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One of the holy grails of brain research is to understand how the brain
functions in a way that would allow us to alter it in positive and productive
ways. In this respect, one of the most promising tools is the measurable
electrical signal that is produced by brain tissue. However, as there are
many ways to approach experimentation and analysis of the signal, it is of
value to have a framework in which to do so. This series of lectures attempts
to provide this in three distinct parts. The first part lays out a framework
for asking and answering questions about what is universal versus unique
across species and individuals in the context of specific motifs versus sta-
tistical features. It includes thinking on how to interpret an aggregate field
signal, how to understand the signal from the perspective of field potentials
at different resolutions (LFP, ECoG, EEG) and the choice of systems and
preparations of study (in vivo, in vitro, species choice). The second part de-
scribes the phenomenology of avalanches and coherence potentials in LFP
and ECoG and the way they fit into the framework described in part I.
Accordingly, it describes the insights that arise about species universality
versus uniqueness, as well as behavior on instantaneous versus integrated
timescales. The third part explores the unique opportunities afforded by
the noninvasive nature of EEG to combine dynamical views with behavioral
inputs and outputs. I provide a schema that considers the design of stud-
ies that relate acute and integrated inputs or life experiences to dynamics,
and, in turn, to cognitive and emotional outcomes and behaviors. I also
suggest that insights from LFP and ECoG can drive new waveform-based
analytical approaches and insights with EEG and provide an example to
demonstrate this.
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1. Introduction

There are many ways to study the inner workings of the brain. Of-
ten, we approach neuroscientific research from the perspective of the tools
and equipment that we have available. These could include working with
a preparation from a particular species, using a specific measuring device
or apparatus, or a unique set of analytical tools. The costs of setting up a
laboratory and the skill needed to use the tools and equipment effectively
necessitates such choices and specialization. However, such specialization
constrains our ability to think beyond the tools available and often cre-
ates silos and overreaching interpretations. For example, given the ease of
working with rodent brain tissue and, in contrast, the extreme constraints of
working with human brain tissue, the bulk of neuroscientific research is built
around rats and mice and overlaps little with research groups working on
humans. Furthermore, there is a tendency in the literature to interpret and
discuss findings from the mouse brain as essentially equivalent to the human
brain, with limited qualification of the potential differences across species.
Further, as fields become siloed, analytical methods and measurement tools
rarely cross over. How then do we create an integrated view across species,
measurements, analytical tools and approaches that can help us understand
what is universal across species versus unique to humans, as well as what is
universal to all humans versus unique to individuals? This series of lectures
in three parts provides a framework for doing this along with examples.

2. Part I: Frameworks and approaches to electrical brain signals

Electrical signals can be recorded from brain activity at multiple lev-
els of resolution. This ranges from small electrodes that can resolve single
cell activity to field electrodes of different sizes placed within brain tissue,
on the surface of the brain, and on the scalp. How does one begin to de-
vise an approach for analyzing and interpreting the signal? We have little
understanding of how these field potentials aggregate from the underlying
electrical activity and even less insight into the underlying coding mecha-
nisms that allow semantic representation in the brain.

Consequently, this poses an enormous challenge with many possible
methodological approaches. In this section, I outline a general framework,
strategy and considerations for the investigation of electrical signals in the
brain.

2.1. Frameworks of investigation

Signals can be investigated from two points of view: searching for uni-
versal or generalized statistical principles of brain activity that relate to
the overall modes of functioning of the brain, or seeking specific motifs or
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features that relate to specific inputs or outputs of the system. The first
approach answers questions about the nature of the system, while the latter
provides a view into specific interpretations of its instantaneous behavior.
Further, these statistical principles can be compared across species to de-
termine which aspects are universal signatures of the brain versus unique
to a species, or unique to an individual within a species (Fig. 1). In this
framework, cross-species statistical principles provide a view of the universal
construct of intelligent life, while statistical characteristics and specific fea-
tures unique to humans provide a view into the question of what it means to
be human. Finally, specific features that are unique to an individual allow
insight into the question ‘who am I as an individual?’ as well as the potential
to interpret the activity of that individual at any given moment, essentially
interpreting a stimulus-response or thought. Thus, knowing where, within
this framework, a specific research question falls, provides the direction and
contours for structuring one’s efforts.

Fig. 1 A framework for interpreting brain signals 
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Fig. 1. A framework for approaching brain signals; Universal statistical princi-
ples across species may inform us about the nature of sentient or intelligent life.
However, to understand what we are as humans, we must look at both statistical
characteristics and more specific features that are unique in humans. To under-
stand ourselves as individuals, we must look to find specific unique features that
define us relative to others.
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2.2. Individual neurons versus field recordings

In studying electrical activity in the brain, there are two distinct ap-
proaches. The first focuses purely on studying spiking activity of individual
neurons [1–8], while the second focuses on a complex aggregation of the
activity of fields of cells including neurons and glial cells and the various
electrical components from spiking activity to synaptic, dendritic and glial
currents [9–11].

The choice of one approach over the other has multiple considerations.
The first approach of measuring neuronal spiking activity makes a fundamen-
tal assumption about the relative importance of neuronal spikes over other
aspects of electrical activity. The latter assumes that the aggregate electri-
cal activity may be more meaningful and gives up the ability to distinguish
its elements. Arguments may be made for both approaches. A great deal
of the literature has been dedicated to identifying correlates between stim-
uli and behavior and neuronal spiking, particularly in rodents and monkeys
[1–8]. However, there is increasing evidence that glial cells play a significant
and fundamental role in modulating and shaping the signal, particularly
in humans, where glia also give rise to much faster calcium waves [12, 13].
Therefore, neurons in isolation may contribute only one part of the story.
Furthermore, there are practical considerations of measurement as well.

Consider the analogy of the simpler system of atoms and molecules that
make up any particular type of conductor. While it may be the case that
the nature and state of the system could be perfectly measured by assessing
the changes in the energy and spin states of the electrons in each atom, this
is extraordinarily difficult from a technical perspective. Furthermore, it is
not clear if a macrofeature, such as conductivity, could actually be inferred
by measurement of the electron states in individual atoms. On the other
hand, simply measuring conductivity with a simple conductivity meter does
a pretty good job of estimating what is going on in the conductor and can
ultimately be put more easily to use. Similarly, measuring the activity of
individual neurons is technically more difficult. Besides requiring invasive
implantation, microelectrode arrays today can typically only handle up to
100 electrodes [14], while new generation technologies can measure a few
thousand [15, 16]. However, these are still only a tiny fraction of the brain’s
billions of neurons. Therefore, analogous to the conductivity meter, field
potentials might similarly be more easily exploited to gain insights into the
brain’s behavior.

However, even field potentials can be measured at different scales and
have different technical considerations (Fig. 2). Currently, there are three
distinct levels at which measurements are made. These are called Lo-
cal Field Potentials (LFPs), Electrocorticographs (ECoG) and Electroen-
cephalograms (EEG) [11]. LFPs are measured with microelectrode arrays
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that are typically 30 microns in diameter and about 1 mm apart [14]. Each
electrode covers a field consisting of 10 to 100 neurons and several hundred
glial cells (in humans; there are far fewer glia in rodents). These arrays can
be both surface or deep electrodes, either parallel or transverse to the corti-
cal surface, and must be implanted with surgery. They can also be used to

Fig. 2. Different levels of electrical brain signal measurement; (a) Microelectrode
arrays of 30 micron diameter placed in or on the surface of the brain measure Local
Field Potentials (LFPs) (from [17]). Example of LFP recording from a monkey
shown on the right. (b) Flexible strips of 2–4 mm diameter electrodes placed on
the surface of the brain measure Electrocorticographs (ECoG) (from [18]). Example
of human ECoG recording shown on the right. (c) 7–10 mm diameter electrodes
placed on the surface of the brain measure Electroencephalograms (EEG). Example
of human EEG recording shown on the right.
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measure the activity of brain tissue in a dish. ECoG (Fig. 2 (b)) is measured
with electrodes placed directly on the surface of the living brain that are
typically 2 to 4 mm in diameter and placed 1 cm apart [18, 19]. This again
is invasive and requires opening up the skull and dura for placement of the
electrode array and is, therefore, restricted to neurosurgery candidates. Fi-
nally, EEG is measured on the scalp surface and involves electrodes that are
7–10 mm in diameter covering a field of 100k+ neurons and several hundred
thousand glial cells. Unlike all other methods, EEG has the advantage of
being noninvasive. On the other hand, it is not a direct measure of brain
activity as it is subject to a distortion of signal due to the conductivity of the
skull, other intervening tissue such as the skin, dura and pia, and interstitial
fluid on the brain surface. Thus, choice of measurement scale depends on
the type of question being asked and the practical requirements.

2.3. In vivo versus in vitro systems

Another dimension of consideration is the particular type of system in
which to measure electrical activity — in vitro (in a dish) or in vivo (in the
live organism). In the laboratory, there are a number of in vitro brain prepa-
rations from which electrical signals are measured. These include cultured
neurons, which are cell lines grown in a dish [20]; dissociated cultures, which
are cells extracted from newborns that are dissociated from one another and
grown in a dish [21, 22]; organotypic slice cultures, which are slices of brain
from newborns that continue to grow and flatten out in the dish [23] and,
finally, acute slices, which are thin slices of brain extracted from the adult
animal and measured in a dish [24]. In vivo measurements, as described
in the earlier section, can be both invasive requiring insertion of electrodes
into the tissue or directly onto the surface of the cortex, or noninvasive scalp
electrodes.

In vitro preparations are particularly amenable to measuring electrical
activity of individual neurons. However, they generally require sacrifice of
the animal and, therefore, typically use rats and mice. This limits study to
simple species and, therefore, cannot provide insight into the aspects of the
signal that are unique to humans. Further, there is the larger question of
the value of measuring electrical activity in a distorted system — one that
is not in its intact functioning form.

Consider the following example of this much simpler system. Both di-
amond and graphite are constructed from the carbon atom (Fig. 3). Dia-
monds and graphite cannot be formed from any atom other than the carbon
atom and, therefore, the type of atom sets a constraint on possible outcomes.
Yet diamond and graphite are completely different types of material. One
is translucent, the other black. One is extraordinarily hard, the other soft.
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Indeed, important properties such as hardness and color are not properties
of the atom itself but of the system overall and, therefore, one cannot ask if
the carbon atom is hard or a particular color. Rather, carbon alone can pro-
duce outcomes of completely opposite properties purely by virtue of how the
atoms bond with one another. The nature of these bonds influences the way
external energy such as light and mechanical forces interacts with it and,
therefore, the outcomes. Furthermore, the type of bonding is determined
by the conditions of temperature and pressure of the environment in which
they were formed. Consequently, studying the carbon atom in isolation or
studying a carbon-based material formed under one set of conditions would
not provide insight into the nature of an allotrope arising from a different
set of conditions.

Fig. 3. Impact of link or bond structure on system properties; (a) Image of a
diamond with properties of translucence and hardness and made entirely of car-
bon (from [25]). (b) Bond structure of diamond shows each carbon molecule has
four covalent bonds conferring these macroproperties of the material or system
(from [26]). (c) Image of graphite, also made entirely of carbon, with properties
of softness and black color (from [27]). (d) Bond structure of graphite shows each
carbon molecule has a sheet structure with two covalent bonds in one plane and
weak forces between the sheets (from [26]).

Similar to how carbon atoms are predisposed to bond with one another
and do so based on environmental factors of temperature and pressure, the
brain is characterized by the innate nature of neurons to connect with one
another in a manner that is based on their experience of the environment.
It is, therefore, a reasonable assumption that the unnatural environment of
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the dish would alter some aspect of the way neurons wire up. Indeed, there
is evidence that neurons have different gene expression patterns [28] as well
as behave differently in vitro than in vivo [29]. A brain system, where the
formation of connections between neurons occurs under unnatural circum-
stances may, therefore, not provide insight into the working of the brain in
its natural environment. Furthermore, the way external stimuli or electrical
energy interacts with these preparations could also be fundamentally differ-
ent. One would not want to unwittingly report the properties of diamonds
as those of graphite or vice versa. By this same logic, studying the electri-
cal signals of brain systems that are not intact in their normal environment
may yield misleading results. Thus, the desired insights should be carefully
considered when deciding whether to choose an in vitro or in vivo system of
measurement.

2.4. Choice of species

Much of the research in the field of neuroscience today is conducted on
species other than humans. These include species like drosophila (fruit flies),
zebra fish, C. elegans (worms), rodents and monkeys. Species like flies, fish
and worms have neurons but not a brain as we think of it. While certain
features of the electrical signal generated such as the action potential have
conserved mechanisms, there are crucial differences in gene expression in
neuronal and non-neuronal cell types across species [30–32]. Furthermore,
the gross structural differences would render local field activity fundamen-
tally different compared to mammals.

Across much of the field, the most commonly studied species is the ro-
dent, a mammalian species that can be easily bred and sacrificed for access
to their brain tissue. There is a conserved architecture across mammalian
species that has led researchers to implicitly assume measures of electrical
activity in the rodent brain mirror the activity found in the human brain.
Much of the literature on rodents, therefore, draws conclusions about ‘the
brain’ in general rather than the rodent brain in particular. Increasingly,
evidence is mounting that this is not the case. Human neurons have sig-
nificantly higher conduction velocities than other species [33, 34]. More
substantially, glial cells, which outnumber neurons by 1.4× in the cerebral
cortex of the human brain (but not rodent brain, where the ratio is 0.4) [12]
are more dissimilar across species than neurons. The human brain has new
types of glia that are 2.6× the diameter of those in mice, have 10× more pro-
cesses, 3× faster calcium wave propagation, and patterns of gene expression
that are more similar to mouse neurons than mouse glia [12, 13, 30]. These
glial cells have also been implicated in Alzheimer’s and epilepsy, perhaps
explaining the poor performance of mouse models of human disease [35, 36].
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This points to a differently constructed system suggesting that many prop-
erties measured in mice that are considered general or universal properties
of the brain are not so. Indeed, such comparisons may be as flawed as study-
ing different forms of matter simply because they were composed of similar
elements. Imagine studying amino acids to understand nucleic acids simply
because they were both composed largely of carbon and nitrogen? Or even
studying one amino acid to draw conclusions about the behavior of another
since they were so similar that they differed only by one side chain. It is
well-known that even single amino acid differences can completely change
the function of the protein. The functional differences arising from cellular
and structural distinctions across species, which are essentially systems of
molecules, may, therefore, be even further amplified at the level of a network.

Fundamentally, interpretation of electrical activity as universal across
species or unique to one species requires measurement across species. It
is further obvious that one cannot understand what is unique about the
activity of the human brain by studying other species.

2.5. Group versus individual

In the field of human brain research, the dominant approach is to look
at differences between groups. For example, a clinical disease group and
normal or nonclinical group, or an intervention group and control group.
This approach makes an implicit assumption that most measurements of
electrical activity are similar across individuals with only some normally
distributed variation. However, there is considerable evidence of substantial
individual variability.

One stark example of such variability can be found in reports on the
outcomes of neurosurgery. In patients with Rasmussen’s encephalitis under-
going hemispherectomies (removal of an entire half of the brain) for example,
the outcomes vary across the entire spectrum of possibilities. Some become
vegetative, some retain ability to dress and feed themselves but no more,
some experience various degrees of mental retardation and a lucky few, such
as the remarkable case of Cameron Mott which received much media cov-
erage, recover all physical and mental function. In one study of 115 hemi
children who were assessed six years after the surgery, 28 were either in a
school for the disabled or cared for at home, 9 could not walk, whilst 5 were
attending a regular school without assistance [37]. Others show similar het-
erogeneity of results [38–40]. Thus, which functions are lost and how well
the brain can adapt to the loss is highly individual.

These large individual differences in plasticity will also manifest as dif-
ferent outcomes under the normal course of development and life experience.
Unlike other organs of the body, the brain does not behave the same way
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from birth. Rather, the brain’s function develops in an experience-dependent
manner over one’s lifetime. In fact, experience alters every dimension of its
physiology from its gross anatomy to its fine scale architecture and gene
expression.

A growing literature has now begun to demonstrate these differences in
the EEG. For example, a metric of variability in the EEG has been shown
to reduce when an individual is attending to a stimulus. This change in
variability during a stimulus-dependent task is highly individual and has
consequences for performance [41]. Furthermore, the slope of the 1/f spec-
trum of the EEG changes with age [42]; features such as the alpha oscillation
are tied to factors such as technology use and can exhibit many-fold differ-
ences across diverse populations [43]; and signal complexity is closely corre-
lated to factors of life experience such as education, income and geofootprint
(physical exploration) (see part III for more details) [44].

From these various results, it is clear that group metrics cannot effec-
tively describe each individual. It may be that characterizing the diversity
across the group can yield more interesting insights into the dynamical pos-
sibilities of human brain signals beyond simply focusing on group averages.
Further, this individual characterization is essential when trying to inter-
pret the features and motifs relating to the thoughts and behaviors of any
individual.

2.6. Summary

In summary, this section presents a framework for approaching electrical
signals that address different levels of questioning from what is common and
distinct across all intelligent life to what is unique about the individual. In
this context, there are four key points: First, it is important to determine
whether one is seeking to uncover dimensions that are universal or unique to
species or individuals and depending on the purpose of the study, whether to
look at statistical principles or specific motifs. Second, field measurements
offer technically easier and potentially integrated views of the functioning
of the system although the specific details of the underlying contribution
of cells are obscured. Third, choice of species, experimental system and
analytical approach to the signal must be conscious decisions based on where,
along these dimensions, one is interested in probing. Fourth, using analytical
approaches that explore the diversity within a population rather than simply
comparing group means can help determine both the state space across
populations as well as individual uniqueness.
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3. Part II: Examples of statistical
and specific features of electrical brain signals

3.1. Understanding universal statistical features versus unique motifs

To better understand the dimensions of universal statistical features ver-
sus unique motifs, it is useful to consider a more familiar signal — human
speech or language. It has been found that the most commonly occurring
word occurs twice as often as the next most common word, three times as
often as the next most and so on [45, 46]. In English for instance, ‘the’
is the most common word with 7.5% of word occurrences, followed by ‘of’
with 3.5%, and then ‘and’ with ∼ 2.5%. What this means is that there is a
characteristic inverse relationship between the frequency of occurrence of any
word and its rank of occurrence. This statistical structure is called Zipf’s law
(Fig. 4) and is represented as a near straight line with a characteristic slope
of −1 when plotted as the log(occurrence) versus log(rank). Mathematically
it can be written as P (occurrence) ∝ 1/rank. What is remarkable however,
is that this pattern is universal across all languages. Although there are
deviations from the strict definition of Zipf’s law at higher ranks [47], the
structure is a universal statistical signature of human language. Thus, while
this statistical signature might serve as a tool to identify whether a book or
speech is gibberish or real language, it cannot tell you what language it is.

Because the plot has a logarithmic y-axis, words with zero
frequency after the split are not shown. The fit of Eq. 2 using
a maximum-likelihood method on the separate frequency and
frequency rank portions of the corpus is shown in the red solid
line. Additionally, a locally smoothed regression line (LOESS)
(Cleveland, Grosse, & Shyu, 1992) is shown in gray. This line
corresponds to a local estimate of the mean value of the data and
is presented as a comparison point to see how well the fit of
Eq. 2 matches the expected value of the points for each frequen-
cy rank (x-value). In the corner, several key values are reported:
the fit α and β, an R2 measure giving the amount of variance
explained by the red line fit, and an adjusted Radj

2 capturing the
proportion of explainable variance captured by the fit, taking the
smoothed regression as an estimate of the maximum amount of
variance explainable. For simplicity, statistics are computed only
on the original R2, and its significance is shown with standard
star notation (three stars means p < .001).

This plot makes explicit several important properties of the
distribution. First, it is approximately linear on a log-log plot,
meaning that the word frequency distribution is approximately
a power law, and moreover, is fit very well by Eq. 2 according
to the correlation measures. This plot shows higher variability
toward the low-frequency end, (accurately) indicating that we
cannot estimate the curve reliably for low-frequency words.
While the scatter of points is no longer monotonic, note that
the true plot relating frequency to frequency rank must be
monotonic by definition. Thus, one might imagine estimating
the true curve by drawing any monotonic curve through these
data. At the low-frequency end, we have more noise and, so,
greater uncertainty about the shape of that curve. This plot
also shows that Eq. 2 provides a fairly accurate fit (red) to the

overall structure of the frequency-rank relationship across
both corpora.

Importantly, because we have estimated r and f(r) in a
statistically independent way, deviations from the curve
can be interpreted. Figure 1b shows a plot of these devi-
ations, corresponding to the residuals of frequency once
Eq. 2 is fit to the data. Note that if the true generating
process were something like Eq. 2, the residuals should be
only noise, meaning that those that are above and below
the fit line (y = 0 in the residual plot) should be deter-
mined entirely by chance. There should be no observable
structure to the residual plot. Instead, what Fig. 1b reveals
is that there is considerable structure to the word frequen-
cy distribution beyond the fit of the Zipf–Mandelbrot
equation, including numerous minima and maxima in the
error of this fit. This is most apparent in the “scoop” on
the right-hand size of the plot, corresponding to misesti-
mation of higher ranked (lower-frequency) words. This
type of deviation has been observed previously with other
plotting methods and modeled as a distinct power law
exponent by Ferrer i Cancho and Solé (2001), among
others.

However, what is more striking is the systematic deviation
observed in the left half of this plot, corresponding to low-rank
(high-frequency) words. Even the most frequent words do not
exactly follow Zipf’s law. Instead, there is a substantial auto-
correlation, corresponding to the many local minima and max-
ima (“wiggles”) in the left half of this plot. This indicates that
there are further statistical regularities—apparently quite com-
plex—that are not captured by Eq. 2. These autocorrelations in
the errors are statistically significant using the Ljung–Box

a b

Fig. 1 a Relationship between frequency rank (x-axis) and (normalized)
frequency (y-axis) for words from the American National Corpus. This is
plotted using a two-dimensional hexagonal histogram. Bins are shaded
blue to green along a logarithmic scale depending on how many words
fall into the bin. The red line shows the fit of Eq. 2 to these data. b

Frequency rank versus the difference (in log space) between a word’s
frequency and the prediction of Eq. 2. This figure shows only a subset of
the full y range, cropping some extreme outliers on the right-hand side of
the plot in order to better visualize this error for the high-frequency words

Psychon Bull Rev (2014) 21:1112–1130 1115

Fig. 4. Zipf’s law: an example of a universal statistical principle of language; All
languages show a similar structure where the frequency of occurrence of any word
is inversely proportional to its rank. This inverse proportionality is referred to as
Zipf’s law and can be represented as a near straight line with slope −1 on a double
logarithmic scale. Figure from [45].
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To understand something specific to a particular language you would
have to understand its unique vocabulary. What word occurrences charac-
terize and distinguish one language from another? A fallout of Zipf’s law
is 135 words account for over half of all vocabulary usage in a language.
Thus, a particular set of vocabulary form the motifs that could serve as
a universal identifier unique to a particular language. Similarly, specific
semantic patterns such as conjugations are specific features that can distin-
guish one language from another. However, neither can tell you anything
about a particular speaker. An individual may have unique patterns for
usage of vocabulary (favorite words for example) and structures (slang or
other atypical usages) or intonations that can be characterized to provide a
view of their uniqueness or similarity compared to the spectrum of speakers
of that language.

Similarly, one can imagine that signals produced by the brain have cer-
tain statistical similarities across species and individuals but perhaps motifs
that differ.

3.2. Neuronal Avalanches as a universal statistical feature of cortical tissue

One example of a statistical feature of the brain signal are what are
known as Neuronal Avalanches (Fig. 5). This phenomenon was first charac-
terized by Beggs and Plenz in an organotypic in vitro preparation from mice
[48, 49]. In this preparation, 300 micron thin cortical slices from newborn
mouse pups were plated below 64 channel microelectrode arrays, where still
migrating cells grew out over a two week period to cover the electrodes in
a pattern that mimicked intact cortical architecture but in 2D form. Re-
markably, after two weeks, during which the cultures were placed in a dark
incubator with no electrical stimulation, synchronous events began to oc-
cur that could be visually identified as sharp negative deflections in the
local field potential (LFP) recordings (Fig. 5 (a)). Beggs and Plenz noted
both the timing and amplitude of these negative LFP deflections (nLFPs)
in raster plots (Fig. 5 (b)) and characterized how they were grouped in time.
All simultaneous and consecutive nLFPs were grouped into an event. The
end of an event was marked by an empty time bin with no nLFP peak.

Remarkably, the size of these events organized into a statistical structure
where the probability of finding an event of size s, P (s), was inversely pro-
portional to its size s (Fig. 5 (c)). This was the case regardless of whether
s was considered to be simply the number of nLFPs or the sum of their
amplitudes.
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Fig. 5. Neuronal Avalanches: a universal statistical principle of the mammalian
brain activity; (a) LFP recordings from mouse cortex grown in a dish (each line
is an individual electrode) show distinct negative deflections (nLFPs) that appear
to form cascades that spread across electrodes (from [49]). (b) Raster plot of peak
positions of nLFPs for each electrode (from [50]). Expanded view shows cascades
or avalanches (peaks detected on at least one electrode in each successive time bin)
separated by pauses (empty time bins). Number of peaks in each avalanche repre-
sents its size n. (c) Power law size distribution of avalanches in mouse cultures (in
log–log scale) for different numbers of electrodes (from [48]). (d) Disruption of the
power law distribution by the application of picrotoxin which changes the balance
of excitation and inhibition (from [48]). (e) Power law distribution in a monkey
for different time resolutions compared to distributions after random shuffling of
nLFP positions (from [50]). (f) Relationship between temporal resolution (or bin
size t) and power law exponent (note log scales) (from [50]).
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This statistical structure is called a power law and is similar to Zipf’s law
but has a different exponent. Where Zipf’s law has an exponent α of −1,
this power law has an exponent α that was less than −1. This means that
an event of size one is more than twice as likely to occur than an event of
size 2 or, in other words, the distribution is steeper,

P (s) ∝ sα .
Regardless of how you sliced and diced the measurement by removing

every other electrode from the grouping or looking at just one section of the
array, this structure still held up (Fig. 5 (c)). Essentially, it was invariant
to the spatial scale or resolution. What this meant was that the largest
size of an event was constrained only by the size of the system [49]. This
statistical pattern of occurrence of periods of synchrony was termed neuronal
avalanches for their similarity to the behavior of ‘avalanches’ of sand in the
famous sandpile model demonstrated by Bak, Tang and Weisenfeld [51, 52].

The specific value of the exponent α, however, was dependent on the time
scale used to resolve the events. If the recording was carried out at 1000
samples per seconds, the bin size ∆t would be 1 ms. However, as bins were
collapsed together to create a coarser and coarser time resolution, or larger
values of ∆t, the exponent decreased systematically [48, 50]. This statistical
characteristic was, therefore, not just invariant to the spatial scale, it was
also invariant to the temporal scale. Essentially, it was multifractal in nature
and had the implication that one could identify this structure regardless
of the spatial or temporal scale of measurement. That it occurred across
every mouse organotypic culture measured indicated that it was an intrinsic
property of the tissue that was not dependent on any external stimulus. It
could, however, be disrupted by the application of drugs that changed the
balance of excitation and inhibition (Fig. 5 (d)) [48], a key property of the
cortical network.

Remarkably, the structure has been found to be conserved in slices of
cortex extracted from adult rats, in the cortex of awake monkeys chronically
implanted with microelectrode arrays (Fig. 5 (e)) [50] and even in human
ECoG recordings [53]. The only differences were in the relationship between
how fast the exponent changed with the time resolution, ∆t, indicating
a distinct spatiotemporal relationship (Fig. 5 (f)) [50]. Thus, all evidence
points to neuronal avalanches as an intrinsic and universal statistical feature
of the mammalian cortex that is conserved across species but suggests a
species-specific spatiotemporal relationship of avalanches.

This statistical structure has some potentially significant implications.
For example, certain exponents, in theory, imply a precise branching process
or rules governing propagation of activity such that the possible outcomes
or patterns in the system are maximal, sometimes referred to as a ‘critical
state’ [54–56].
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3.3. Coherence potentials — moving towards identifiable motifs

Just as Zipf’s law characterizes the statistical occurrence of words, neu-
ronal avalanches characterize the statistical occurrence of cascades of syn-
chrony. However, to move towards a deeper understanding of specific fea-
tures, it is essential to understand something further about these cascades
of synchrony. In the way that words are meaningful for the understanding of
language, are these cascades or periods of synchrony relevant and meaningful
features or motifs of the system?

The nLFPs measured on any individual electrode that made up part
of the cascades of synchrony were typically waveforms of a duration of 100
to 300 ms (Fig. 6 (a)). Furthermore, the power spectral density of these
periods followed a similar 1/f pattern that is characteristic of most field
potentials (Fig. 6 (c)) [57]. This was the case in both rats and monkeys, in
vivo and in vitro. However, they were not represented by a stereotypical
pattern but rather were complex and varied. Using a correlation measure to
compare waveforms provides a simple measure of waveform similarity that
is relatively independent of amplitude (Fig. 6 (b)). Avalanches or cascades
of nLFPs occurring with temporal pauses (Fig. 6 (d)) tend to have similar
waveforms within an avalanche or cascade but distinct waveforms between
them (Fig. 6 (e), (f)). Furthermore, within any cascade, when amplitudes
were above a certain threshold, they maintained their complex shape with-
out any distortion or decay in amplitude either in space (Fig. 7 (a)) or in
time (Fig. 7 (b)) and appeared to ‘jump’ in space, crossing over electrodes in
between [57]. In contrast, avalanches with subthreshold nLFP amplitudes
tended to progressively distort over time (Fig. 7 (b)). Such behavior runs
counter to the expectation that a complex field level signal would result in
a progressive distortion or dissipation as it propagated in space and time.
This behavior has analogy to the action potential at the level of the neuron
where spikes travel down the axon in a directed manner without any distor-
tion to their size. In the absence of this active propagation process, charge
would simply dissipate progressively in every direction. This phenomenology
suggests an active synchronized network level propagation process. Given
the tight coherence of these periods as they propagate, they are termed
coherence potentials. Coherence potentials thus represent unique, identifi-
able motifs that can provide a relatively instantaneous view of cooperating
regions of the cortex. This allows understanding on a more instantaneous
timescale in contrast to the overall avalanche statistics which are an inte-
grated view of many coherence potentials over time. It is significant that
the rate, complexity and diversity of coherence potentials was greater in
monkeys than rats.



2110 T. Thiagarajan

Fig. 6. (Color online) Coherence potentials represent undistorted propagation of
high amplitude LFP periods; (a) Negative periods in the LFP (nLFPs) with peak
amplitude beyond a certain threshold are extracted to identify coherence potentials
(same manner as avalanches). (b) Correlation of nLFPs of different shapes provides
a measure of waveform similarity. (c) Average power spectral density (PSD) of
suprathreshold nLFPs (black), subthreshold nLFPs (red) compared to the PSD of
the entire recording (gray) shows that coherence potentials are spectrally broad. (d)
Time difference between successive nLFPs for a short period shows fast cascades
or avalanches followed by pauses. (e) nLFPs show generally high correlation or
waveform similarity (> 0.8) within each cascade or avalanche but not between
successive avalanches. Each individual avalanche is marked in panels (d) and (e)
with the letters a–o. (f) Each box shows overlays of the nLFP waveforms within
one avalanche or cascade marked a–f in (d) and (e). All panels from [57].
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Fig. 7. Coherence potentials do not decay in space or time; (a) Waveform similarity
of suprathreshold nLFPs occurring successively in time (within a cluster) does
not decay (filled squares), while nLFPs separated by pauses of the same duration
show progressive decay. (b) Waveform similarity of subthreshold amplitude nLFPs
occurring successively in time (within a cluster) decays progressively in the same
way as nLFPs separated by pauses of the same duration. (c) Waveform similarity
of suprathreshold nLFPs is not impacted by physical distance of the electrode on
the array. All panels from [57].

The next question is whether these potentials are meaningful in the con-
text of behavior. A simple hypothesis might be that a particular waveform
may in some way encode information about a particular behavior. While
this remains to be fully explored, one experiment using ECoG on a patient
undergoing surgical resection for epilepsy suggests that this may indeed be
the case, although also raising further questions about how it works [53]. In
this experiment, the ECoG array was placed roughly in the left somatosen-
sory cortex region and a map of motor and sensory response was established
by stimulation of each electrode (Fig. 8). With this mapping, it was found
that the array largely covered the right-hand representation region (but not
foot). Subsequently, recordings were obtained while the subject performed a
task where he was shown a picture of a particular movement that he had to
copy (fist clenching or foot dorsiflexion; Fig. 9 (a)). Unique sets of coherence
potentials were found to reliably coincide with each distinct movement and
spanned all the trials for that movement (trial spanning coherence poten-
tials). However, interestingly, the particular spatial spread of the coherence
potential varied from trial to trial. The frequency of occurrence of the coher-
ence potential on each electrode spanning right hand or fist clenching trials
is shown in Fig. 9 (b). Nonetheless, while its presence on most electrodes
appeared random, the particular coherence potential for right fist clenching
occurred reliably on one of two electrodes involved in right finger movement
immediately after presentation of the cue with a timing that predicted the
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onset of fist clenching (Fig. 9 (c)). Thus, whilst it is clear that particular
waveforms may be meaningful, the relationship between how they propagate
in space and the behavior is unclear.

Fig. 8. ECoG array used to assess coherence potentials and behavior; (b) Array
placement on the cortex and motor movement mapped onto the array based on
response to stimulation. Note coverage of hand movement area (hand, fingers,
wrist) in hatched. (b) Array shown separately. All panels from [53].

Unraveling the mysteries of the relationship between the temporal and
spatial aspects of the brain signal and their relationship to thought, feeling
and behavior is an open and exciting field of questioning. Indeed, neuro-
scientists have been thinking about this for many decades with unexpected
results. In the 1970s, neurosurgeon Wilder Penfield reported on stimulation
experiments in the somatosensory cortex in 163 patients showing that these
maps of motor movement were not static and shifted over sessions and that
no particular localization could be found for sensation [58]. Furthermore,
the work of several people beginning with Lashley in the early part of the
1900s [59–61] have shown that while particular functions can be localized,
memory is distributed across the cortex and cannot be easily wiped out by
lesions or even, sometimes, removal of an entire hemisphere [62].
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Fig. 9. Coherence potentials corresponding to fist clenching; (a) Hand EMG along
with example of a single ECoG channel during a right fist clenching task. Patient
had to clench his right or left fist (or flex his right or left leg) for the duration
of time when the picture of the action is shown. Task elements were divided into
four parts: (1) Anticipation: the period before the cue is presented, (2) RT-on:
the reaction time or duration from when the cue is presented until the start of
the muscle contraction in the EMG, (3) Response: the duration of the muscle
contraction, and (4) RT-off: the duration from when the cue disappears to the end
of the muscle contraction. (b) Frequency at each electrode location for a particular
coherence potential that occurred during each right fist clenching trial. There was
significantly higher participation of several hand electrodes during the anticipation
period, and of just the finger electrodes (27,28) during the RT-on phase. The same
electrodes had significantly lower participation in the response phase and hardly
any participation in the RT-off phase. (c) Correlations between the timing of the
trial spanning coherence potentials (CPs) on each electrode and the reaction time
or motor onset. Right finger electrodes 27 and 28 are highlighted as larger dots
separated from the others. The timing of occurrence of the RH (Right Hand)
CP on either electrode 27 or 28 in the RT-on phase was highly correlated with
the reaction time. However, while the coherence potentials associated with other
tasks (left and right foot (LF, RF), left hand (LH)) were also present during the
anticipation and response periods of the right fist clenching trials, no electrode was
particularly correlated to onset of the motor behavior. All panels from [53].
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3.4. Summary

In summary, the goals of interpreting electrical brain signals might be
thought of by analogy to mechanisms of speech or language. Here, a cer-
tain statistical structure known as Zipf’s law defines language signals, while
particular words within this signal represent motifs with a specific mean-
ing. The power law statistics that define neuronal avalanches, for example,
represent a universal statistical feature of the mammalian, cortex while the
particular relationship between timescale and power law exponent appears
to be species specific. Similarly, the presence of coherence potentials, or the
propagation of large amplitude field potentials without distortion of their
waveform shape, also appears to be a cross-species phenomenon. However,
the rate and complexity of these waveform shapes appears to be species spe-
cific. Taken further, the particular waveform shape may represent motifs
that hold information about behaviors.

4. Part III: Understanding human brain dynamics
and their meaning with EEG

4.1. The EEG signal

Unlike field potentials measured directly on or within the brain such as
in LFP and ECoG, EEG is separated from the brain surface by various types
of tissue from the interstitial fluid to the pia and dura mater, the skull and
skin tissue or scalp [63, 64]. This adds a completely different dimension to
the signal. Beyond the aggregate signals of the underlying neurons and glial
cells, there are various other factors that influence the signal including the
conductivity of the intervening tissue and head geometry. To add to this,
skull tissue is not uniform in its thickness [64] and its conductivity in a living
person is difficult to measure.

Models exist that attempt to parse out the effects of the volume con-
duction of the intervening tissue and the cortical surface. However, these
models make a number of assumptions that ignore many important aspects
of the human cortex. For example, these models assume that the cortex
behaves as a dipole [65–67]. Such models must necessarily make a num-
ber of assumptions and, for simplicity, do so in ways that ignore various
aspects of cortical behavior. First, they assume that the signal travels in
only one direction although back-propagation of action potentials into the
dendrites has been well-established [68–71]. Second, they fail to account
for the glial cells which outnumber neurons by 1.4× and heavily modulate
neuronal activity [12, 13, 72], propagate fast calcium waves [73–76] and play
a role in buffering or mopping up charge from the external space around the
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neurons [77, 78]. Third, they do not account for active propagation processes
at the network level such as those demonstrated by the phenomenology of
coherence potentials [57].

Altogether, there are a great deal of unknowns. Consequently, the EEG
can be regarded as an epiphenomenon of the individual, comprising an ag-
gregate of many factors.

Nonetheless, its noninvasive nature, low cost, portability, ease of mea-
surement and high temporal resolution confer several advantages over other
views of brain activity. Other methods of peering into the human brain such
as fMRI, which measures changes in blood oxygen levels on the slow time
scale of a second, are well-suited to delivering insights into where activity is
occurring under any given circumstance. Invasive approaches such as LFP
recordings that can be combined with physiological interventions and phar-
macology are better suited to answer how the signal comes about. EEG,
on the other hand, with its easy integration with human behavioral experi-
ments, is best suited to answer the question of what the signal is saying in
terms of relationships to inputs and outputs.

4.2. Discovery of the EEG signal

The EEG signal in humans was first reported by Hans Berger in 1929
[79]. This was the pre-computer era when analysis involved essentially ‘visual
inspection’, looking at the signal and using a ruler to measure some aspect
of it [80]. The most obvious visual element was durations of periodicity
around 10 Hz when the eyes were closed. These were reported in the earliest
EEG recordings by Hans Berger and called alpha waves. Everything else in
the signal he referred to as beta waves, acknowledging that they were non-
periodic complex fluctuations of higher frequencies that could not be readily
characterized. The absence of this visible periodicity (the alpha waves) when
the eyes were open gave rise to the generalization that what remained, the
beta waves, signified alertness [81]. This idea of ‘more beta means alertness’
continues to prevail in popular dialogue even today.

In the 1930s and several decades beyond, EEG was recorded on film or
on the less affordable but more accurate ink-writing oscillograph. The ink-
writing oscillograph had better resolution but could not typically write faster
than 30 Hz. This capped the range that defined the ‘beta waves’. However,
in 1936 Jasper and Andrews [82] were able to identify frequencies higher
than 30 Hz and called them gamma waves. Similarly, slower frequencies,
previously ignored, were reported by Hoagland, Rubin, and Cameron [83]
and given the name delta waves. The separation of the spectrum into these
broad bands along with its nomenclature continues to persist today despite
their origins in the technical constraints of the pre-computer era of the 1930s
and 40s.
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4.3. Traditional analysis of the EEG signal

One of the most commonly used methods of analyzing statistical fea-
tures of a continuous EEG signal is to transform the signal into its power
spectrum and then collapse the spectrum into single values for each of its
historical band definitions. The separation into bands has its origins in the
workarounds of the 1930s and 40s, when the challenge of manual analysis led
to the use of photomechanical analyzers (Fig. 10 (a)) which parsed the signal
by frequency bands before writing it on the oscillograph [84, 85]. Essentially,
these were mechanical band pass filters.

Fig. 10 EEG Signal à Spectrum
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Fig. 10. History of EEG; (a) William Grey Walter with his EEG Analyzer in 1942
(from [86]); (b) Examples of the many possible waveforms arising from different
phase relationships of the same underlying sinusoids (from [87]); (c) Example of an
EEG power spectrum and its break-up into broad bands.
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In the 1960s with the advent of computing, Fast Fourier transform
(FFT) algorithms, such as the Cooley and Tukey [88] method came into
play providing a computationally efficient view of the entire power spectrum
(Fig. 10 (c)). This led to the view that the power spectrum of the EEG signal
had a 1/f like structure, where the power was roughly inversely proportional
to the frequency [42, 89–91]. In addition, the alpha periodicity observed vi-
sually by Berger was visible as a peak above this 1/f structure [43, 92–95].
Like avalanches, this 1/f structure and alpha peak are also visible across
species in the LFP [50] and ECoG [96] and represent a universal principle.
In addition, the 1/f exponent varies individually with factors such as age
[42]. Numerous computational tools now exist to assess features of the entire
spectrum. Despite these advances, the collapse of the spectrum into bands
(Fig. 10 (c)) still persists today.

This traditional EEG analysis method does not typically take into con-
sideration the enormous nonstationarity and waveform variability in the sig-
nal. In 1938, William Grey Walter, one of the inventors of the mechanical
band pass analyzers himself (Fig. 10 (a), (b)) discussed at length the con-
siderable limitations of this method in this respect [97]. He says:

The chief limitation of automatic e.e.g. analysis with instruments
at present available lies in the fact that whilst they will separate
and measure mixed and modulated rhythms in the e.e.g. they
give no information about the relative phases of the waves mak-
ing up these rhythms. When harmonically related higher fre-
quencies are added to a fundamental frequency, the shape of the
resulting waves depends entirely on the phase relations of the
harmonics to the fundamental. Therefore, two compound wave-
forms which have components identical in frequency and size,
and so will show the same analysis, may yet have entirely dif-
ferent shapes. In the visual examination of an e.e.g. record it is
important to know some of the forms a given set of rhythms may
produce by phase. A series of harmonically related components
may produce an infinite variety of waveforms.

Spectral decomposition of the signal might be considered similar in ap-
proach to analyzing an image based on its color spectrum while throwing
away information on the relative position of the pixels. While some colors
may bear correlation to certain types of pictures (e.g. pictures dominated
by green and blue may be more likely to be natural landscapes), this ap-
proach is not powerful enough to clearly identify the contents of the picture.
Similarly, spectral analysis throws away relative phase information of the
waveform losing fine scale information on its complex and nonstationary
properties.
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Another common method employed in EEG is the averaging of the signal
during a period following presentation of a stimulus to compute a trial av-
eraged event related potential or ERP. A number of stimulus presentations
have been shown to cause an increase in the ERP amplitude and the timing of
the peak is often considered a marker of normal stimulus response [98–101].
However, traditional ERP analysis typically does not take into consideration
the waveform variability of the underlying signals which might lend a new
dimension to identifying stimulus response feature.

4.4. Frameworks for EEG signal analysis

Given the huge variety of waveforms produced within the brain signal,
and the avalanche and coherence potential phenomenology outlined above in
LFPs and ECoG, new approaches focusing on characterizing the spatial and
temporal features of waveforms may yield novel insights into brain function.
However, one of the significant challenges of working with brain signals is
that we do not have any a priori understanding of which aspect of the signal
is relevant. It is, therefore, easy to go down irrelevant paths. To understand
the perils in such an undertaking, consider the example of language. Imagine
if an alien species were to record the sounds produced by human beings
but had no a priori knowledge of the nature of language or its manner of
production.

A first crude approach might be to look at the power spectrum of the sig-
nal. Using this approach, one might find different categories of human sound
and an ability to roughly distinguish song from speech perhaps. One may
even be able to classify different languages based on differences in their spec-
tral characteristics. However, it would be grossly insufficient to understand
what these sound structures mean. Let us say, as a next step, the aliens
decided to look at the signal with fine resolution identifying the characteris-
tics of different sounds. It would seem logical to assume that the particular
sound mattered and, therefore, that similar sounds such as p and b were
more similar in meaning. With sophisticated tools, they could then study
the occurrence of different sounds and their relative positions and speculate
on their meaning. Yet, it would be an irrelevant approach. Even if they
were to make the leap and figure out the concept of words, two words could
sound the same in different languages but mean something totally different.
Conversely, two words with totally different sounds could mean the same
thing and be used interchangeably. How would they be able to make sense
of this?

In interpreting the EEG signal, we are in the same position as aliens
trying to interpret human sounds. However, there are ways by which one
can find better paths to useful interpretation. Ultimately, what is relevant
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is to understand how to map particular features of the signal to inputs
and outputs to the system (Fig. 11). Any individual or acute stimuli or
experience would result in a particular response in the EEG dynamics which
would lead to a particular thought, feeling, cognitive output or behavior
which can be measured and mapped. However, all of these acute stimulii,
large and small, integrate over time into a larger context of life experience.
Thus, inputs can be thought of as the various life experiences we have,
the food we eat and the environment we live in — essentially the nutrient
and stimulus environment in which our brain develops and operates. Both
of these, individually and cumulatively, could result in adjustments to the
macrostatistical characteristics of the system, which could, in turn, inform
the nature of response produced by any acute stimuli. Thus, it is also
relevant to look at the effects of cumulative life experiences over longer time
scales such as education, or even our overall demographic context, and its
relationship to macrofeatures of the dynamics. Similarly, it is of interest
to evaluate the impact of these macrofeatures on acute stimulus-response
profiles.

Fig. 11. Of all techniques, EEG allows the most flexibility to study the relationship
of brain dynamics to inputs and outputs on various time scales. Studies of acute
responses to stimuli are best approached from the perspective of seeking specific
instantaneous features. All acute stimuli integrate over time into larger experiential
contexts which may impact the overall statistical characteristics of the system.
These, in turn, will influence the dynamical responses to acute stimuli.

Ultimately, the goal is that by experimenting with various approaches,
one would identify those metrics that can inform a person about themselves
in a productive manner. This could allow one to answer questions such
as what metrics predict different cognitive or mental health outcomes and,
therefore, what changes to inputs could alter this metric.
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To arrive at such productive outcomes of EEG investigation, it is im-
portant to consider the great deal of individual variability both among indi-
viduals and within any one individual. In this context, universal statistical
principles of the signal that do not change much are not likely to yield
very many useful outcomes, except in identifying extreme disorders such as
epilepsy or coma, where the conscious state of the brain is fundamentally
changed. For the more subtle deviations in cognitive and mental health as-
pects, one would rather want to look for aspects of the signal that have large
variance across the population.

To arrive at this, it is essential to perform analysis on large samples,
goings from study sizes of 10s to 100s to 1000s and even hundreds of thou-
sands, in order to capture as much of the state space and variance of these
metrics across populations. It is also essential to capture extensive metadata
pertaining to the various input and output states in order to parse out their
individual contributions.

From a practical perspective, this may include collecting standard demo-
graphic and environment information from subjects across numerous studies
as well as standard session information pertaining to stimulants consumed in
the 24 hours prior to the recording session and state of mind at the time of
experimentation. Given the cost effectiveness and portability of EEG today,
such large scale studies are now within the realm of possibility.

4.5. Complexity as an example of an EEG metric
that relates to inputs and outputs

Given the wide variety of complex waveform shapes in aggregate brain
signals, their possible active propagation, and relationship to behaviors as
demonstrated in LFP and ECoG, one approach could be to further explore
the complexity of these waveforms. In this respect, I provide here one ex-
ample of a metric of waveform complexity (CW) that describes the diversity
of waveforms within a period of time and its relationship to both inputs
and outputs. This metric which is described in detail elsewhere [44] is con-
structed by comparing periods of 750 ms in duration (a duration where
variance across the measured population is maximal) using a correlation
measure, r. This describes the similarity of their shape rather than ampli-
tude. A diversity distribution is then constructed by taking the 1−|r| values
and the waveform complexity for any individual channel is then computed
as the median diversity multiplied by 100 ((1− |r|)× 100).

The waveform complexity thus observed in the resting state with eyes
closed has been found to reflect changes in various inputs or context variables
as well as performance on a cognitive task [44]. For example, mean group
complexity scales systematically with aggregate scores of life context that
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broadly represents access to modern services and technologies such as edu-
cation, mobility and communication (Fig. 12 (b)). Statistically, these trends
had p-values less than 10−6 for various statistical and bootstrapping meth-
ods. Similarly, individual waveform complexity measured with eyes closed
immediately before the participant took a Raven’s pattern recognition test,
correlates strongly with their performance or score (Fig. 12 (b)).

(a) Life Context measures (b) Cognitive Output

Fig. 12. Resting state EEG waveform complexity correlates to inputs and out-
puts. (a) Waveform complexity (mean ±SEM) of the EEG during a resting eyes
closed condition increases systematically with principal component scores of life
context features of income, education, geofootrprint, mobility and communication.
(b) Waveform complexity (mean ±SEM) of the EEG during a resting eyes closed
condition increases systematically with scores on a Raven’s progressive matrix task
performed immediately after the recording. Plots from [44].

4.6. Summary

In summary, I provide here an approach to the EEG signal that illustrates
its tremendous potential for unlocking new insights into the relationship
between features of the signal and inputs and outputs that are both acute
and integrated over longer time scales. Further, I suggest that analytical
approaches to the signal that focus on the complex waveform features of the
EEG rather than traditional spectral and ERP measures may provide new
kinds of insights. I also provide, as evidence, an example of this approach
using a new measure of complexity.
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5. Conclusion

In conclusion, the electrical field potential in the brain is an aggregate
signal that, while mechanistically difficult to understand, has enormous po-
tential to provide a view of the working system and its relationship to inputs
and outputs. Furthermore, working within a larger integrative framework
along the dimensions of species universality to individual uniqueness and sta-
tistical characteristics to specific motifs can provide a guide for experimental
design and interpretation of results. The phenomenology of the avalanches
is an example of a statistical principle that spans across species but with
a species specific relationship between exponents and timescales. Its scale
free nature also establishes an equivalence across spatial and temporal scales
enabling logical comparison of signals measured at different resolutions. Sim-
ilarly, the phenomenon of coherence potentials is a mechanism for identifying
specific motifs that span across species but which also have species and in-
dividual specific threshold characteristics. Finally, EEG offers the valuable
opportunity for noninvasively establishing relationships between brain dy-
namics, experience and behavior. Based on the phenomenology found in
LFPs and ECoG, I suggest new insights might be gained by probing both
specific and statistical features of the waveform in relation to both acute
and integrated stimuli and mental states.
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