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We demonstrate that the complex scaling method (CSM) is a useful
tool to study virtual states. We investigate it by applying the CSM to a
simple schematic two-body model which simulates the 8Be+n system. The
pole position of the virtual state is obtained by using the continuum level
density and the phase shift.
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1. Introduction

Virtual states correspond to poles of the S-matrix in the second Riemann
sheet of the complex energy plane [1] and have a large influence on the
scattering cross section at energies just above the threshold. The scattering
length of a virtual state is negative, while that of a bound state is positive.
The study of virtual states is important for the investigation of scattering
observables and interactions.

The complex scaling method (CSM) [2, 3] has been shown to be very use-
ful in studies of weakly-bound states strongly coupled to continuum. How-
ever, it was suggested that it is difficult to explicitly describe within this
framework broad resonance states and virtual states, as those need scaling
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angles larger than π/4, which is a limit due to the analyticity of the poten-
tial. There is no previous evidence (except for our previous works [4, 5]) that
the CSM can be successfully applied to the investigation of a virtual state.
Recently, by applying the CSM to the α+α+n three-body model for 9Be, we
have shown that a sharp peak of the photo-disintegration cross section ex-
perimentally observed just above the 8Be(0+)+n threshold can be explained
as a 1/2+ virtual state of the 8Be(0+) + n two-body configuration [4]. Fur-
thermore, in the framework of the CSM, the structure of a virtual state in
an s-wave was discussed by using a simple schematic two-body model [5].

In our previous work [5], we concluded that a virtual state has a strong
influence on the scattering observables when it approaches the zero energy
near the physical scattering region. In the present report, we discuss the
virtual state position on the complex energy plane using the continuum
level density and the phase shift corresponding to the virtual state.

2. Complex scaling method

In the CSM, the relative coordinate ~r is rotated as ~r → ~reiθ in the com-
plex coordinate plane [6]. The complex-scaled Hamiltonian Hθ and wave
function ΨνJπ(θ) are defined as U(θ)HU−1(θ) and U(θ)ΨνJπ , respectively (see
Refs. [2, 3] for details). Therefore, the Schrödinger equation can be rewrit-
ten as

HθΨνJπ(θ) = EθνΨ
ν
Jπ(θ) , (1)

where Jπ is the spin and parity, ν is the state index, and θ, being a real
number, is the scaling angle.

Applying the L2 basis function method, we expand the wave function as

ΨνJπ(θ) =
N∑
n=1

cJ
πν
n (θ)φn(~r ) , (2)

where φn(~r ) is the appropriate set of basis functions. The expansion coeffi-
cients cJπνn and the complex energy eigenvalues Eθν are obtained by solving
the complex-eigenvalue problem given in Eq. (1). The complex energies of
resonant states are obtained as Er = Eres

r − iΓr/2, when tan−1 (Γr/2E
res
r ) <

2θ. In the present schematic two-body model, the Hamiltonian is given as

H = − ~2

2µ
∇2 + V (r) , (3)

where
V (r) = v0 exp

(
−ar2

)
, a = 0.16 fm−2 . (4)

For simplicity, we use ~2
2µ = 1 (MeV fm2).
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3. Results

3.1. Virtual s-state

In our previous works [3, 4], we confirmed that a virtual state is responsi-
ble for the enhancement of the photo-disintegration cross section just above
the threshold in s-waves. When the virtual state approaches the zero en-
ergy on the second Riemann sheet, it has a strong influence on the reaction
observables. In the present work, we analyse the continuum level density
(CLD) and the phase shifts applying the model Hamiltonian simulating the
8Be+n system without spin degrees of freedom.

In Fig. 1, we show the energy levels considered in the present model. The
Jπ = 0+ and 1− states are obtained by solving Eq. (1) for the Hamiltonian
(Eq. (3)). The potential strength v0 in Eq. (4) is chosen to reproduce one
bound Jπ = 0+ of s-waves. But this 0+1 solution is assumed to be a Pauli-
forbidden state, because in this model we describe the 8Be(0+) + n system
which has the Pauli-forbidden (0s) neutron configuration. Therefore, the 1−1
solution corresponds to the ground state.
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Fig. 1. The energy level diagram of the two-body potential model describing 9Be
as a 8Be+n system. The dotted line represents the threshold energy.

3.2. Phase shift of s-waves

In the CSM, a virtual state cannot be obtained as an isolated solution,
but the continuum solutions are considered to include components of the
virtual state. To confirm this property of the continuum solutions, we cal-
culate the phase shifts using energy eigenvalues (resonance; Eres

r −iΓr/2, r =
1, · · ·N θ

r , continuum; εrc − iεic, c = 1, · · ·N θ
c ) of Eq. (1) (see Ref. [8])
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δNθ (E) = Nbπ +

Nθ
r∑

r=1

{
tan−1

(
Γr/2

Eres
r − E

)}
+

Nθ
c∑

r=c

{
tan−1

(
εic

εrc − E

)}

−
Nθ∑
k=1

{
tan−1

(
ε0ik

ε0rk − E

)}
, (5)

where Nb is the number of bound-state solutions, and (ε0rk − iε0ik , k =

1 · · ·N θ) are energy eigenvalues of the free Hamiltonian H0 = −(~2/2µ)∇2.
For the present s-wave solutions, we have no bound states, except for the
Pauli-forbidden state, and no resonance solutions, and so the phase shift is
described by the third and the forth term.

From the phase shift, we can calculate the scattering length

as = − lim
k→0

tan
(
δNθ (E)

)
k

, (6)

where k =
√
2µE/~. The calculated phase shift shows a sudden change of

the scattering length from a positive value for v0 ≤ 1.43 MeV to a negative
value for v0 ≥ −1.42 MeV. This result suggests that a virtual state appears
around v0 ∼ −1.42 MeV. At v0 = −1.43 MeV, a bound solution is obtained.
This bound state is considered to develop from the virtual state at v0 =
−1.42 MeV as the attractive potential strength is increased slightly.

3.3. Continuum level density

We try to extract the virtual state obtained at v0 = −1.42 MeV ex-
plicitly. For this purpose, we calculate the continuum level density. The
continuum level density ∆N

θ (E) is related to the phase shift via ∆N
θ (E) =

(1/π)dδNθ (E)/dE [8]. The continuum level density of continuum solutions
at v0 = −1.42(≡ v−) MeV, which include the virtual state, is calculated as

∆N
θ (E; v−) = − 1

π

Nθ
c∑

c=1

1

E − εrc + iεic
−

N∑
k=1

1

E − ε0rk + iε0ik

 . (7)

The number of continuum solutions for v− is N θ
c = N because of no bound-

state and resonance solutions. However, in the case of v0 = −1.43(≡ v+) one
bound state appears and the number of continuum solutions is N θ

c = N − 1.
We put the continuum level density for v+ as ∆N

θ (E; v+), which has no
virtual state.
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Assuming that the continuum level density ∆N
θ (E) is a smooth func-

tion for the coupling constant v0, we can extract the contribution from the
virtual state to the continuum level density by taking a difference between
∆N
θ (E; v−) and ∆N

θ (E; v+)

∆vir
θ (E) = ∆N

θ

(
E; v−

)
−∆N

θ

(
E; v+

)
. (8)

In a similar way, we can extract the virtual state component δvir(E) of the
phase shifts.

3.4. Position of the virtual state

The results for ∆vir
θ (E) and δvir(E) are shown in Fig. 2. The behaviour

of the phase shift δvir(E) seems to be a logarithmic function of E, and the
continuum level density ∆vir

θ (E) behaves like a function of 1/(E − Evir).
Then, assuming ∆vir

θ (E) ∝ 1/(E − Evir), we try to extract the energy Evir

corresponding to the virtual pole position on the second Riemann sheet.
The obtained result is Evir ≈ −0.001 MeV.
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Fig. 2. Left panel: The continuum level density ∆vir
θ (E) for the virtual state solu-

tion. Right panel: The phase shift of the virtual state, calculated from the virtual
state continuum level density ∆vir

θ (E).

To verify the reliability of this result, we compare it with that obtained
using the Jost function method [7]. The Jost function method can be easily
applied to the present two-body model, and we obtain a solution for the
virtual state at Evir = −4.97× 10−6 MeV. Comparing this with the present
result calculated by the CSM, we can consider the latter reasonable because
the complex eigenvalues solved with the basis-function method in the CSM
have only three digits of precision. Therefore, it is difficult for the CSM to
keep a high numerical accuracy.
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4. Summary

We employed a simple schematic two-body model and the CSM to inves-
tigate a virtual state. The calculated continuum level density and the phase
shifts indicate a virtual state solution near the threshold.

This work was supported by JSPS KAKENHI grants No. 25400241 and
No. 15K05091, and the National University of Mongolia’s support for high
impact research programme.
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