ALPHA CLUSTERING IN (n, α) REACTIONS INDUCED BY SLOW AND FAST NEUTRONS^{*}

Gonchigdorj Khuukhenkhuu^a, Myagmarjav Odsuren^{a,†} Yury Gledenov^b, Jargalsaikhan Munkhsaikhan^a, Suren Davaa^a Chinzorig Saikhanbayar^a, Enkhbold Sansarbayar^{a,b} Milana Sedysheva^b

 ^aNuclear Research Center, School of Engineering and Applied Sciences National University of Mongolia, 17032, Ulaanbaatar, Mongolia
 ^bFrank Laboratory of Neutron Physics, JINR, 141980, Dubna, Russia

(Received December 11, 2017)

Methods to derive α -clustering factors from the analysis of experimental data for slow ($E_n \leq 30$ keV) and fast ($E_n = 4-6$ MeV) neutron-induced (n, α) reactions using the statistical model are described. In this way, the dependence of the α -clustering factor for the (n, α) reaction on the incident neutron energy can be followed. The resulting α -clustering factors are compared with our previous results and those obtained using other approaches.

DOI:10.5506/APhysPolB.49.325

1. Introduction

Alpha clustering in nuclei is important for the understanding of α -decay, α -particle scattering, α -particle transfer and emission reactions, and nuclear structure [1, 2]. The α clusterization of four nucleons before the emission is usually described by a preformation (or clustering) factor, which is defined as the probability of finding an α cluster inside the parent nucleus. Consequently, this factor should be less than or equal to one.

The α -clustering effect has been investigated for a long time using different methods based on various theoretical approaches. To give some examples, the one-body model [3, 4], preformed α -particle model [5], α -cluster model [6], α -particle occurrence on the surface of a nucleus [7], α -particle formation through the spectroscopic factor [8, 9], ratio of the nucleon–nucleon and nucleon– α interaction rates [10, 11], classical formula for the assault

^{*} Presented at the XXXV Mazurian Lakes Conference on Physics, Piaski, Poland, September 3–9, 2017.

 $^{^{\}dagger}$ Corresponding author: odsurenn@gmail.com

frequency of an α -particle inside a nuclear potential barrier [12, 13], cluster formation model [14], density-dependent cluster model [15], binary cluster model [16] and exciton model [17] were used to evaluate the α -clustering probability. Most of these studies were focused on the α -decay. Several papers were dedicated to the determination of the α -particle formation factor in the (n, α) reaction. However, the results of these studies are not consistent and up to now, a common explanation of the α clustering in a nucleus and an unified method to obtain the α -clustering probability are not available.

Recently, we have determined the α -clustering factors for fast neutron $(E_n = 2-20 \text{ MeV})$ induced (n, α) reactions using the ratio of experimental cross sections to theoretical ones calculated by means of the statistical model [18]. In this work, we suggest some methods to derive α -clustering factors from the analysis of experimental data of the slow $(E_n \leq 30 \text{ keV})$ and fast $(E_n = 4-6 \text{ MeV})$ neutron-induced (n, α) reactions using the statistical model. In this way, the dependence of the α -clustering factor for the (n, α) reaction on the incident neutron energy can be followed. The obtained α -clustering factors are compared with our previous results and those determined using other approaches.

2. Formulae and results

2.1. Slow neutron-induced (n, α) reaction

2.1.1. Resonance neutron-induced (n, α) reaction

Using the statistical model and taking into account the α clustering in the compound nucleus, Weisskopf's formula [19] for the average α width of a level can be written in the following form:

$$\langle \Gamma_{\alpha}(J) \rangle = \frac{D(J)}{2\pi} T_{\alpha} \phi_{\alpha} , \qquad (1)$$

where D(J) is the average level spacing for given J; T_{α} is the transmission factor of an α particle through the potential barrier of the daughter nucleus; ϕ_{α} is the α -clustering factor. From (1), the α -clustering factor is given by

$$\phi_{\alpha} = 2\pi \frac{\langle \Gamma_{\alpha}(J) \rangle}{D(J)T_{\alpha}} \,. \tag{2}$$

To simplify the calculations, in Eq. (2), the angular momentum dependence of the transmission factor is neglected. Then we apply Eq. (2) to some isotopes in order to estimate the α -clustering factor for the (n, α) reaction induced by resonance neutrons, see Table I. Experimental data on the average α widths were taken from Ref. [20]. The average level spacing for *s*-resonances [21] was used in the calculation. The transmission factors, T_{α} , were calculated using Rasmussen's formula [22] for zero angular momentum, $l_{\alpha} = 0$, of α particles.

TABLE I

Isotopes	$\Gamma_{\alpha}(\exp) \ [\mu eV] \ [20]$	$D_0 [\text{eV}] [21]$	T_{α}	ϕ_{lpha}
⁶⁴ Zn	12	2940	8.63×10^{-8}	0.30
67 Zn	580 ± 340	367	$2.75 imes 10^{-5}$	0.21
^{95}Mo	26 ± 18	81	1.58×10^{-6}	0.53
$123 T_{\Theta}$	7.3 ± 3.7	25.1	2.32×10^{-7}	1.97
Te	$(3.0 \pm 2.0)^*$	20.1	2.52×10	$(0.81)^*$
143 Nd	21 ± 8	37.6	4.12×10^{-6}	0.37
$^{145}\mathrm{Nd}$	0.32 ± 0.19	17.8	1.41×10^{-7}	0.35
$^{147}\mathrm{Sm}$	2.3 ± 0.6	5.7	4.67×10^{-6}	0.24
^{149}Sm	0.21 ± 0.06	2.2	5.12×10^{-7}	0.52

Experimental data and results of our calculations for resonance neutrons ($E_n \leq 5$ keV). The ϕ_{α} values in the last column are calculated using Eq. (2).

* From previous data [23].

2.1.2. Intermediate neutron-induced (n, α) reaction

In the framework of the statistical model, by analogy with the (n, γ) reaction, the average (n, α) cross section can be expressed as [24, 25]

$$\langle \sigma(n,\alpha) \rangle = 2\pi^2 \left(\frac{\lambda_n}{2\pi}\right)^2 \sum_l \sum_J \frac{g(J)}{D(J)} \frac{\langle \Gamma_n(J,l) \rangle \langle \Gamma_\alpha(J,l) \rangle}{\langle \Gamma(J,l) \rangle} F_l \,, \qquad (3)$$

where λ_n is the wave length of the incident neutron; $\langle \Gamma_n(J,l) \rangle$, $\langle \Gamma_\alpha(J,l) \rangle$ and $\langle \Gamma(J,l) \rangle$ are the average neutron, alpha and total level widths, respectively; F_l is the level width fluctuation factor comprised within the range of 0.6–1.0. For the intermediate neutrons, one can usually assume $\Gamma_n \gg \Gamma_\gamma \gg \Gamma_\alpha$ and so the total level width is given by $\langle \Gamma(J,l) \rangle \approx \langle \Gamma_n(J,l) \rangle$. Then, from Eqs. (1) and (3), the average (n, α) cross section is given by

$$\langle \sigma(n,\alpha) \rangle \approx \pi \left(\frac{\lambda_n}{2\pi}\right)^2 \sum_l \sum_J g(J) T_\alpha(l) \phi_\alpha F_l \,.$$
(4)

If we neglect the angular momentum and spin dependence of the total (n, α) cross section averaged over the wide neutron energy range, and assume $F_l \approx 1$, one can obtain from Eq. (4) the following simple formula for the α -clustering factor:

$$\phi_{\alpha} \approx \frac{\langle \sigma(n,\alpha) \rangle}{\pi \left(\frac{\lambda_n}{2\pi}\right)^2 T_{\alpha}} \,. \tag{5}$$

Equation (5) is then used to estimate the α -clustering factor for 24–30 keV neutron-induced (n, α) reactions, see Table II. Experimental data on the (n, α) cross sections were taken from Ref. [20].

TABLE II

Experimental (n, α) cross sections and results of our calculations for 24–30 keV neutrons. The ϕ_{α} values in the last column are calculated using Eq. (5).

Target nuclei	E_n [keV]	$\sigma_{(n,\alpha)}$ [µb]	$T_{\alpha} \ (l_{\alpha} = 0)$	ϕ_{lpha}
^{95}Mo ^{123}Te ^{143}Nd ^{147}Sm	30 24 30 30	20 ± 4 2.8 ± 0.7 20 ± 3 28 ± 5	$\begin{array}{c} 1.75\times 10^{-6}\\ 2.48\times 10^{-7}\\ 4.5\times 10^{-6}\\ 5.14\times 10^{-6} \end{array}$	$\begin{array}{c} 0.53 \\ 0.52 \\ 0.20 \\ 0.25 \end{array}$

2.2. Alpha clustering in fast neutron-induced (n, α) reaction

By analogy with Eq. (5), the proton-clustering factor can be written as

$$\phi_p \approx \frac{\langle \sigma(n,p) \rangle}{\pi \left(\frac{\lambda_n}{2\pi}\right)^2 T_p} \,. \tag{6}$$

If we assume $\phi_p = 1$, one can obtain from Eqs. (5) and (6) the following expression for the α -clustering factor for the (n, α) reaction induced by quasi-monoenergetic fast neutrons:

$$\phi_{\alpha} \approx \frac{\sigma(n,\alpha)}{\sigma(n,p)} \frac{T_p}{T_{\alpha}}.$$
(7)

The α -clustering factor in (7) is defined as the probability of an interaction of the incident neutron with an α -cluster relative to that with a proton. Equation (7) is used to estimate the α -clustering factor for the (n, α) reaction induced by 4–6 MeV neutrons using the experimental (n, α) and (n, p) cross sections determined for the same isotopes [26]. The experimental data and the results of our calculations are given in Table III.

3. Discussion and conclusions

Tables I and II show that the α -clustering factors for (n, α) reactions induced by resonance and intermediate neutrons vary from 0.20 to 0.53 for all isotopes except for ¹²³Te. For ¹²³Te, the new value $\Gamma_{\alpha}(\exp) = 7.3 \pm$ 3.7 μ eV gives the α -clustering factor of $\phi_{\alpha} = 1.97$ which is larger than 1 and thus not possible. In contrast, the $\Gamma_{\alpha}(\exp) = 3.0 \pm 2.0 \ \mu$ eV measured previously in the ¹²³Te $(n, \alpha)^{120}$ Sn reaction yields a plausible α -clustering

TABLE III

$\frac{E_n}{[\text{MeV}]}$	Target nuclei	Reac- tion	$\begin{array}{c} Q_{(n,p/\alpha)} \\ [\text{MeV}] \end{array}$	$\begin{bmatrix} E_{p/\alpha} \\ [\text{MeV}] \end{bmatrix}$	$\begin{matrix} \sigma_{(n,p/\alpha)} \\ \text{[mb]} \end{matrix}$	$T_{p/\alpha}$	ϕ_{lpha}
4	54 Fe	$\begin{array}{c} (n,\alpha) \\ (n,p) \end{array}$	$0.841 \\ 0.088$	4.49 4.01	$\begin{array}{c} 0.76 \\ 276 \end{array}$	$\begin{array}{c} 0.00053 \\ 0.0041 \end{array}$	0.02
	⁵⁸ Ni	$\begin{array}{c} (n,\alpha) \\ (n,p) \end{array}$	$2.89 \\ 0.395$	$6.43 \\ 4.32$	$13.4 \\ 352.4$	$0.056 \\ 0.0035$	0.0024
	⁶³ Cu	$\begin{array}{c} (n,\alpha) \\ (n,p) \end{array}$	$1.715 \\ 0.716$	$5.36 \\ 4.64$	$0.281 \\ 74.8$	$0.0015 \\ 0.0053$	0.013
	⁶⁴ Zn	$\begin{array}{c} (n,\alpha) \\ (n,p) \end{array}$	$3.867 \\ 0.208$	$7.38 \\ 4.14$	$59.6 \\ 132.9$	$0.162 \\ 0.0008$	0.0022
5	54 Fe	$\begin{array}{c} (n,\alpha) \\ (n,p) \end{array}$	$0.841 \\ 0.088$	$5.42 \\ 4.99$	$2 \\ 406.1$	$\begin{array}{c} 0.014\\ 0.038\end{array}$	0.013
	⁵⁸ Ni	$\begin{array}{c} (n,\alpha) \\ (n,p) \end{array}$	$2.89 \\ 0.395$	$7.36 \\ 5.3$	$47.4 \\ 509$	$0.382 \\ 0.0302$	0.0073
	$^{63}\mathrm{Cu}$	$ \begin{array}{c} (n,\alpha) \\ (n,p) \end{array} $	$1.715 \\ 0.716$	$6.29 \\ 5.62$	$1.69 \\ 73.22$	$\begin{array}{c} 0.0247 \\ 0.0396 \end{array}$	0.037
	64 Zn	$\begin{array}{c} (n,\alpha) \\ (n,p) \end{array}$	$3.867 \\ 0.208$	$8.32 \\ 5.12$	79.1 181	$0.841 \\ 0.0099$	0.0051
6	54 Fe	$\begin{array}{c} (n,\alpha) \\ (n,p) \end{array}$	$\begin{array}{c} 0.841 \\ 0.088 \end{array}$	$\begin{array}{c} 6.35 \\ 5.97 \end{array}$	$\frac{8}{465}$	$\begin{array}{c} 0.147 \\ 0.177 \end{array}$	0.02
	⁶³ Cu	$ \begin{array}{c} (n,\alpha) \\ (n,p) \end{array} $	$1.715 \\ 0.716$	7.24 6.61	$5.01 \\ 88.7$	$0.21 \\ 0.172$	0.046

Experimental data and results of our calculations for 4–6 MeV neutrons. The ϕ_{α} values in the last column are calculated using Eq. (7).

factor of $\phi_{\alpha} = 0.81$ (see Table I). One can see also from Tables I and II that the α -clustering factors for each isotope are almost the same for the resonance and intermediate neutrons. In the case of fast neutrons ($E_n =$ 4–6 MeV), the α -clustering factors vary in the range of 0.0022 to 0.046 (Table III). These values are on average lower than those for slow neutrons (Tables I and II) and our previous results of 0.02–0.33, which were obtained from the ratio of experimental (n, α) cross sections to the theoretical ones for $E_n = 2-20$ MeV [18]. The α -clustering factors obtained in the present work are on average in a satisfactory agreement with most of the above-mentioned results, they have, however, a wide dispersion. At the same time, our results are appreciably different from the values of α -clustering probability obtained in Refs. [6, 7]. Future more detailed investigations are needed. This work was supported by Mongolian Foundation for Science and Technology (contract: SST-004/2015).

REFERENCES

- P.E. Hodgson, Alpha-clustering in Nuclei, ch. 23, in: The Uncertainty Principle and Foundations of Quantum Mechanics, (eds.) W.C. Price, S.S. Chissick, New York, John Wiley, 1977.
- [2] K. Wildermuth, Y.C. Tang, A Unified Theory of the Nucleus, Academic Press Inc., New York 1977.
- [3] H.A. Bethe, *Rev. Mod. Phys.* 9, 69 (1937).
- [4] Yu.P. Popov et al., Sov. J. Nucl. Phys. 13, 913 (1971).
- [5] R. Bonetti, L. Milazzo-Colli, *Phys. Lett. B* **49**, 17 (1974).
- [6] S.G. Kadmensky, V.I. Furman, Phys. Part. Nucl. 6, 469 (1975).
- [7] F.C. Chang, *Phys. Rev.* 141, 1136 (1966).
- [8] I. Tonozuka, A. Arima, Nucl. Phys. A **323**, 45 (1979).
- [9] W.M. Seif, J. Phys. G: Nucl. Part. Phys. 40, 105102 (2013).
- [10] T. Knellwolf, J. Rossel, *Helv. Phys. Acta* **39**, 376 (1966).
- [11] J.J. Hogan, Z. Phys. A **295**, 169 (1980).
- [12] Shuqing Guo et al., Nucl. Phys. A 934, 110 (2015).
- [13] G.L. Zhang et al., Nucl. Phys. A 823, 16 (2009).
- [14] S.M.S. Ahmed et al., J. Phys. G: Nucl. Part. Phys. 40, 065105 (2013).
- [15] Dondong Ni, Zhongzhou Ren, *Phys. Rev. C* 82, 024311 (2010).
- [16] T.T. Ibrahim, S.M. Wyngaardt, J. Phys. G: Nucl. Part. Phys. 41, 055111 (2014).
- [17] A. Iwamoto, K. Harada, *Phys. Rev. C* 26, 1821 (1982).
- [18] G. Khuukhenkhuu *et al.*, Proceedings of the XXIV International Seminar on Interaction of Neutrons with Nuclei, JINR, Dubna 2017, p. 166.
- [19] J.M. Blatt, V.F. Weisskopf, *Theoretical Nuclear Physics*, New York, John Wiley and Sons, 1952.
- [20] N.P. Balabanov et al., Phys. Part. Nucl. 21, 317 (1990).
- [21] S.F. Mughabghab, Atlas of Neutron Resonances, 5th Edition, Elsevier, Amsterdam 2006.
- [22] J.O. Rasmussen, *Phys. Rev.* **113**, 1593 (1959).
- [23] Yu.P. Popov, (n, α) Reaction on Resonance Neutrons, JINR 3-8747, Dubna 1975.
- [24] A.M. Lane, J.E. Lynn, Proc. Phys. Soc. A 70, 557 (1957).
- [25] Yu.P. Popov et al., Sov. J. Nucl. Phys. 32, 893 (1980).
- [26] https://www-nds.iaea.org/exfor/exfor.html