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Using the results obtained by Staruszkiewicz in Acta Phys. Pol. B 23,
591 (1992) and in Acta Phys. Pol. B 23, 927 (1992), we show that the
representations acting in the eigenspaces of the total charge operator cor-
responding to the eigenvalues n1, n2 whose absolute values are less than
or equal

√
π/e2 are inequivalent if |n1| 6= |n2| and contain the supplemen-

tary series component acting as a discrete component. On the other hand,
the representations acting in the eigenspaces corresponding to eigenvalues
whose absolute values are greater than

√
π/e2 are all unitarily equivalent

and do not contain any supplementary series component.
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1. Introduction

In this paper, we prove a new theorem within the Quantum Theory of
the Coulomb Field [1, 2]. This paper can be regarded as an immediate
continuation of the series of Staruszkiewicz’s papers [3–5] on the structure
of the unitary representation of SL(2,C) acting in the Hilbert space of the
quantum Coulomb field and the quantum phase field S(x) of his theory, and
its connection to the fine structure constant. We use the notation of these
papers. Basing on the results of these papers, we give here a proof of the
following
Theorem 1.1. Let U |Hm be the restriction of the unitary representation U
of SL(2,C) in the Hilbert space of the quantum phase field S to the invariant
eigenspace Hm of the total charge operator Q corresponding to the eigenvalue
me for some integer m. Then for all m such that

|m| > Integer part
(√

π

e2

)
,

(171)
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the representations U |Hm are unitarily equivalent

U |Hm
∼=U U |H

m′

whenever

|m| > Integer part
(√

π

e2

)
, |m′| > Integer part

(√
π

e2

)
.

On the other hand, if the two integers m,m′ have different absolute values
|m| 6= |m′| and are such that

|m| <
√
π

e2
, |m′| <

√
π

e2
,

then the representations U |Hm and U |H
m′

are inequivalent. Each represen-
tation U |Hm contains a unique discrete supplementary component if

|m| <
√
π

e2
,

and the supplementary components contained in U |Hm with different values
of |m| fulfilling the last inequality are inequivalent. If

|m| > Integer part
(√

π

e2

)
,

then the representation U |Hm does not contain in its decomposition any sup-
plementary components.

This remarkable result can be compared to the well-known and curious
coincidence concerning self-adjointness of the Hamiltonian of the bounded
system composed of a heavy source (say nucleus) of the classical Coulomb
field and a relativistic charged particle in this field. Namely, it is a well-
known phenomenon in relativistic wave mechanics that whenever the charge
of the nuclei is of the order of magnitude comparable to the inverse of the fine
structure constant or greater, then the Hamiltonian loses the self-adjointness
property (which sometimes is interpreted as an indication that the system
when passing to the quantum field level becomes unstable). On the other
hand (and this is a coincidence which no one understands), the nuclei of
real atoms are unstable whenever the charge of the nuclei reaches the value
of the same order (inverse of the fine structure constant). The mentioned
breakdown of self-adjointness cannot explain, of course, this phenomenon
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because there are mostly the strong (and not electromagnetic) forces which
govern the stability of nuclei. To this coincidence we add another coming
from the quantum theory of infrared photons of the quantized Coulomb
field. Although we should emphasize that the mentioned three phenomena
come from three different regimes and so far we are not able to answer the
question if these coincidences are merely accidental or not.

2. Proof of the theorem

Let us concentrate our attention on the specific state |u〉 in the eigenspace
Hm=1 corresponding to the eigenvalue e of the charge operator Q. For any
time-like unit vector u, we can form the following unit vector (compare [4]
or [5]):

|u〉 = e−iS(u)|0〉 (1)

in the Hilbert space of the quantum field S. It has the following properties:

(1) |u〉 is an eigenstate of the total charge Q: Q|u〉 = e|u〉.

(2) |u〉 is spherically symmetric in the rest frame of u: εαβµνuβMµν |u〉 = 0,
where Mµν are the generators of the SL(2,C) group.

(3) |u〉 does not contain the (infrared) transversal photons: N(u)|u〉 = 0,
where N(u) is the operator of the number of transversal photons in
the rest frame of u. If u is the four-velocity of the reference frame
in which the partial waves f (+)

lm are computed, then in this reference
frame

N(u) =
(
4πe2

)−1 ∞∑
l=1

l∑
m=−l

c+lmclm

and (up to an irrelevant phase factor)

|u〉 = e−iS0 |0〉 .

These three conditions determine the state vector |u〉 up to a phase
factor.

Now, let us consider the subspaceH|u〉 ⊂ Hm=1 as spanned by the vectors
of the form of Uα |u〉, α ∈ SL(2,C).

Note that the above conditions (1) and (2) determine |u〉 as the “maxi-
mal” vector in H|u〉 which preserves conditions (1), (2), i.e. any state vector
in the Hilbert subspace H|u〉 of the quantum phase field S which preserves
(1) and (2), and which is orthogonal to |u〉 is equal zero.
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First: in [2], it was computed that the inner product

〈u|v〉 = exp
{
− e2

π
(λcothλ− 1)

}
,

where u · v = gµνu
µvµ = coshλ, so that λ is the hyperbolic angle between u

and v; compare also [6].
Second: it was proved in [4] (compare also [5, 7]) that the state |u〉, lying

in the subspace Q = e1 of the Hilbert space of the field S, when decomposed
into components corresponding to the decomposition of U into irreducible
sub-representations contains

— only the principal series if e
2

π > 1,

— the principal series and a discrete component from the supplementary
series with

−1

2
MµνM

µν = z(2− z)1 , z =
e2

π
, if 0 <

e2

π
< 1 ,

in the units in which } = c = 1. In other units, one should read e2

π}c for e2

π .
In particular from the result of [4], it follows that for the restriction

U |H|u〉
of the representation U of SL(2,C) acting in the Hilbert space of

the quantum “phase” field S to the invariant subspace H|u〉 , we have the
decomposition

U |H|u〉
=

D(ρ0)
⊕ ∫

ρ>0

S(n = 0, ρ) dρ , ρ0 = 1− z0 , z0 = e2

π , if 0 < e2

π < 1 ,∫
ρ>0

S(n = 0, ρ) dρ , if 1 < e2

π

(2)

into the direct integral of the unitary irreducible representations of the prin-
cipal series representations S(n = 0, ρ), with real ρ > 0 and n = 0, and a
discrete direct summand of the supplementary series D(ρ0) corresponding
to the value of the parameter

ρ0 = 1− z0 , z0 =
e2

π
;

and where dρ is the ordinary Lebesgue measure on R+.
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Note that the irreducible unitary representations S(n, ρ) of the principal
series correspond to the representations (l0 = n

2 , l1 = iρ
2 ), with n ∈ Z and

ρ ∈ R in the notation of the book [8], and correspond to the character
χ = (n1, n2) =

(
n
2 + iρ

2 ,−
n
2 + iρ

2

)
in the notation of the book [9], and finally

to the irreducible unitary representations

U
χn,ρ

= S(n, ρ)

induced by the unitary representations of the diagonal subgroup correspond-
ing to the unitary character χn,ρ of the diagonal subgroup of SL(2,C) within
the Mackey theory of induced representations.

Recall also that the irreducible unitary representations D(ρ) of SL(2,C)
of the supplementary series are numbered by the real parameter 0 < ρ < 1,
and correspond to the representations (l0 = 0, l1 = ρ) in the notation of [8].
They also correspond to the character χ = (n1, n2) =

(
ρ, ρ) in the notation

of [9], and finally to the irreducible unitary representations

U
χρ

= D(ρ)

induced by the (non-unitary) representations of the diagonal subgroup of
SL(2,C) corresponding to the non-unitary character χρ of the diagonal sub-
group of SL(2,C) within the Mackey theory of induced representations.

Next, for each integer m ∈ Z and a point u in the Lobachevsky space,
we consider spherically symmetric unit state vector |m,u〉 ∈ Hm

|m,u〉 = e−imS(u)|0〉

in the Hilbert space of the quantum field S. If u is the four-velocity of the
reference frame in which the partial waves f (+)

lm are computed, then in this
reference frame

|m,u〉 = e−imS0 |0〉

up to an irrelevant phase factor. The unit vector |m,u〉 has the following
properties:

(1m) |m,u〉 is an eigenstate of the total charge Q: Q|u〉 = em|m,u〉.

(2m) |m,u〉 is spherically symmetric in the rest frame of u: εαβµνuβMµν

|m,u〉 = 0, where Mµν are the generators of the SL(2,C) group.

(3m) |m,u〉 does not contain the (infrared) transversal photons: N(u)|m,u〉
= 0.
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Proceeding exactly as Staruszkiewicz in [2] (compare also [6]), we show that
for any two points u, v in the Lobachevsky space of unit time-like four-vectors

〈u,m|m, v〉 = exp

{
−e

2m2

π
(λcothλ− 1)

}
,

where λ is the hyperbolic angle between u and v. Next, we construct the
Hilbert subspace H|m,u〉 ⊂ Hm spanned by

Uα|m,u〉 , α ∈ SL(2,C) .

Note that H|m,u〉 6= Hm . Using the Gelfand–Neumark Fourier analysis on
the Lobachevsky space as Staruszkiewicz in [4], we show that

U |H|m,u〉
=

D(ρ0)
⊕∫
ρ>0

S(n=0, ρ) dρ , ρ0=1− z0 , z0= e2m2

π , if 0 < e2m2

π < 1 ,∫
ρ>0

S(n = 0, ρ) dρ , if 1 < e2m2

π ,

(3)

where dρ is the Lebesgue measure on R+.
We need two Lemmas concerning the structure of the representation U

of SL(2,C) in the Hilbert space of the quantum phase field S.

Lemma 2.1.
U |Hm=1

= U |H|u〉
⊗ U |Hm=0

.

First, we show that (all tensor products in this Lemma are the Hilbert-
space tensor products)

Hm=1 = H|u〉 ⊗Hm=0 = H|u〉 ⊗ Γ
(
H1
m=0

)
, (4)

where H1
m=0

is the single-particle subspace of infrared transversal photons
spanned by

c+lm|0〉 ,

and Γ (H1
m=0

) stands for the boson Fock space over H1
m=0

, i.e. direct sum
of symmetrized tensor products of H1

m=0
. The Hilbert subspace H|u〉 is

spanned by |u〉, and all its transforms U
Λ(α)
|u〉 = |u′〉 with u′ = Λ(α)−1u

ranging over the Lobachevsky space L3
∼= SL(2, C)/SU(2,C) of time-like
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unit four-vectors u′ — the Lorentz images of the fixed u. The Hilbert space
structure of H|u〉 can be regarded as the one induced by the invariant kernel

u× v 7→ 〈u|v〉 = exp

{
−e

2

π
(λcothλ− 1)

}
on the Lobachevsky space L3 as the RKHS corresponding to the kernel,
compare e.g. [10]. Because this kernel is continuous as a map L3×L3 7→ R,
and the Lobachevsky space is separable, then it is easily seen that there
exists a denumerable subset {u1, u2, . . .} ⊂ L3 such that |u1〉, u2〉, . . . are
linearly independent and such that the denumerable set of finite rational
(with bi ∈ Q) linear combinations

k∑
i=1

bi|ui〉

of the elements |u1〉, |u2〉, . . . is dense in H|u〉 , cf. e.g. [11] Chap. XIII, §3.
One can choose (Schmidt orthonormalization, [11], Chap. XIII, §3) out of
them a denumerable and orthonormal system

ek(b1ku1, . . . , bkkuk) =
k∑
i=1

bik|ui〉 =
k∑
i=1

bike
−iS(ui)|0〉 , k = 1, 2, . . . ,

which is complete in H|u〉 . Note that

U
Λ(α)
|u〉 = U

Λ(α)
e−iS(u)|0〉 = U

Λ(α)
e−iS(u)U−1

Λ(α)
|0〉 = e−iS(u

′)|0〉 ,

where u′ = Λ(α)−1u is the Lorentz image u′ in the Lobachevsky space of u
under the Lorentz transformation Λ(α), because |0〉 is Lorentz invariant:
U |0〉 = |0〉. In particular,

U
Λ(α)

ek(b1ku1, . . . , bkkuk) = ek
(
b1ku

′
1, . . . , bkku

′
k

)
= U

Λ(α)

(
k∑
i=1

bike
−iS(ui)|0〉

)
=

k∑
i=1

bike
−iS(u′i)|0〉 ,

u′i = Λ(α)−1ui , k = 1, 2, 3, . . .

forms another orthonormal and complete system in H|u〉 . If y ∈ H|u〉 , then
for some sequence of numbers bk ∈ C such that

||y||2 =
∑
k

∣∣bk∣∣2 < +∞ ,
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we have

y =
∑

k=1,2,...

bkek(b1ku1, . . . , bkkuk) =
∑

k=1,2,..., i=1,...,k

bkbike
−iS(ui)|0〉 (5)

and

U
Λ(α)

y =
∑

k=1,2,...

bkek
(
b1ku

′
1, . . . , bkku

′
k

)
=

∑
k=1,2,..., i=1,...,k

bkbike
−iS(u′i)|0〉 .

Similarly, let us write shortly

c+lm = c+α and U
Λ(α)

c+lmU
−1
Λ(α)

= c′
+
lm .

Then if x ∈ Γ (H1
m=0

) = Hm=0 , there exists a multi-sequence of numbers
aα1...αn ∈ C such that

||x||2 =
∑

n=1,2,..., α1,...,αn

(
4πe2

)n ∣∣aα1...αn
∣∣2 < +∞

and

x =
∑

n=1,2,..., α1,...,αn

aα1...αnc+α1
. . . c+αn |0〉 ,

U
Λ(α)

x =
∑

n=1,2,..., α1,...,αn

aα1...αnc′
+
α1
. . . c′

+
αn |0〉 , (6)

where we have shortly written αi for the pair li,mi with −li ≤ mi ≤ li.
Before giving the definition of x⊗ y for any general elements x, y of the

form (6) and respectively (5) giving the algebraic tensor product Hm=0⊗̂H|u〉
densely included in Hm=1 , we need some further preliminaries. Namely,
note that the operators clm = cα depend on the reference frame. For the
construction of ⊗, we need the operators in several reference frames. If the
time-like axis of the reference frame has the unit versor v ∈ L3, then for the
operator cα = clm computed in this reference frame, we will write

vcα or vclm

and
vc+α or vc+lm

for their adjoints. Only for the fixed vector u ∈ L3 we simply write

ucα = c+α or uclm = clm
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and
uc+α = c+α or uc+lm = c+lm

in order to simplify notation.
Now, let

u7→v
A αβ

be the unitary matrix transforming the orthonormal basis vectors c+α |0〉 =
uc+α |0〉 in Hm=0

vc+α |0〉 =
∑
β

u7→v
A αβ

uc+β |0〉 =
∑
β

u7→v
A αβc

+
β |0〉 , (7)

under the Lorentz transformation Λuv(λuv) transforming the reference frame
time-like versor u ∈ L3 into the reference frame unit time-like versor v ∈ L3.
In particular, it gives the irreducible representation of the SL(2,C) group
in the single-particle Hilbert subspace H1

m=0
of infrared transversal photons

spanned by
c+α |0〉 = uc+α |0〉 ,

and equal to the Gelfand–Minlos–Shapiro irreducible unitary representation
(l0 = 1, l1 = 0) = S(n = 2, ρ = 0), computed explicitly in [12]. Then, as
shown in [3], it follows that

Uu
Λuv(λuv)

cαU
−1
Λuv(λuv)

= U
Λuv(λuv)

cαU
−1
Λuv(λuv)

=v cα

=
∑
β

u7→v
A αβ

u

cβ +
u7→v
B αQ

=
∑
β

u7→v
A αβcβ +

u7→v
B αQ , (8)

and1

U
Λuv(λuv)

S(u)U−1
Λuv(λuv)

= S(v)

= S(u) +
1

4πie

∑
αβ

(
u7→v
B α

u7→v
A αβ

ucβ −
u7→v
B α

u7→v
A αβ

uc+β

)
(9)

1 We are using slightly different convention than [3], with ours
u7→v

A αβ corresponding
to the complex conjugation Aαβ of the matrix elements Aαβ used in [3] and similarly

our numbers
u7→v

B α correspond to the complex conjugation Bα of the numbers Bα
used in [3].
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and thus

U
Λuv(λuv)

uc+αU
−1
Λuv(λuv)

= U
Λuv(λuv)

c+αU
−1
Λuv(λuv)

= vc+α

=
∑
β

u7→v
A αβ

uc+β +
u7→v
B αQ

=
∑
β

u7→v
A αβc

+
β +

u7→v
B αQ , (10)

where Q is the charge operator and where
u7→v
B α are complex numbers de-

pending on the transformation Λuv(λuv) mapping u 7→ v = Λuv(λuv)
−1u

such that ∑
α

∣∣∣∣u7→vB α

∣∣∣∣2 = 8e2(λuvcothλuv − 1)

with λuv equal to the hyperbolic angle between u and v. Note that the
charge operator is invariant (commutes with U

Λuv(λuv)
) and is identical in

each reference frame so that no superscript u nor v is needed for Q.
The limit on the right-hand side of equality (7) should be understood

in the sense of the ordinary Hilbert space norm in the Hilbert space of the
quantum phase field S. In general, all limits in the expressions containing
linear combinations of operators acting on |0〉 should be understood in this
manner.

Now, let us explain why for each fixed α, we need essentially all vcα,
v ∈ L3 for the construction of the bilinear map x× y 7→ x⊗ y which serves
to define the algebraic tensor productHm=0⊗̂H|u〉 of the Hilbert spacesHm=0

and H|u〉 . In particular, consider two vectors c+α |0〉 and e−iS(v)|0〉 with v not
equal to the fixed time-like versor u of the reference frame in which the
partial waves f (+)

lm and the operators clm = cα=
ucα are computed. Perhaps

it would be tempting to put

c+α e
−iS(v)|0〉

for the tensor product of c+α |0〉 and e−iS(v)|0〉, but this would be a wrong
definition. In particular,

〈0|eiS(v) ucβ uc+α e
−iS(v)|0〉 = 〈0|eiS(v)cβc+α e−iS(v)|0〉

6= 〈0| ucβ uc+α |0〉〈0|eiS(v)e−iS(v)|0〉 = 〈0|cβc+α |0〉〈0|eiS(v)e−iS(v)|0〉

contrary to what is expected of the inner product for simple tensors. This is
mainly because cα= ucα do not commute with e−iS(v) for u 6= v. However,
for any two u,w ∈ L3,

〈0|eiS(v) vcβ wc+α e
−iS(w)|0〉 = 〈0| vcβ wc+α |0〉〈0|eiS(v)e−iS(w)|0〉 (11)
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which easily follows from (8)–(10) and from the canonical commutation re-
lations. Similarly, for the case when two (or more) creation operators are
involved,

〈0|eiS(v) vcβ1 vcβ2
wc+α1

wc+α1
e−iS(w)|0〉

= 〈0| vcβ1 vcβ2
wc+α1

wc+α2
|0〉〈0|eiS(v)e−iS(w)|0〉 ,

〈0|eiS(v) vcβ1 . . . vcβn wc+α1
. . . wc+αne

−iS(w)|0〉
= 〈0| vcβ1 . . . vcβn wc+α1

. . . wc+αn |0〉〈0|e
iS(v)e−iS(w)|0〉 (12)

as expected of the inner product on simple tensors. This explains the need for
using vclm= vcα in various reference frames v, as in composing any complete
orthomnormal system in H|u〉 we need linear combinations of vectors

e−iS(v)|0〉

with various v ∈ L3.
Therefore, for any v ∈ L3, we put(

vc+α1

vc+α2
|0〉
)
⊗
(
e−iS(v)|0〉

)
= vc+α1

vc+α2
e−iS(v)|0〉 ,(

vc+α1
. . . vc+αn |0〉

)
⊗
(
e−iS(v)|0〉

)
= vc+α1

. . . vc+αne
−iS(v)|0〉 . (13)

Let, in particular, U be the unitary representor of a Lorentz transforma-
tion which transforms v into v′. Then

vc+α =
∑
β

w 7→v
A αβ

wc+α +
w 7→v
B αQ

and(
U vc+α |0〉

)
⊗
(
Ue−iS(w)|0〉

)
=
(
v′c+α |0〉

)
⊗
(
e−iS(w

′)|0〉
)

=

∑
β

w′ 7→v′
A αβ

w′
c+α |0〉

⊗ (e−iS(w′)|0〉
)

=
∑
β

w′ 7→v′
A αβ

w′
c+α e
−iS(w′)|0〉

=
∑
β

w 7→v
A αβ

w′
c+α e
−iS(w′)|0〉

= U

∑
β

w 7→v
A αβ

wc+α e
−iS(w)|0〉

 ,
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so that (
U vc+α |0〉

)
⊗
(
Ue−iS(w)|0〉

)
= U

((
vc+α |0〉

)
⊗
(
e−iS(w)|0〉

))
and, similarly, we show that this is the case for more general simple tensors(
U vc+α1

. . .vc+αn |0〉
)
⊗
(
U e−iS(v)|0〉

)
= U

((
vc+α1

. . .vc+αn |0〉
)
⊗
(
e−iS(v)|0〉

))
.

(14)
Now in order to define x ⊗ y for general x, y of the form of (6) and

respectively (5), we need to extend formula (13). In fact, x⊗ y is uniquely
determined by (13). Now, we prepare the explicit formula for x ⊗ y out
of (13).

Let u1, u2, . . . ∈ L3 be the unit four-vectors which are used in the defi-
nition of the complete orthonormal system

ek(b1ku1, . . . , bkkuk) =
k∑
i=1

bik|ui〉 =
k∑
i=1

bike
−iS(ui)|0〉 , k = 1, 2, . . .

in H|u〉 . Corresponding to them, we define

uicα =
∑
β

u7→ui
A αβ

ucα +
u7→v
B αQ =

∑
β

u7→ui
A αβ cα +

u7→ui
B αQ ,

and

uic+α =
∑
β

u7→ui
A αβ

uc+α +
u7→v
B αQ =

∑
β

u7→ui
A αβc

+
α +

u7→ui
B αQ .

Having defined this, we introduce for each i = 1, 2, . . . and the corresponding
operator uicα the operator

icα =
∑
β

ui 7→u
A αβ

uicα (15)

by discarding the part proportional to the total charge Q in the operator

cα = ucα =
∑
β

ui 7→u
A αβ

uicβ +
ui 7→u
B αQ

as obtained by the transformation ui 7→ u transforming the system of oper-
ators uicβ into the system of operators ucα. Of course, we have

c+α = uc+α =
∑
β

ui 7→u
A αβ

uic+β +
ui 7→u
B αQ .
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The crucial facts for the computations which are to follow are the fol-
lowing. For each four-vector v ∈ L3,[

vcα, e
−iS(v)

]
= 0 .

The commutation rules are preserved and

[vcα,
vcβ] = 0 ,

[
vcα,

vc+β

]
= 4πe2 δ

αβ
, [Q,vcα] = 0 , vcα|0〉 = 〈0|vc+α = 0 .

Moreover, if we fix arbitrarily α = (l,m), then because the operators icα,
i = 1, 2, . . . all differ from the fixed operator cα = ucα with fixed u ∈ L3

by the operator (depending on i) which is always proportional to the total
charge operator Q, as a consequence of the transformation rule (8) and (10),
then not only[

icα,
icβ
]
=0 ,

[
icα,

ic+β

]
=4πe2 δ

αβ
,
[
Q,icα

]
=0 , icα|0〉=〈0| ic+α =0 ,

i = 1, 2, . . .

for all i = 1, 2, . . . but likewise[
icα,

jcβ
]
=0 ,

[
icα,

jc+β

]
=4πe2 δ

αβ
,
[
Q,icα

]
=0 , icα|0〉 = 〈0|ic+α = 0 ,

i, j = 1, 2, . . .

Note also that
c+α |0〉 = ic+α |0〉 , i = 1, 2, 3, . . .

Furthermore, we have the following orthogonality relations:

〈0|

 s∑
j=1

bjse
iS(uj) jcβ1 . . .

jcβm

( k∑
i=1

bik
ic+α1

. . . ic+αne
−iS(ui)

)
|0〉

=
(
4πe2

)n
δsk δmn δ{α1...αn} {β1...βm} . (16)

Let x, y be general elements, respectively, x ∈ Hm=0 and y ∈ H|u〉 of the
general form (6) and respectively (5). We define the following bilinear map
⊗ of Hm=0 ×H|u〉 into Hm=1 by the formula:

x× y 7→ x⊗ y
=

∑
n=1,2,..., k=1,2,..., i=1,..., k, α1,...,αn

aα1...αnbkbik
ic+α1

. . . ic+αne
−iS(ui)|0〉 .
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We show now that Hm=0 and H|u〉 are ⊗-linearly disjoint [13], compare
Part III, Chap. 39, Definition 39.1. Namely, let y1, . . . , yr be a finite subset
of generic elements

yj =
∑

k=1,2,...

bkj ek(b1ku1, . . . , bkkuk) =
∑

k=1,2,..., i=1,..., k

bkj bike
−iS(ui)|0〉

in H|u〉 for j = 1, . . . , r; and similarly let x1, . . . , xr be a finite subset of
generic elements

xj =
∑

n=1,2,..., α1,...αn

aα1...αn
j c+α1

. . . c+αn |0〉

in Hm=0 for j = 1, . . . , r. Let us suppose that

r∑
j=1

xj ⊗ yj

=
∑

j=1,...,r, n=1,2,..., k=1,2,..., i=1,..., k, α1,..., αn

aα1...αn
j bkj bik

ic+α1
. . .ic+αne

−iS(ui)|0〉=0 ,

(17)

and that x1, . . . , xr are linearly independent. We have to show that y1 =
. . . = yr = 0. The linear independence of xj means that if for numbers b j it
follows that

r∑
j=1

b jsaα1...αn
j = 0

for all n = 1, 2, . . ., αi = (1,−1), (1, 0), (1, 1), (2,−2), . . ., then b1 = . . . =
br = 0. Now, consider the inner product of the left-hand side of (17) with

k∑
q=1

bqk
qc+β1 . . .

qc+βne
−iS(uq)|0〉 .

Then from (17) and the orthogonality relations (16), we get

r∑
j=1

aβ1...βnj bkj = 0

for each k = 1, 2, . . . Therefore, by the linear independence of xj , we obtain

bk1 = . . . = bkr = 0
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for each k = 1, 2, . . . , so that

y1 = . . . = yr = 0 .

Similarly, from (17) and linear independence of y1, . . . , yr, it follows that

x1 = . . . = xr = 0 ,

so that Hm=0 and H|u〉 are ⊗-linearly disjoint.
By construction, the image of ⊗ : Hm=0×H|u〉 → Hm=1 span the Hilbert

space Hm=1 and is dense in Hm=1 . Therefore, the image of ⊗ defines the
algebraic tensor product Hm=0 ⊗alg H|u〉 of Hm=0 and H|u〉 densely included
in Hm=1 .

Now, we show that the inner product 〈·|·〉 on Hm=1 , if restricted to the
algebraic tensor product subspace Hm=0 ⊗alg H|u〉 , coincides with the inner
product of the algebraic Hilbert space tensor product

〈x⊗ y|x′ ⊗ y′〉 = 〈x|x′〉〈y|y′〉

for any generic elements x, x′ ∈ Hm=0 and any generic elements y, y′ ∈ H|u〉 .
Indeed, let x, y be generic elements of the form of (6) and (5), respectively,
and similarly for the generic elements x′, y′, we put

x′ =
∑

q=1,2,..., β1,...,βq

a′β1...βnc+β1 . . . c
+
βq
|0〉

and

y′ =
∑

s=1,2,...

b′ses(b1su1, . . . , bssus) =
∑

s=1,2,..., j=1,...,s

b′sbjse
−iS(uj)|0〉 .

Then 〈
x′ ⊗ y′|x⊗ y

〉
=

∑
n,k,q,s,α1,..., αn, β1,..., βq

a′β1...βqaα1...αnb′sbk

×〈0|

 s∑
j=1

bjse
iS(uj) jcβq . . .

jcβ1

( k∑
i=1

ic+α1
. . . ic+αne

−iS(ui)

)
|0〉

which, on using (12) and the orthogonality relations (16), is equal to( ∑
n,α1,...αn

(4πe2)n a′α1...αnaα1...αn

)(∑
k

b′kbk

)
= 〈x|x′〉〈y|y′〉 .

Thus, the proof of equality (4) is now complete.
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Now, let x, y be any generic elements of the form of (6) and (5) re-
spectively. Then by repeated application of (14) and the continuity of each
representor2 U , we obtain

U(x⊗ y) = Ux⊗ Uy .
This ends the proof of our Lemma.

We observe now that the same proof can be repeated in showing validity
of the following

Lemma 2.2.
U |Hm = U |H|m,u〉

⊗ U |Hm=0
.

Now, let3 ‘Integer partx’ for any positive real number x be the least
natural number among all natural numbers n for which x ≤ n. Joining
the last Lemma with result (3) of Staruszkiewicz [4], we obtain the theorem
formulated in Introduction.

The author is indebted to prof. A. Staruszkiewicz for helpful discussions.
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