of the critical fluctuations
near the native states of proteins based on experimental data was incomplete.

Recently, we have studied the fluctuations around the native states of a
large number of proteins based on their structural ensembles determined by
solution nuclear magnetic resonance (NMR). For this analysis, each struc-
ture of the ensemble is considered as one instantiation of the many confor-
mations that the protein can adopt in the native basin. In order to test the
conjecture of criticality, we examined the distance-dependent correlations of
position fluctuations of residues. A large database of thousands of proteins
structures was curated and used to conduct finite size scaling analysis of
the correlation functions (see details in [3]). The working hypothesis was
that the correlations and susceptibility scales with the size of the proteins,
features that are similar to those in other physical systems near their criti-
cal points. This will imply that even weak local perturbations to any given
residue can be felt by every other residue of the entire protein.

In Fig. 6, an example of the type of data for one protein is presented
together with relevant notation: each ensemble includes Q realizations of
the same protein molecule, made up of N amino acids with its coordinates

(A) (B)

(C)

Fig. 6. (Color online) (A) Example of a structural ensemble (protein PDB code:
1BAK) showing the 20 structures (gray) aligned to the reference one (orange).
(B) The average structure (red) and the qth structure (cyan) for the protein in (A).
The displacement ∆~ri,q (or ∆~rj,q) of the ith (or jth) residue from its counterpart
in the average structure is marked with black arrows. The distance rij between
residues i and j is marked with gray/red dashes. (C) The magnitude of residues’
position fluctuations |∆~ri,q| for the qth structure (q = 1, 2, . . .) in the ensemble.
Adapted from [3].



Life at the Edge: Complexity and Criticality in Biological Function 1971

denoted as ~ri = [xi, yi, zi]. The fluctuations of each residue’s coordinates
(∆~ri) across the ensemble are defined as

∆~ri = ~ri −
1

Q

Q∑
q=1

~ri,q (1)

or alternatively by their magnitude by taking the norm of ∆~ri. Figure 6 (C)
shows the typical fluctuations exhibited by ∆~ri in one ensemble of Q = 20
structures. The correlation properties of these fluctuations can be described,
following similar calculations in Ref. [41, 42], by the distance-dependent
correlation function

C(r) =

∑N
i 6=j ∆~ri ·∆rj δ(r − rij)∑N

i 6=j δ(r − rij)
, (2)

where δ(r−rij) is a smoothed Dirac delta-function selecting pairs of residues
at mutual distance r. Normalizing the covariance for residue pairs in the
usual way, we have φij = (∆~ri ·∆~rj) /

√
(∆~ri ·∆~ri) · (∆~rj ·∆~rj), which

(written in terms of mutual distances r) corresponds to the functions φ(r)
plotted in Fig. 7 (A). Similar calculations apply to the case of taking the
norm of ∆~ri. Each curve in Fig. 7 (A) corresponds to the distance-dependent
correlation function averaged over proteins of a given giration ratio (indi-
cated in the legend). The zero crossing of the curves is the correlation
length ξ which clearly increases with protein size (as seen in panel B for all
proteins studied). The correlations functions of Fig. 7 (A) are reploted in
panel C after rescaling the distance by ξ. This rescaling produces a good
collapse of all curves, revealing the fact that there is a single scale able to
describe the correlation properties of all thousand of proteins.

If the increase of ξ with protein size is due to critical phenomena, it
can be investigated by conducting a simple finite-size scaling analysis as was
done in Ref. [42]. Thus, we tested such possibility for proteins of different
sizes. To start, for each protein, the susceptibility was computed as the
summed correlation between residue pairs, that is

χ =
1

N

N∑
i 6=j

φij θ(ξφ − rij) . (3)

As a pseudo-control parameter of the proteins we choose a dimensionless
shape factor s defined as s = Na3/(LaLbLc), where a = 3.8 is the size of
a residue and La, Lb and Lc are the lengths of the principle axis of the
protein (La ≤ Lb ≤ Lc). For sphere-like protein molecules, the value of s is
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Fig. 7. (Color online) (A) The distance-dependent correlation function φ(r) for
proteins of different sizes (averaged over the Rg values denoted in the legend). As
an example, the arrow indicates ξ for the smallest proteins. (B) Scattering plot of
correlation length ξφ as a function of the average Rg, where the gray/red symbols
show the average ξ = f(Rg) with the error bars denoting the standard deviation.
(C) The scaling plot of φ(r/ξ). Figure redrawn from [3].

relatively large (densely packed, and solid-like), while for elongated chains
(loosely packed, and polymer-like), Lc = Na, and La = Lb = a, thus s = 1.
If the results correspond to critical behavior, then the following relations are
expected to hold:

ξ ∼ Nα , s− sc ∼ N−α/ν , χ ∼ Nαγ/ν . (4)

The results revealed scaling behaviors as shown by the fittings (thick
solid/red lines in panels of Fig. 8 (A)–(E)) from which the exponents are
determined. (1) Based on the relation ξ ∼ Nα, we get α = 0.40 (Fig. 8 (B)),
which is similar to the result α = 0.32 based onRg ∼ Nα (inset of Fig. 8 (B)).
This indicates that proteins are tightly packed, and is consistent with the
critical shape factor sc [43]. (2) For s − sc ∼ N−α/ν , we have 1/ν ≈ 2.87
(or ν ≈ 0.35) (Fig. 8 (C)). (3) γ can be determined based on the relations
between χ and s (or N). Figure 8 (D) shows the relation χ ∼ (s−sc)−γ with



Life at the Edge: Complexity and Criticality in Biological Function 1973

1 2 30

5

10

15

20
16
35
47
60
78
101
131
170

Shape factor  s

Su
sc

ep
tib

ili
ty

  !

(A)
sc 10 100

0.5

5

Protein Size N

! m

(B)

50 150 2500

5

10

15

20

50 150 250
8

12

16

20

Protein Size N

R
g

Protein Size N

C
or

re
la

tio
n 

Le
ng

th
 !

(C)
50 150 250

1.4

1.6

1.8

Protein Size N

Sh
ap

e 
fa

ct
or

 s

(D)

1.4 1.6 1.8 20

5

10

15

20

25

Shape factor s

Su
sc

ep
tib

ili
ty

 !

(E)
10 100

0.5

5

50

Protein Size N

Su
sc

ep
tib

ili
ty

 !

(F)

Fig. 8. (Color online) Proteins finite size scaling. (A) Susceptibility χ for sets of
proteins with different N as a function of the control parameter s. The peak heights
χm and positions sm of susceptibility show a power-law relation χm ∼ (sm− sc)−γ
(the thick solid/red line). (B) The peak heights scaled with N as χm ∼ N−αγ/µ.
(C) Correlation length ξ as a function of protein size N . The inset shows Rg as a
function of N . (D) Control parameter s as a function of N . (E) Susceptibility χ as
a function of control parameter s. (F) Susceptibility χ as a function of the number
of residues N . In (C)–(F), error bars represent the standard error of the data.

γ ≈ 1.05, and Fig. 8 (E) depicts the relation χ ∼ Nαγ/ν with γ ≈ 1.03 which
is comparable to the fitting result (γ ≈ 1.01) in Fig. 8 (A). Being conservative
and taking integers, the approximated exponents were α = 1/3, ν = 1/3,
γ = 1.

These scaling relations are signatures of the critical character of the
fluctuations of proteins and resemble scale-free correlations seen in other
systems near critical points.
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Examples of typical structures of proteins at the subcritical, critical and
supercritical regimes are shown in Fig. 9.

1QGM 1DV0 1E0Q

1FV5 2KHH 2L5R

2GD3 2FS1 1RVS

2HGL 1CKW1IDL

9Å

10Å

11Å

12Å

critical supercriticalsubcritical

Fig. 9. Typical examples of subcritical, critical and supercritical proteins for dif-
ferent sizes (gyration ratios indicated on the left).

5. Mitochondrial network complexity emerges from critical
fission/fusion balance

Now, we turn our attention to describe a very complex cell organelle.
Mitochondria arose around two billion years ago from the engulfment of an
α-proteobacterium by a precursor of the modern eukaryotic cell [44]. Sub-
sequent evolution shaped the relation between mitochondria and its host
cell, leading to a highly specialization of both morphology and function of
this organelle. Long known for its role in ATP production, mitochondria
also participate in a myriad of processes such as apoptosis, calcium buffer-
ing and phospholipid synthesis, among others [45]. In addition, complex
dynamic patterns occur in mitochondria, including oscillations and phase
transitions [46, 47]. Thus, it is not surprising that a variety of functional
alterations impact on mitochondrial morphology and vice versa. Although
it is accepted that the structural status of the network is a predictor of the
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functional state of the organelle, only recently detailed quantitative stud-
ies of this relation are appearing, mostly due to the inherent difficulty in
estimating changes in its complex structure.

Typical mitochondria comprise a complex network of tubule-like struc-
tures, with fragments of all sizes (ranging from less than 1 µm to 15 µm or
more) [48]. The current theoretical understanding proposes that mitochon-
drial network morphology is maintained by two opposing processes, fission
and fusion, which depending on their relative predominance determine the
overall network shape and morphological properties [49].

In recent work, Zamponi et al. [4] proposed that the physiological struc-
ture of the mitochondria should be maintained on a critical balance in be-
tween these extremes. Figure 10 shows typical examples of mitochondrial
network for the control (CTL) case as well as for two manipulations that
either fragment (by action of paraquat, PRQ) or fuse the network by over-
expression of mitofusin1 (MFN), modification that alters these opposing pro-
cesses, namely extensive fission or fusion. In order to study these changes
quantitatively, we defined a graph after extracting the skeleton of each net-
work (insets in Fig. 10) and proceeded to study its topological properties.
We found that mitochondrial morphology in the control cells exhibited dis-
tinctive scale-free features, which were disrupted by both experimental ma-
nipulations in opposite directions. These observations were consistent with
predictions of the Sukhorukov et al. model [50] of network growth where
healthy mitochondrial networks are in a critical regime intermediate between
the fragmented and fussioned networks.

PQT MFNCTL

Fig. 10. (Color online) Typical examples of mitochondrial networks extracted under
control (CTL) conditions, as well as with the two manipulations: over-expression
of mitofusin1 (MFN) and treatment with paraquat (PRQ). The insets correspond
to the skeletons extracted from the boxed regions (box side = 15 µm). The color
scale depicts the fluorescence intensity of mYFP. Adapted from [4].
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The results in Fig. 11 show a comparison (panel A) between the empirical
estimation of network features, the normalized size of the giant cluster Ng/N
and the average degree 〈k〉 of the network with the Sukhorukov et al. model
predictions for the three conditions explored experimentally. In panel B of
the same figure, the averages for the three conditions studied are plotted
together with the critical line predicted in the Sukhorukov et al. model
where it can be seen that the control condition lies near the critical line
and in between the fragmented and fused cases. Finally, panels C–E show
simulated networks using the average parameters from the experiments.
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Fig. 11. Comparison of the present experimental results with those of the Sukho-
rukov et al. model. (A) Model parameters extracted iteratively from the exper-
imental data. Open symbols and error bars correspond to means and standard
deviations of all cells for the CTL, PRQ and MFN groups (for a binarization
threshold = 0.15). Each point of the extracted curves corresponds to a unique pair
of values (c1, c2). (B) Phase diagram of the model in the (c1, c2) space. Filled
symbols and the continuous line correspond to the location of the phase transition.
The three open symbols (labeled PRQ, CTL, MFN) correspond to the parameter
values extracted from the experimental data as shown in (A). Panels C, D and E
show a graphical representation of the typical networks simulated using the three
derived (c1, c2) values. Adapted from [4].

6. Summing up

In these notes, we have first discussed how complexity in nature is of-
ten discovered in between the extremes of very ordered and very disordered
regimes. Then we called attention to the fact that the well-known scenario
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of a second order phase transition naturally includes such an intermediate
region of high complexity. That leads us to present results from three bi-
ological examples in which complex dynamics and structures are explained
by the presence of critical phenomena.

In closing, we shall comment that each of the three examples presented
here have been already replicated in very different settings. Recent ex-
periments by Scott and colleagues [51] have faithfully replicated the phase
transition we uncovered in fMRI experiments, in their case in optogenet-
ics recordings from mice experiments. Concerning proteins dynamics, Fabio
et al. [53] recently conducted extensive molecular dynamics simulations of
a subset of the database studied in Ref. [3] and was able to demonstrate
similar scaling properties. Finally, the approach presented here to study the
mitochondrial network status has been used successfully to restore mitochon-
drial structure and function in Down syndrome cells [52]. It is remarkable
how universality allows to use the exactly same framework to study complex
phenomena of very different nature and scales, from a culture of few thou-
sand neurons to the entire brain, from a small protein molecule to a network
spanning the entire cell.
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