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In this paper, by using two localization mechanisms which one is the
well-known Yukawa coupling and the other is the new derivative fermion–
scalar coupling, we reinvestigate the fermion field localization on deformed
branes. These branes are generated by the so-called two-kink solutions,
obtained after a deformation of a φ4 potential. The study of deformed
defects is important because it contains internal structures which may have
implications in braneworld scenarios. Because of existing freedom in the
form of the Yukawa coupling, we consider a function of the warp factor
for both coupling mechanisms. With two mechanisms, it is shown that
massless zero modes of fermion fields are localized on the deformed brane
depending on the value of the coupling constant which is independent of
the deformation parameter. Moreover, we find that both mechanisms can
result in a volcano-like potential of the fermion massive modes associated
to the corresponding Schrödinger-like equation. Furthermore, effects of the
internal structure on the zero mode and fermion effective potentials are
addressed.
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1. Introduction

In the last few years, theories involving the braneworld scenario have
attracted a lot of interest. The idea of embedding our Universe that might
be a hypersurface in a higher dimensional space-time suggests many creative
ways to solve some problems in new physics, such as cosmological constant
problems [1], Casimir force [2] and the gauge hierarchy problem [3]. In
the Randall and Sundrum (R–S) model [4], our four-dimensional Universe
is generated by a real scalar field which is coupled to gravity minimally.
† Corresponding author: m.m.sorkhi@kub.ac.ir
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Moreover, in this model, the brane is assumed infinitely thin and it does not
provide a smallest scale in a fundamental theory. Hence, in more realistic
field models, thick branes have been proposed as a smooth generalization
of the R–S model where the five-dimensional gravity is coupled to scalar
fields minimally [5] and non-minimally [6]. In this scenario, with a specific
choice for the scalar potential, the brane is usually generated by a scalar
field with kink configuration which provides a domain wall that may be
interpreted as non-singular version of the R–S model. A class of topological
defect solutions is created starting from a specific deformation of the φ4
potential which may be used to mimic new braneworld containing internal
structures [7, 8]. Such internal structures have implications to the way the
background space-time is constructed and the way their curvature behaves.
Furthermore, the authors of Ref. [6] investigated deformed defects with a
non-minimally coupled background scalar field. They found that each brane
splits into two sub-branes as increasing the non-minimal coupling constant.

In the braneworld theory, the issue of localization of gravity and various
bulk matter fields is an interesting subject. This investigation represents
us which kind of brane structure is phenomenologically more acceptable.
In other studies [9–12], it was shown that the graviton can be localized in
the R–S thin brane and thick brane scenarios but it is not true for vector
and Kalb–Ramond fields [13, 14]. In order to localize gauge fields, some
new mechanisms were introduced in Refs. [15–17]. Besides, it is important
to consider the localization problem of the spin-1/2 fermions. Introduc-
ing the Yukawa coupling between fermions and background scalar fields,
fermions can be localized on branes embedded in a five-dimensional space-
time [18, 23]. In Ref. [24], by using the Yukawa coupling term arising from
a scalar field φ, the issue of fermion localization and resonances was investi-
gated in deformed branes. It was shown that the deformation parameter is
very important for localization and normalization of fermionic fields. More-
over, it should be noted that the Yukawa coupling term can be assumed with
various forms [25–27]. The authors of Ref. [28] have proposed a more natu-
ral Ansatz for the Yukawa coupling in the 5D bulk fermionic action arising
from the geometry shape of the warp factor that guarantees the localization
of the fermions with right- or left-chirality.

In [29], the authors have considered a new localization mechanism which
contained a derivative fermion–scalar coupling term for which the scalar field
can be an odd or even function of the extra dimension. If there are even and
odd background scalars in the thick brane model, one can also consider both
the above-mentioned coupling mechanisms at the same time [30]. In [31],
the authors have investigated the localization and spectrum structure of a
bulk fermion on the Bloch brane with both the Yukawa coupling and the
derivative coupling. Furthermore, in order to localize fermions, the authors
of Ref. [32] have introduced a new coupling between a spinor field and
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the scalar curvature of space-time. Because of Z2 symmetry of the extra
dimension, their new coupling mechanism can easily deal with the problem
encountered in the Yukawa coupling with even background scalar fields.
There are many works that study the characteristics of the various matter
fields localization in braneworld models. For some comprehensive reviews,
see Refs. [33–38].

There are a lot of investigations of fermion fields localization in the setup
of the usual Yukawa coupling between fermions and background scalar fields,
but for the case of the derivative fermion–scalar coupling, the investigations
are limited. In this paper, we are interested to make an analysis of several
aspects of localization of the fermion field on deformed branes by using the
Yukawa and derivative coupling mechanisms. Presenting the shapes of the
mass-independent potentials of KK modes in the corresponding Schrödinger
equations, we investigate the localization of massless bulk fermion fields on
the deformed brane. More studies on various matter fields localization on
deformed branes can be found in Refs. [39–42].

The plan of this paper is as follows. In Section 2, we briefly summarize
the deformed braneworld models. In Section 3, we first study the localization
of the fermion field on the deformed branes with the Yukawa coupling mech-
anism. Following the procedure of Ref. [28], we take the Yukawa coupling
term as a function of the warp factor. Next, we only consider the derivative
fermion–scalar coupling and, finally, we investigate the fermion localization
with both coupling mechanisms. In Section 4, the localization condition of
the fermion zero mode is discussed for mentioned various couplings. Finally,
a summary and conclusion are given in Section 5.

2. The deformed branes

In this section, we consider a thick brane setup constructed by a real
scalar field φ coupled to gravity minimally. The metric for a brane which is
embedded in a five-dimensional AdS space is given by

ds2 = gMNdxMdxN = e2A(y)gµνdxµdxν + dy2 . (1)

The warp factor is expressed in terms of the function A(y), where y is the
extra dimension and the gµν = (−1,+1,+1,+1) is the Minkowski metric. In
order to construct the deformed brane solution, we start with the following
action for a bulk scalar field coupled to gravity as [39]:

S =

∫
d5x
√
−g
[

1

2κ25
R− 1

2
gMN∂Mφ∂Nφ− V (φ)

]
, (2)

where R is the five-dimensional scalar curvature. The κ25 = 4πG5, where
the G5 is the five-dimensional Newton constant. We also notice that such
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a scalar field φ depends only on the extra dimension y. The equations of
motion resulting from action (2) are

3
(
A′′ + 2A′2

)
+

1

2
φ′2 + V (φ) = 0 , (3)

6A′2 − 1

2
φ′2 + V (φ) = 0 , (4)

−φ′′ − 4A′φ′ +
dV (φ)

dφ
= 0 , (5)

where we have set κ25 = 1. We also note that the prime means derivative
with respect to y. We now apply the first order formalism to the braneworld
scenario initially introduced in Ref. [43]. The method consists of a function
W (φ) called superpotential function in such a way that

A′ = −1

3
W (φ) (6)

and
∂W (φ)

∂φ
= φ′ . (7)

The solutions of Eqs. (6) and (7) are the solutions of the equations of mo-
tion (3)–(5). It should be mentioned that in the equations of motion, the
potential V (φ) is written as a function of a superpotential W (φ). As was
considered in Refs. [39–42], we define the potential V (φ) in the form of

V (φ) =
1

2

(
∂W

∂φ

)2

− 2

3
W 2 . (8)

Following Refs. [39–42], the superpotential is given by

W (φ) =
p

2p− 1
φ

2p−1
p − p

2p+ 1
φ

2p+1
p , (9)

where p is an odd integer. The form forW (φ) can be obtained by deforming
the usual φ4 model and it is introduced in the study of deformed branes [44].
From the choice of the superpotential W (φ) and using potential (8), the
equations of motion can be easily solved, and the function A(y) and the
background scalar φ(y) can be obtained as
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A(y) = −1

6

p

2p+ 1
tanh2p

(
y

p

)
− 1

3

(
p2

2p− 1
− p2

2p+ 1

)
×

{
ln

(
cosh

(
y

p

))
−

p−1∑
i=1

1

2i
tanh2i

(
y

p

)}
, (10)

φ(y) = tanhp
(
y

p

)
. (11)

We note that the exponential warp factor constructed with the function
A(y) is localized at the center of the brane, y = 0, and for the large y, its
behavior is similar to the R–S braneworld model. What is more, the warp
factor affects the characteristics of fields localization and the construction of
effective actions in D = 4. Furthermore, equation (11) gives us the solutions
of the scalar field that are the usual kink solution for p = 1 and deformed
solutions with a two-kink profile for odd p > 1. Such deformations suggest
the existence of an internal structure which has implications in the density of
matter-energy along the extra dimension [44]. In the braneworld theory, the
continuous deformation from a single brane to two sub-branes, by varying
parameters, is called the phenomenon of brane splitting [44–46].

3. Localization of fermions

In this section, we study the localization of bulk fermion field in deformed
braneworld model generated by a scalar field. When the background scalar
field is an odd function of the extra dimension, the well-known Yukawa
coupling between fermions and the scalar field is used in order to get a
localized mode. The non-Yukawa derivative coupling mechanism is employed
in order to solve the problem of fermion localization on an even background
scalar field. In [24], localization of fermions on deformed brane with the
usual Yukawa coupling was investigated. In this work, we are interested
to know what happens when one tries to introduce a non-Yukawa coupling
term in the bulk fermion field action. We discuss the localization of the bulk
fermion fields by analyzing the analog quantum mechanical potential of the
corresponding Schröodinger equation for their KK modes. Let us consider
the action of a massive bulk fermion field which is coupled to gravity as [31]

S =

∫
d5x
√
−g
(
Ψ̄ΨM (∂M + ωM )Ψ − ηΨ̄F1(y)Ψ + λΨ̄ΨM∂MF2(y)γ5Ψ

)
,

(12)
where η and λ are the coupling constants between fermions and scalar and
ωM is the spin connection. F1(y) and F2(y) are some general scalar functions
of the extra dimensional coordinate y. We will discuss properties of the
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scalar functions later. The metric is given by equation (1), but it is more
convenient to change it to a conformal flat metric as

ds2 = e2A(z)
(
gµνdxµdxν + dz2

)
. (13)

From action (12) and metric (13), the equation of motion for the fermion
field can be expressed as

1√
−g

[
γµ∂µ + γ5

(
∂z + 2Ȧ

)
− ηeAF1(y(z)) + λḞ2(y(z))

]
Ψ = 0 , (14)

where the relation of the new coordinate z and y is dz = e−A(y)dy, and the
dot denotes the derivative with respect to the extra dimension z. In order
to solve the above equation, we use the following chiral decomposition:

Ψ(x, y) = e−2A
∑
n

(ψLn(x)fLn(z) + ψRn(x)fRn(z)) , (15)

with ψLn(x) = −γ5ψLn(x) and ψRn(x) = γ5ψRn(x). With this decomposi-
tion, ψLn(x) and ψRn(x) are the left-handed and right-handed components
of the four-dimensional spinor field, respectively, which satisfy the following
four-dimensional Dirac equations:

γµ∂µψLn(x) = mnψRn(x) , (16)
γµ∂µψRn(x) = mnψLn(x) . (17)

Moreover, the fermion KK modes, the fRn(z) and fLn(z), satisfy[
∂z + ηeAF1 − λ∂zF2

]
fLn(z) = mnfRn(z) , (18)[

∂z − ηeAF1 + λ∂zF2

]
fRn(z) = −mnfLn(z) . (19)

The above equations can be given as the following Schrödinger-like equa-
tions:

[−∂2z + VL(z)]fLn(z) = m2
nfLn(z) , (20)

[−∂2z + VR(z)]fRn(z) = m2
nfRn(z) . (21)

The differential equations (20) and (21) give us information about the
zero and massive modes of the bulk fermion field. The effective potentials
VL(z) and VR(z) are

VL(z) =
(
ηeAF1

)2 − ηeA (ȦF1 + Ḟ1

)
− 2ηλeAF1Ḟ2 + λ2Ḟ 2

2 + λF̈2 , (22)

VR(z) = VL(z)
∣∣
λ→−λ , η→−η . (23)
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However, it is difficult to obtain an analytical expression for the function
A(z). This means that the potential VL,R(z) must be studied numerically.
For this purpose, we write the expression of VL,R(z) in the y coordinate by
the use of the coordinate transformation dz = e−A(y)dy, and the results are

VL(z(y)) =
(
ηeAF1

)2 − ηe2A (A′F1 + F ′1
)
− 2ηλe2AF1F

′
2

+λe2A
(
λF ′2

2
+A′F ′2 + F ′′2

)
, (24)

VR(z(y)) = VL(z(y))
∣∣
λ→−λ , η→−η . (25)

In order to derive the effective action on the brane for the four-dimensional
massless and massive Dirac fermions, we need the following orthonormality
conditions for the KK modes fRn(z) and fLn(z) [29]:

+∞∫
−∞

fLmfLndz =

+∞∫
−∞

fRmfRndz = δmn , (26)

+∞∫
−∞

fLmfRndz = 0 . (27)

Potentials (24) and (25) depend on the warp factor exponent A(y) and the
functions F1(y) and F2(y). It should be mentioned that in order to get an
effective potential with Z2 symmetry along the extra dimension, F1(y) and
F2(y) should be odd and even functions of y respectively. The two coupling
functions F1 and F2 can be taken as various forms of background scalar
field and warp factor. In [31], these functions are made of a background
scalar field φ, while in Refs. [28, 29], they were considered to be functions of
the warped factor A(y) and its derivative. In [28], the authors have found
a way to choose the function F1 as a function of derivatives of the warp
factor by directly looking at the integrability conditions on the left- and
right-handed fermion zero mode in Schrödinger-like equations (18) and (19).
Furthermore, in order to localize fermions on a two-field-thick brane, the
authors of Ref. [29] have considered F2 = A(y) as the non-Yukawa derivative
coupling between fermions and the background scalar field. Moreover, we
mention that these sorts of couplings have been used for localization of other
matter fields such as vector and tensor gauge fields [36, 47]. For example,
in [47], Stueckelberg-like Kalb–Ramond and gauge fields localization have
been explored on a thick brane through a suitable modification of the Yukawa
coupling which is described by a function of derivatives of the warp factor.
In this work, following the procedure of Refs. [28] and [29], and considering
that solutions for the background scalar field (11) and warp factor (10) are,
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respectively, odd and even function of extra dimension, we assume the simple
choices F1(y) = ∂nyA(y) and F2(y) = Am(y), where m and n are positive
integer numbers. Note that the coupling functions F1 and F2 in Refs. [28]
and [29] are only one case of our work with m = 1, n = 1.

By considering the behavior of the effective potentials (24) and (25), we
can study the localization of the fermion field on the deformed brane. In
order to get a localized zero mode, the value of the effective potential at its
minimum must be negative. What is more, the asymptotical behavior of the
potentials gives us information about the presence of gaps in the continuum
spectrum of KK massive modes. The massive KK modes can be solved
numerically, but we do not discuss them in this paper. In the following
discussion, we will first investigate the effective potentials for the case of the
Yukawa coupling with η 6= 0 and λ = 0, then we consider other couplings
containing derivative coupling terms with λ 6= 0.

3.1. The Yukawa coupling

It is well-known that the Yukawa coupling between the scalar and spinor
is a necessary condition for fermions to be localized on a brane. In [24], it
was shown that by using F1(y) = φ, where the φ is the background scalar
field, the fermion can be localized on deformed branes. In this subsection,
we propose a new form for the Yukawa coupling that includes a function
of the warp factor and investigates the fermion localization. Here, we will
focus on the fermion localization on the deformed brane with the Yukawa
coupling mechanisms by setting η 6= 0 and λ = 0. Under this considerations,
Eqs. (24) and (25) are rewritten as

VL(z(y)) =
(
ηeAF1

)2 − ηe2A (A′F1 + F ′1
)
, (28)

VR(z(y)) = VL(z(y))
∣∣
η→−η . (29)

We set the Yukawa coupling term as a function of the warp factor A(y)
such that

F1(y) = ∂nyA(y) . (30)

Regarding the solution of the warp factor in equation (10), we find that the
n should be an odd number to ensure the effective potentials VL,R(z(y)) to
be even function of the extra dimension. By setting Eq. (30) into Eq. (28),
we have

VL(z(y)) = η2e2A
(
∂nyA

)2 − ηe2A (A′∂nyA+ ∂n+1
y A

)
(31)

and
VR(z(y)) = VL(z(y))

∣∣
η→−η . (32)
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For simplicity, we assume that n = 1, thus we get

VL(z(y)) = ηe2A
[
(η − 1)A′

2
+A′′

]
, VR(z(y)) = VL(z(y))

∣∣
η→−η . (33)

The values of the effective potentials at y = 0 are

VL(0) = −VR(0) =

{ η
3 p = 1 ,
0 p ≥ 3 ,

(34)

in which we have used the following initial conditions for the warp factor A:

A(0) = A′(0) = 0 . (35)

Considering the asymptotic behaviors of the background scalar field
which are φ(y) → ±1, φ′ → 0 and φ′′ → 0, we can also find the asymp-
totic behavior of the warp factor at y → ±∞. From Eqs. (3) and (4), the

asymptotical form of the warp factor can be given as eA(y) → e
− |y|

p , which is
similar to the R–S braneworld model. By considering the asymptotic behav-
ior of the warp factor and the background scalar, the asymptotic behavior
of the potentials VL(y) and VR(y) as y = ±∞ is

VL,R(y → ±∞) = 0 for all values of p and n . (36)

The effective potentials (31) and (32) are plotted for various values of
n and p in Figs. 1–3. In Figs. 1 and 2, the effect of the n on the effective
potential is shown for p = 1 and p = 3 respectively. We also consider the
effect of the deformation parameter p on the effective potential in Fig. 3.
From Eq. (34) as well as Fig. 1 (left), we find that for the cases of n = 1 and

Fig. 1. The profile of the potentials (left) VL(y) and (right) VR(y) for n = 1 (solid
line), n = 3 (dashed line), n = 5 (dotted line), λ = 0, p = 1, η = 1.
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p = 1, the left-handed potential has a positive value at the brane location
when η > 0 which means that the left-handed massless fermion cannot be
localized on the brane, while right-handed potential has a negative value at
its minimum and the zero mode of the right-handed fermion can be trapped.
As it is seen in Fig. 1, for n ≥ 3, both cases of the effective potentials have
one (or two minima) with a negative value which means that the left- and
right-handed fermion may be localized on the deformed brane.

In Figs. 2 (left) and 2 (right), the effect of the parameter n on the effective
potentials VL and VR with p = 3 is shown. From these figures, we find that
the effective potentials have an inner structure with different values of n.
Furthermore, it is seen that the height as well as the depth of the potential
increase with n. As Figs. 1 and 2 show, the effective potentials VL,R(y) tend
to vanish at the infinity of the extra dimension, VL,R(y → ±∞) → 0, and
the shape of these potentials looks like a volcano which means that the mass
spectrum of the fermion field is continued. We also study the effect of the

Fig. 2. The profile of the potentials (left) VL(y) and (right) VR(y) for n = 1 (solid
line), n = 3 (dashed line), n = 5 (dotted line), λ = 0, p = 3, η = 1.

deformation parameter p on the effective potential VL in Fig. 3 for n = 1
and η = −1. In this figure, we see that the effective potential VL(y) has
a deep minimum only for p = 1 but the minimum splits into two minima
when p ≥ 3 which indicates that increasing the parameter p can make the
brane splitting from a single-brane to two sub-branes for the single-kink
background scalar field. Moreover, the distance between the two minima
of VL(y) increases when the parameter p increases. Furthermore, we can
find that when the p becomes larger, the values of the two maxima of the
potential, as well as the depth of the wells, decrease. This is an important
feature since the resonant modes occurs for m2

n ≤ Vmax. The study of
the resonances is important since it can give relevant information on the
coupling of massive modes and the brane, illustrating how the mechanism of
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Fig. 3. The profile of the potential VL(y) for p = 1 (solid line), p = 3 (dashed line),
p = 5 (dotted line), η = −1, n = 1, λ = 0.

the field trapping is being processed. Using a well-known resonance detecting
method [25, 48], one can analyze the resonant modes arising from equations
(20) and (21). The authors of Ref. [49] used the Numerov method [50, 51]
and the Runge–Kutta fourth-order method to investigate massive modes and
their contribution to gravity localization on thick branes. They found that
the Numerov method can be used when the effective potential is only known
numerically, while the Runge–Kutta method appears to be inadequate when
the potential is not known analytically. Furthermore, in Refs. [25, 31], the
relative probability [48] and transmission coefficient methods [52–54] were
used to find fermion KK resonances.

3.2. The derivative coupling

Now, we study the fermion localization with the derivative coupling
mechanism by setting η = 0. Under this assumption, the effective potentials
VL,R in equations (24) and (25) can be rewritten as

VL(z(y)) = λe2A
[
λF ′

2
2 + λF ′2 + F ′′2

]
, VR(z(y)) = VL(z(y))

∣∣
λ→−λ .

(37)
We now consider the following form for the function F2(y):

F2(y) = Am(y) . (38)

We note that for all odd and even values of m, the function F2(y) is an even
function of the extra dimension y so the effective potential preserve its Z2

symmetry. By substituting Eq. (38) into Eq. (37), we get

VL(y) = λe2A

×
[
λm2A′

2
A2(m−1)+mA′

2
A(m−1)+mA′′A(m−1)+m(m−1)A′

2
A(m−2)

]
. (39)
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By considering the initial conditions of the warp factor and the back-
ground scalar field at y = 0, the values of the potentials at the origin can be
obtained as

VL(0) = −VR(0) =

{
−λ

3 p = 1 , m = 1 ,
0 for other values of p and m.

(40)

Next, by using the asymptotic behavior of the warp factor and the back-
ground scalar field, the asymptotic behavior of the potential at infinity is

VL,R(y → ±∞) = 0 for all values of p and m, (41)

which is similar to a volcano-type potential. The shapes of the effective
potentials for the left- and right-handed fermions with different values of
m are shown in Figs. 4 and 5 for a positive value of λ. As Fig. 4 shows,

Fig. 4. The profile of the potential VL(y) for (left)m = 1 (solid line), m = 3 (dashed
line), (right) m = 2 (solid line), m = 4 (dashed line). The parameters are set to
λ = 1, p = 1, η = 0.

when the m is an odd number, the value of the effective potential VL at its
minimum (or minima) is negative which means the left-handed fermion may
be localized on the brane, while for even numbers of m, the minimum of the
VL is not negative, therefore, the potential does not support a zero-mode.
From Fig. 5, we find that the right-handed fermion can be trapped when the
value of m is even. In addition, it is seen that the height of the potentials
as well as the distance between two maxima increases with increasing the
parameter m.

Furthermore, we consider the effect of the deformation parameter p on
the left-handed effective potential in Fig. 6 for both cases of the even and odd
values of m. As it is seen, similar to the previous subsection, by increasing
the p, the height of the potential as well as the distance between two maxima
decreases. We also find that the splitting of the minimum does not occur
due to increasing the parameter p when the m is an even number.
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Fig. 5. The profile of the potential VR(y) for (left) m = 1 (solid line), m = 3

(dashed line), (right) m = 2 (solid line), m = 4 (dashed line). The parameters are
set to λ = 1, p = 1, η = 0.

Fig. 6. The profile of the potential VL(y) for (left) m = 1, (right) m = 2. The
parameters are set to λ = 1, η = 0 and p = 1 (solid line), p = 3 (dashed line),
p = 5 (dotted line).

3.3. The Yukawa and derivative couplings

Now, we would like to know what will happen to the fermion localization
mechanism if we consider both the Yukawa coupling and the derivative cou-
pling. Here, we take into account both the Yukawa and derivative couplings
with η 6= 0 and λ 6= 0 for the localization of a bulk fermion on deformed
branes. The effective potentials VL,R(y) with the two couplings can be ob-
tained directly according to Eqs. (24) and (25), but we do not present them
here. In the following, we will investigate the behavior of the effective po-
tential with F1(y) = ∂nA(y) and F2(y) = Am(y). For simplicity, we will
focus on the cases of m = 1 and n = 1 which result in the following forms
for the effective potentials:
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VL(z(y)) = γe2A
[
(γ − 1)A′

2
+A′

]
, VR(z(y)) = VL(z(y))

∣∣
γ→−γ , (42)

where
γ = λ− η . (43)

The values of the effective potentials at y = 0 and y → ±∞ can be easily
found as

VL(0) = −VR(0) =

{
−γ

3 p = 1 ,
0 p ≥ 3 ,

(44)

VL,R(y → ±∞) = 0 for all values of p . (45)

In Fig. 7, the profile of the left-handed effective potential is shown for
two cases of γ > 0 and γ < 0. From the figure, we find that for the p = 1,
the effective potential VL(y) has a negative value at y = 0 when γ > 0,
so that the left-handed zero mode may be localized on the brane, while for

Fig. 7. The profile of the potential VL(y) for (left) p = 1, (right) p = 3. The
parameters are set to n = 1, m = 1 and γ = −1 (solid line), γ = 1 (dashed line).

other values of p, the massless mode may be trapped for both signs of γ.
By numerical investigation, we also find that increasing the value of the
constant γ, the maxima as well as the minima of the potential are raised.
Furthermore, shapes of effective potentials (24) and (25) are plotted in Fig. 8
for the case of p = 1 with different values of n and m.
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Fig. 8. The profile of the potentials VL(y) (solid line) and VR(y) (dashed line) for
(top left) n = 1, m = 2 (top right) n = 1, m = 3 (bottom) n = 3, m = 1. The
parameters are set to p = 1, η = 1 and λ = 1.

4. The localized zero mode

In this section, we focus on the calculation of the zero mode under three
localization mechanisms discussed in the previous section. By settingmn=0
in Eqs. (20) and (21), we get the solution of the fermion zero modes as

fL0(y) ∝ exp

λF2(y)− η
z∫

0

eA(z
′)F1(y)dz′


= exp

λF2(y)− η
y∫

0

F1

(
y′
)

dy′

 , (46)

fR0(y) = fL0(y)
∣∣
η→−η , λ→−λ . (47)
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In order to localize the zero mode, the normalization conditions (26)
and (27) must be satisfied. With the relation between y and z which is
dz = e−Ady, the normalization condition of the left-handed fermion zero
mode is rewritten as

∞∫
−∞

dy exp

2λF2(y)−A(y)− 2η

y∫
0

F1

(
y′
)

dy′

 <∞ . (48)

This result shows that the behaviors of the functions F1(y) and F2(y)
play a leading role for fermion localization on the deformed brane. It should
be mentioned that due to the complicated form of the warp factor, it is
difficult to investigate Eq. (48) analytically. However, following the same
procedure of Refs. [6, 23], we only need to consider the asymptotic behavior
of the integrand. From now on, we discuss the normalization condition (48)
and the zero mode solution (46) for various coupling mechanisms considered
in Section 3.

For the case of Yukawa coupling mechanism, by setting λ = 0 and using
F1 = ∂nyA(y), where n is an odd number, the normalization condition (48)
is equivalent to the following conditions for all values of p:

∞∫
−∞

dy exp[−(1 + 2η)A(y)] , n = 1 , (49)

∞∫
−∞

dy exp
[
−A(y)− 2η∂n−1y A(y)

]
, n ≥ 3 . (50)

Considering the asymptotic behavior of the warp factor, A(±∞) = − |y|p ,
the asymptotic behavior of integrand in Eqs. (50) and (49), named as I0, at
y →∞, is

I0 =

 exp
(

(1 + 2η) |y|p

)
, n = 1 ,

exp
(
|y|
p

)
, n ≥ 3 .

(51)

It can be easily found that the normalization condition for the left-handed
fermion zero mode for the Yukawa coupling mechanism is

n = 1 and η < −1
2 . (52)

Therefore, under condition (52), the left-handed zero mode is localized on
the deformed brane with the Yukawa coupling mechanism. Note that the
normalization condition for this case is independent of p, while in the pre-
vious work of [24], a direct relation between the Yukawa coupling and the
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deformation parameter is needed in order to get a localized zero mode. By
setting n = 1, λ = 0, and F1 = ∂yA(y) in Eq. (46), we get the zero mode
solutions as

fL0,R0(y) = exp(∓ηA(y)) (53)
that are shown in Fig. 9 for various values of p. From Fig. 9 (left), we find
that the zero mode is localized on the center of the brane when n = 1 and
p = 1, while it is localized between two sub-branes when n = 1 and p ≥ 3.
As it is seen in Fig. 9 (right), the right-handed zero mode is not localized
on the brane which indicates that only one of the left- and right-handed
fermion zero mode may be localized on the brane.

Fig. 9. The profile of (left) the left-handed zero mode and (right) the right-handed
zero mode for p = 1 (solid line), p = 3 (dashed line) and p = 5 (dotted line). The
parameters are set to n = 1, λ = 0 and η = −1.

Now, let us investigate the localization of the fermion zero mode under
the derivative coupling mechanism. By setting η = 0 and F2(y) = Am(y) in
Eq. (46), the zero mode of fermion can be obtained as

fL0,R0(y) = exp(±λAm(y)) . (54)

In order to localize the zero modes on the deformed brane, we need to
consider the following asymptotic behavior of the normalization condition
which is obtained from equation (48)

∞∫
−∞

exp

(
|y|
p

+ 2λ

(
−|y|
p

)m)
dy <∞ . (55)

It is clear that the normalization condition is satisfied if λ > 1
2 , m = 1 ,

λ > 0 , m = 3, 5, 7, . . .
λ < 0 , m = 2, 4, 6, . . .

(56)
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The left-handed zero mode (54) is plotted in Fig. 10 for various values of
p and m. As the figures show, when m = 1 and p = 1, the zero mode is
localized on the single brane, while for m ≥ 2 and p ≥ 3, the zero mode is
localized between the two sub-branes.

Fig. 10. The profile of the left-handed zero mode for (left) p = 1 and (right) p = 3.
The parameters are set to η = 0, λ = 1 and m = 1 (solid line), λ = −1 and m = 2

(dashed line), λ = 1 and m = 3 (dotted line).

Finally, we investigate the normalization condition (48) for the derivative
and Yukawa couplings mechanism with η 6= 0 and λ 6= 0. For simplicity,
we first concentrate on the cases of n = 1 and m = 1. By considering
the asymptotic behavior of the warp factor, the asymptotic behavior of the
normalization condition is exp(−(2γ−1p )|y|) <∞ that is satisfied when γ> 1

2 .
For n ≥ 1 and m ≥ 1, it can be easily found that the asymptotic behavior
of the normalization condition at y → ±∞ is exp

(
2λ
(
− |y|p

)m
+ (1 + 2η) |y|p

)
<∞ , n = 1 and m ≥ 1 ,

exp
(

2λ
(
− |y|p

)m
+ |y|

p

)
<∞ , n ≥ 3 and m ≥ 1 .

(57)

Therefore, we conclude that by using the derivative and Yukawa cou-
plings mechanism, the left-handed fermion zero mode can be localized on
the deformed brane under following conditions:{

λ− η > 1
2 , n = 1 , m = 1 ,

λ > 0 , n ≥ 3 , m = 1 ,
(58)

and {
λ < 0 n ≥ 1 , m = 2, 4, 6, . . .
λ > 0 n ≥ 1 , m = 3, 5, 7, . . .

(59)
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Note that for m ≥ 2, the asymptotic behavior of the normalization
condition for this case is independent of η. The profile of the left-handed
zero mode is plotted for some values of m and n in Fig. 11. From these
figures, we find that the zero mode is localized on the center of brane when
the parameter n, m, and p simultaneously are equal to one. We note that
for p ≥ 3, m = 1 and n = 1 the zero mode is localized between the two sub-
branes. We also find that for other values of n, m and p when a deformed
brane splits into two sub-branes, the zero mode is localized on each sub-
brane.

Fig. 11. The profile of the left-handed zero mode for (left) p = 1 and (right) p = 3

with λ = 2 and m = 1 (solid line), λ = −2, and m = 2 (dashed line), λ = 2 and
m = 3 (dotted line). The parameters are set to η = 1 and n = 1.

5. Conclusions

In this work, by presenting the shapes of the mass-independent potentials
of KK modes in the corresponding Schrödinger equations, we have investi-
gated the localization of bulk fermion fields in a model of deformed branes.
We have used two localization mechanisms one of which is the usual Yukawa
coupling and the other is the derivative fermion–scalar coupling arising from
the warp factor A(y). First, we have considered the Yukawa coupling with
F1(y) = ∂nyA(y), where the nmust be an odd number in order to preserve the
Z2 symmetry of the effective potential. It was shown that the left-handed
zero mode is localized on the deformed brane with the Yukawa coupling
mechanism under the conditions of n = 1, and η < −1

2 which is independent
of the deformation parameter p. Furthermore, we have found that the zero
mode is localized on the center of the brane when n = 1 and p = 1, and is
localized between two sub-branes when n = 1 and p ≥ 3. Next, we have in-
vestigated the fermion localization with the derivative coupling mechanism
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with F2(y) = Am(y). Using this mechanism, when m = 1 and p = 1, the
zero mode is localized on the single brane, while for m ≥ 2 and p ≥ 3, the
zero mode is localized between the two sub-branes. We also have considered
both the Yukawa coupling and the derivative coupling mechanisms in order
to localize the fermion field on the deformed brane. We have found that
the left-handed fermion zero mode can be localized under some conditions
given by Eqs. (58) and (59). It was shown that when n ≥ 1 and m ≥ 2, this
normalization condition is independent of η and p. Furthermore, in the case
of both couplings, the zero mode is localized on the center of brane when
the parameters n, m, and p simultaneously are equal to one, while for p ≥ 3,
m = 1 and n = 1, the zero mode is localized between the two sub-branes.
We also found that for other values of n, m, and p when a deformed brane
splits into two sub-branes, the zero mode is localized on each sub-brane.

In addition, it was shown that for all mentioned coupling mechanisms,
the potential of KK modes in the corresponding Schrödinger equation is a
volcano-like potential which means that the potential provides no mass gap
to separate the fermion zero mode from KK modes. Effects of the deforma-
tion parameter p on the left-handed effective potential were discussed. It was
found that under the Yukawa coupling and the derivative coupling mecha-
nisms for odd values of n and m, increasing of the parameter p can make
the brane splitting from a single-brane to two sub-branes for a single-kink
background scalar field.
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