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CONFORMAL STANDARD MODEL AND INFLATION
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This article presents a possible inflation scenario as a consequence of
non-minimal gravitational couplings in the Conformal Standard Model.
The model consists, in comparison to the SM, of additional right-chiral
neutrinos and complex scalars coupled to the right-chiral neutrinos but not
to the SM particles. The inflation is driven by two non-minimally coupled
fields, one being the usual Higgs and the other one of the sterile scalars. It
turns out that in this model, the tensor-to-scalar ratio and spectral index
can match the current data for a wide range of parameters.
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1. Introduction

It is usually assumed that at the very early stage of expansion of the
Universe, there was an inflation era, i.e. an accelerated expansion followed
by the decelerated FLRW epoch [1, 2]. This assumption is supposed to solve
several outstanding cosmological problems but one should note that it has
some problems of its own such as the issue of its own initial conditions and
the initial entropy problem. There were various mechanisms proposed to
provide the inflation era, see, for example, [1–6]. Large regions of param-
eters of these models were excluded by the recent BICEP and PLANCK
measurements, and the non-minimally coupled (to gravity) scalar field or
modification of gravity by R2 term are the main class of models left giving
correct values for spectral index and tensor-to-scalar ratio.
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The Higgs field is the only scalar field discovered experimentally so it
is a natural candidate for an inflaton. In the Bezrukov, Shaposhnikov ar-
ticle [6], the consequences of Higgs field non-minimally coupled to gravity
were considered and it turned out that it actually can give a successful infla-
tion scenario. On the other hand, the Standard Model struggles with some
problems and an extended theory is required to explain both experimen-
tal phenomena not covered by SM itself and to resolve several high-energy
drawbacks of this theory.

Experimental data support such extensions which are in a sense minimal
since there is no evidence of new (supersymmetric) particles from exper-
iment so far. Such an extension is provided by the Conformal Standard
Model (CSM) [7–9] in which a hierarchy problem is resolved by Softly Bro-
ken Conformal Symmetry mechanism (SBCS) [10]. Moreover, this model
proposes a candidate for dark matter and the observed matter–antimatter
asymmetry can be explained. In this article, we would like to point out that
CSM supplemented by non-minimal coupling and eventually extended by
one more scalar can also give a consistent description of inflation. Unlike
the Higgs portal scenarios [11, 12], in CSM, the Higgs boson consists of two
mass states. Moreover, the model predicts a tiny mass for minoron, which is
a natural candidate for dark matter, produced during reheating. The Con-
formal Standard Model exists in two versions, one with a complex sextet φij
[8] and one with an additional complex scalar [9], but as we will see in the
next paragraph, they both give the same scenario for inflation.

2. Inflation scenario within Conformal Standard Model

In this paragraph, we propose and discuss scalar fields from CSM
non-minimally coupled to gravity leading to inflation in the Bezrukov–
Shaposhnikov mechanism [6]. The potential is given by the formula (we
use the following notation: h := H0(x) and s := r(x), compare with [8, 9])
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The conditions for the stability of this potential were discussed in [8, 9]

λ1, λ2, λ4 > 0 , λ3 > −
√
λ1(λ2 + λ4/3) . (2)

Then the inflation comes from the non-minimal coupling to gravity, i.e. the
Lagrangian (in the Jordan frame)
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with ξi > 0. In the case of [8], as we take large couplings (see below), the φij
reduces to its trace part. We will proceed in the scheme of [12, 13]. Since
the calculations in the Jordan and Einstein frames are equivalent [14], we
make the following convenient conformal transformation:

g̃µν = Ω2gµν , Ω2 = 1 +
ξ1h

2 + ξ2s
2

M2
P

. (4)

We set Planck mass to unity, MP = 1, to simplify the equations but it will
be restored later on for slow-roll parameters analysis. Then we obtain the
Lagrangian in the Einstein frame

LE = −R
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Since in the inflation scenario we consider large fields limit [15], we take
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We redefine the fields as

χ =

√
3

2
log
(
ξ1h

2 + ξ2s
2
)
, (7)

τ =
h

s
, (8)

and then the kinetic part of the Lagrangian reads
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We are interested in large fields and coupling regime: ξ′ = ξ1 + ξ2 � 1.
This is the same case as for single Higgs inflation, where ξ ≈ 49000

√
λ.

Then the mixing term (∂µχ)(∂
µτ) and the second term in front of (∂µχ)2

are suppressed by term 1/(ξ′), so the kinetic part is
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and the potential in new variables reads
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The calculated minima of U(τ) are shown in Table I , with a = λ1ξ2−λ3ξ1,
b = λpξ1 − λ3ξ2. One can show that the ratio of fields drops eventually
to stable minimum before the inflation ends and the Shaposhnikov-type
evolution of χ follows. We will discuss both issues below, after we analyse
the minima of U(τ) and parameters ensuring successful inflation.

TABLE I

Minimal values of the radial part of inflation potential.

τ0 values Stable minimum condition U0

τ0 = 0 a > 0 and b < 0 λ1

4ξ21

τ0 = +∞ a < 0 and b > 0
λp

4ξ22

τ0 = ±
√

b
a a > 0 and b > 0

λ1λp−λ2
3

4(λ1ξ22+λpξ21−2λ3ξ1ξ2)

τ = 0 or τ0 = +∞ a < 0 and b < 0 λ1

4ξ21
or λp

4ξ22

We have two types of scenarios. We have either a single inflaton case:
Higgs or single “shadow” Higgs inflation, when τ0 is equal to zero or infinity.
Or the multi-inflaton scenario occurs where the ratio of fields goes to the
value τ0 =

√
b
a . For the multi-inflaton scenario, the following conditions

have to be satisfied:

a = λ1ξ2 − λ3ξ1 > 0 , (13)
b = λpξ1 − λ3ξ2 > 0 , (14)

λ1λp − λ2
3 > 0 , (15)

where the third one is required to prevent metastability of electroweak vac-
uum and assure positivity of vacuum energy during the inflation stage. For
λ3 < 0 both: a > 0 and b > 0 are obviously satisfied. On the other hand,
the last condition is automatically satisfied for λ3 > 0 since it comes from
the first two. Moreover, the choice λ3 < 0 is more convenient to match the
theoretical Higgs mass with its observed (125 GeV) value. Thus, for this
choice of parameters, the CSM model is consistent with the inflation sce-
nario. The measurement of λ3 would be crucial to determine which of the
final values of τ0 could be obtained in inflation. Assuming that the shadow
Higgs was found in the LHC and the measured value of λ3 was less than
zero, the single Higgs scenario presented in [6] would be falsified even for
ξ1 = 0 or ξ2 = 0. Moreover, for λ3 > 0, the single or mixed Higgs scenario
can be realised in CSM with non-minimal couplings.
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In the case of ξi = 0 for i ∈ {1, 2}, the field associated with ith coupling
decouples [13], which results in τ = 0,+∞. When this is not the case, one
can still show [12, 13] that the τ field will drop to the one of the minima
showed in Table I. The easiest way to obtain this result is to use slow roll
approximation for both fields and then solve the differential equations for
evolution of τ field.

Thus, we are left with the classical Bezrukov–Shaposhnikov evolution

V (χ) =
λeff

4ξ2
W (χ) , (16)

with ξ = ξ1τ
2
0 + ξ2 and λeff = λ1 +λpτ

4
0 +2λ3τ

2
0 . Here, we recall the general

scheme [6]: for large χ, potential is flat and the inflation occurs, and as the
field rolls to smaller values, the ε ' 1 marks the end of inflation. The slow
roll parameters are calculated below:
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The number of e-folds is given by
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and the slow roll conditions are violated for e2χe/
√

6 ' 0.155. Then the
initial value of the field, for N = 60, is given by: e2χe/

√
6 ' 80. Hence the

initial values of fields, after the decoupling stage, are given by
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Inserting it into the COBE normalisation [16]: W/ε = (0.027MP)
4 and with

NCOBE ' 62, we obtain (in analogy to Bezrukov–Shaposhnikov)
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for λeff ∼ 1, the coupling to gravity is: ξ ' 49000 = ξ1τ
2
0 + ξ2. Since

τ2 ' v2
H/v

2
φ = O(1), then roughly ξ′ ' ξ. The spectral index is [6, 13] (since

it depends on the shape of the potential rather than its amplitude)

ns ' 1− 2

N
' 0.97 , (23)

with tensor-to-scalar ratio: r ' 12/N2 ' 0.0033, what agrees with WMAP3
and Planck data.

3. Conclusions and remarks

The Conformal Standard Model with two scalar fields non-minimally
coupled to the Ricci scalar is analysed in the scheme along the lines of [17].
For both versions of the model, non-minimal couplings provide the same
inflation scenario in accordance with the observed values of the spectral
index and the tensor-to-scalar ratio. Therefore, the Conformal Standard
Model with resonant leptogenesis mechanism [9, 18] and the described in-
flation scenario can provide an explanation of the cosmological phenomena
we observe. In most models, extensions of the Standard Model and inflation
scenarios are treated separately. In contradistinction to previous propos-
als, our model incorporates inflation into CSM, which is a well-established
model.
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