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The decay process of the schematic one-dimensional three-body system
is considered. A time-dependent approach is used in combination with a
one-dimensional three-body model, which is composed of a heavier core
nucleus and two nucleons, with the aim of describing its evolution in two-
nucleon emission. The process is calculated from the initial state, in which
the three ingredient particles are confined. In this process, two different
types of emission can be found: the earlier process includes the emission
of spatially correlated two-nucleon pair, like a dinucleon, whereas, at a
subsequent time, all the particles are separated from each other. The time-
dependent method can be a suitable option to investigate the meta-stable
and/or open-quantum systems, where the complicated many-body dynam-
ics should necessarily be taken into account.
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1. Introduction

Quantum resonance or meta-stability is a basic concept to understand
several dynamical processes in atomic nuclei. Those include, e.g. two-proton
or two-neutron emission [1–3], tetra neutron [4, 5], and alpha-clustering res-
onant states (c.f. Hoyle state of 12C) [6–9]. By investigating these processes,
we expect to obtain fundamental information on nuclear interaction, multi-
spin dynamics, and/or quantum tunneling effect in systems with many de-
grees of freedom.
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On the theoretical side, however, the description of these meta-stable
systems has been a long-standing problem. The usual quantum mechanics
for bound states should be extended to dealing with the meta-stability and
the multi-particle degrees of freedom on equal footing [1, 8, 10]. For this
purpose, we have developed a time-dependent three-body model for theo-
retical and computational approach [11–14]. This method can provide an
intuitive way to discuss even the broad-resonance system, whose lifetime is
considerably short, and thus the multi-particle dynamics should be taken
into account.

In this work, we perform a toy-model calculation to investigate the broad-
resonance state. We utilize the time-dependent method to describe the
scattering emission from the three-body localization. In contrast to the
radioactive processes, it is not guaranteed that this emission process can be
attributed to a single quasi-stationary state, but we to take into account the
contribution from all the possible components.

In the next section, we employ one-dimensional three-body model as our
testing field for time-dependent calculation. Section 3 is devoted to present
our results and discussions. Finally, we summarize this article in Section 4.

2. Model and formalism

In this work, we give an example of the time-dependent (TD) calculation,
implemented into a three-body system in one dimension (1D) [15]. The total
Hamiltonian is

Htot =

3∑
i=1

p2i
2mi

+ V12(|x1 − x2|) + V23(|x2 − x3|) + V13(|x1 − x3|) . (1)

We employ the masses of particles defined as m1 = m2 = 939 MeV/c2 and
m3 = 16 × 939 MeV/c2. Namely, we assume a heavy-core nucleus and two
nucleons moving on the one-dimensional x-axis (see Fig. 1), mimicking the
18O nucleus but without pretending a realistic description. For the nucleon–
nucleon subsystem, we employ a square-well attractive potential. That is,

V12(x) =

{
−2.84 MeV (|x| ≤ 1.2 fm) ,

0 (|x| > 1.2 fm) .
(2)

For the core–nucleon channel, on the other hand,

V13(x) = V23(x) = Vr exp

(
−x

2

d2r

)
+ Va exp

(
−x

2

d2a

)
, (3)

where dr = 5.04 fm, da = 3.15 fm, Vr = 24 MeV and Va = −32 MeV.
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x3-X12

x2-x1m1 m2 m3

Fig. 1. Three-body system in one dimension. X12 = (x1 + x2)/2.

These potentials are shown in Fig. 2. The bump in the core–nucleon poten-
tial can be associated with the centrifugal barrier in the realistic nuclei. Note
that, in this work, we focus on the broad-resonance state. For this purpose,
the two-body potentials are fixed shallower than the usual potentials in the
three-dimensional calculations. Also, instead of the Woods–Saxon-type, we
employ the Gaussian potential, which enables us to utilize the analytic for-
mula to obtain the matrix elements with the harmonic oscillator (HO) basis
employed in the next subsection.
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Fig. 2. Two-body potentials as functions of the relative distances, xij≡(xi−xj).

2.1. Coordinates and basis

In order to solve the eigen-states of H3b, we first employ the mass-scaled
Jacobi coordinates (MSJC) [16, 17]. Using the common-relative mass, µ ≡√∏3

i=1mi/
∑3

i=1mi, those are defined as

ξ1 =

√
µ1
µ
(x2 − x1) , ξ2 =

√
µ2
µ

(
x3 −

x2 + x1
2

)
, (4)

and ξ3 ≡ (m1x1+m2x2+m3x3)/
∑3

i=1mi, which is the center-of-mass coor-
dinate. Partial relative masses are defined as µk ≡ mk+1

∑k
i=1mi/

∑k+1
j=1 mj ,
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for k = 1 and 2. With MSJC, the total Hamiltonian reads

Htot = TCM +
π21
2µ

+
π22
2µ

+ V12 + V23 + V13 ,

TCM =
π23

2(m1 +m2 +m3)
, (5)

where {πi} are the conjugate momenta to {ξi}. In the following, we neglect
the center-of-mass motion, TCM. We diagonalize the remaining Hamiltonian,
H3b = Htot−TCM, by calculating its matrix elements, 〈Ψcd|H3b|Ψab〉, within
the harmonic oscillator (HO) basis

Ψab(ξ1, ξ2) = ψa(ξ1)ψb(ξ2) , (6)

where a and b are non-negative integers. Notice that ψn is the HO wave
function corresponding either to the relative motion of particles 1 and 2, or
the motion of particle 3 with respect to the center-of-mass between 1 and 2,
with HO energy, (n+1/2)~ω. Our model space is truncated as a, b ≤ 15 with
~ω = 0.4 MeV. This value is chosen in a range that insures the convergence.

In this article, we assume that two nucleons have the spin-singlet con-
figuration: |S12 = 0〉 = (|↑↓〉 − |↓↑〉)/

√
2. Thus, the spatial part should be

symmetric against the exchange between particles 1 and 2. It means that
only {ψa(ξ1)} with even a can be included in our basis.

Within the chosen MSJC scheme, the matrix elements of V12 are diago-
nal, whereas V23 and V13 yield non-diagonal components. For computation of
these non-diagonal elements, we utilized a kinetic rotation technique, whose
details can be found in Ref. [15]. Then, all the eigen-states, H3b |ΦM 〉 =
EM |ΦM 〉, can be solved by diagonalization: |ΦM 〉 =

∑
ab cM,ab |Ψab〉.

2.2. Initial state for time evolution

We employ the confining potential method for time-evolution. This
method has provided a good approximation for quantum meta-stable phe-
nomena especially in nuclear physics [11–13]. For the confining potential,
V

(c)
13 = V

(c)
23 at t = 0 fm/c, we fix the wall potential from |xi − xj | ≥ 7.5 fm.

On the other hand, V12 between the light two particles is unchanged. See
Fig. 2 for visual plots of these potentials. Our initial state, |Υ (t = 0)〉, is
solved by diagonalizing the confining Hamiltonian including V (c)

13 and V (c)
23 .

It is also worthwhile to note that the initial state can be expanded on the
eigen-states of the true Hamiltonian

|Υ (t = 0)〉 =
∑
M

dM (0) |ΦM 〉 . (7)
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For this initial state, after the subtraction of the center-of-mass motion, the
expectation value of the relative Hamiltonian is given as 〈Υ (0)|H3b|Υ (0)〉 =
0.91 MeV. This is equivalent to the energy release (Q-value) carried out by
the emitted particles.

3. Result and discussion

In the first panel of Fig. 3, we plot the density distribution of the initial
state: ρ(t = 0) = |Υ (t = 0; ξ1, ξ2)|2. As expected, the three ingredient
particles are spatially localized at t = 0.
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Fig. 3. Density distribution, ρ(t) = |Υ (t)|2, for ct = 0, 200, 400 and 600 fm. These
are plotted as functions of x1 − x2 and x3 −X12, where X12 is the center-of-mass
between the 1st and 2nd particles.

3.1. Time-dependent emission

From Eq. (7), time-evolution via H3b can be calculated as

|Υ (t)〉 ≡ exp

[
−itH3b

~

]
|Υ (t = 0)〉 =

∑
M

dM (t) |ΦM 〉 , where

dM (t) = e−itEM/~dM (0) . (8)
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The time-evolution of the density distribution is shown in Fig. 3. That is,

ρ(t; ξ1, ξ2) = |Υ (t; ξ1, ξ2)|2 . (9)

Notice that the energy distribution is invariant during the time-evolution:
s(EM ) ≡ |dM (0)|2 = |dM (t)|2. In Fig. 4, we plot the energy distribution.
From this result, we can find that the state of interest, |Υ (t)〉, can be mostly
attributed to the low-lying components with continuum energies up to E ≤
1.8 MeV.
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Fig. 4. (Left panel) Energy spectrum of the emission state, |Υ (t)〉. ET = 1.8 MeV
is indicated by the dashed line. (Right panel) Survival probability.

In Fig. 3, at ct = 200 fm, the emission process proceeds mainly with
x2 = x1 and x3 − X12 = ±10 fm, where X12 indicates (x1 + x2)/2. This
earlier process means that the two light particles, m1 and m2, are spatially
correlated and emitted as a pair from the core. Namely, we observe a dinu-
cleon emission in 1D space [13].

After ct ≥ 400 fm as shown in Fig. 3, on the other hand, the process
shows a different pattern with |x2 − x1| ' 15 fm and |x3 −X12| ' 10 fm.
In this process, the two light particles are not localized anymore, and three
particles move away from each other. Thus, the total emission should be a
superposition of the primary dinucleon emission and the secondary separated
emission. This superposition is quite in contrast to Ref. [13], where only
the dinucleon emission is dominant with the pairing force. In such a way,
our time-dependent method can provide a direct and intuitive solution to
describe this complex quantum dynamics.

3.2. Survival probability

First, we define the decay state, |Υd(t)〉, such as

|Υd(t)〉 ≡ |Υ (t)〉 − β(t) |Υ (0)〉 =
∑
M

yM (t) |ΦM 〉 , (10)
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where β(t) ≡ 〈Υ (0)|Υ (t)〉 and yM (t) = dM (t) − β(t)dM (0). Notice that
〈Υ (0)|Υd(t)〉=0. Also, the decay probability can be formulated as Pdecay(t)≡
〈Υd(t)|Υd(t)〉 = 1−Psurv(t), where Psurv(t) is the so-called survival probabil-
ity. That is

Psurv(t) = |β(t)|2 = |〈Υ (0)|Υ (t)〉|2 . (11)

In the second panel of Fig. 4, the survival probability is plotted in logarithmic
scale: there is an oscillatory decay along time-evolution. Thus, this process
is not alike the radioactive emission, since the exponential decay rule is
hardly observed.

Indeed, the process can be interpreted as a superposition of the well-
converged exponential decay and the fluctuation due to high-energy com-
ponents. To confirm this, remembering that Psurv(t) = 1 − Pdecay(t), we
decompose the decay probability into the low- and high-energy components
by fixing the border of ET = 1.8 MeV. That is,

Pdecay(t) =
∑

EM<ET

|yM (t)|2 +
∑

EM≥ET

|yM (t)|2

≡ Pdecay(t;E < ET ) + Pdecay(t;E ≥ ET ) . (12)

Then, in Fig. 4, we plot the low-energy component of the survival prob-
ability: Psurv(t;E < ET ) = 1 − Pdecay(t;E < ET ). Consequently, it
shows a smooth pattern and acquires an exponentially decaying form af-
ter ct ≥ 500 fm. In this exponential decay, Psurv(ct ≥ 500 fm;E < ET ) '
exp(−tΓ/~), where the decay-width is approximated as Γ ' 0.41MeV in our
calculation. Notice that this decay-width value is similar to the empirical
values observed in several light one- and two-proton emitters [1, 2].

4. Summary

We have performed the time-dependent analysis of the emission process
in the 1D three-body system. By monitoring the time-evolution from the
initially confined state, we confirmed that two different types of emission
are taking place: the earlier dinucleon emission, and the secondary sepa-
rated emission. It is shown that, even for such a superposition of different
processes, our time-dependent calculation can be a suitable tool to under-
stand its multi-particle dynamics with an intuitive procedure. By analyzing
the survival probability, we have also found that this process can be mainly
interpreted as the exponential decay with E < 1.8 MeV plus the higher en-
ergy fluctuation. Further investigation of the origin of this fluctuation is an
important future task. This investigation can lead to a deeper knowledge of
the nuclear meta-stable systems, e.g. tetra neutron, whose measured decay-
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width is considerably wide and hardly allows us to infer an exponential-
decay behavior [4]. Our extension of the time-dependent method applied to
these realistic 3D nuclear systems is in progress now.

This work is financially supported by the P.R.A.T. 2015 project “IN:Theory”
at the University of Padova (project code: CPDA154713).
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