
Vol. 49 (2018) ACTA PHYSICA POLONICA B No 3

SKYRME N2LO PSEUDO-POTENTIAL
FOR CALCULATIONS OF PROPERTIES

OF ATOMIC NUCLEI∗

P. Becker, D. Davesne, J. Meyer

Université de Lyon, Université Lyon 1
43 Bd. du 11 Novembre 1918, 69622 Villeurbanne, France

and
CNRS-IN2P3, UMR 5822, Institut de Physique Nucléaire de Lyon, France

J. Navarro

IFIC (CSIC-Universidad de Valencia)
Apartado Postal 22085, 46071 Valencia, Spain

A. Pastore

Department of Physics, University of York
Heslington, York, Y010 5DD, United Kingdom

(Received December 18, 2017)

We present recent developments obtained in the so-called N2LO exten-
sion of the usual Skyrme pseudo-potential. In particular, we discuss the
isovector splitting mass in infinite nuclear matter and the pairing gaps of
selected semi-magic even–even nuclei.
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1. Introduction

Skyrme’s original idea [1] was to build an effective zero-range pseudo-
potential as a momentum expansion of a given finite-range form factor. In
Ref. [2], we have explicitly discussed how it is possible to derive (starting
from a finite-range interaction such as Gogny [3] or M3Y [4]) all the terms
of the Skyrme interaction up to any order. At order three, the results are
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in agreement with the previous calculations done in Refs. [5, 6] when one
imposes that the N3LO1 pseudo-potential is invariant under Galilean and
local gauge transformations.

The main motivations behind exploring such extended versions of the
Skyrme pseudo-potential have been discussed in Ref. [7]: the current discrep-
ancies observed between predicted values with the standard Skyrme pseudo-
potential and the measured observables cannot be further reduced by using
improved fitting procedures. It is thus time to explore richer functionals
that may help us getting theoretical predictions closer to the experimental
measurements.

The first decisive step can be found in Ref. [8] where the authors have
used for the very first time the extended N3LO functional [5] to test the
role of higher order terms. By means of density matrix expansion (DME),
they have shown that the next-to-next-to-leading order (N2LO) plays an
important role in reducing by roughly one order of magnitude the discrep-
ancy between the exact result and the DME expansion. By extending the
formalism to N3LO, the DME results further improve and get closer and
closer to the exact values, thus showing that the expansion converges.

Then, in Ref. [9], we have performed the very first study of the ex-
tended Skyrme N2LO pseudo-potential in the case of spherical even–even
nuclei. In that article, we have obtained the first parametrisation of such a
pseudo-potential using properties of some selected doubly-magic nuclei. In
the present article, we continue our investigation by extending our analysis
to open-shell nuclei and, in particular, exploring the behaviour of pairing
gaps along some isotopic chains [10] using the N2LO pseudo-potential.

The article is organised as follows: in Sec. 2, we briefly summarise the
key-concepts of the N2LO Skyrme pseudo-potential. In Sec. 3, we discuss the
properties of the effective mass and in Sec. 4, we discuss pairing properties
of the SN2LO1 interaction. We finally provide our conclusions in Sec. 5.

2. Skyrme N2LO

The N2LO Skyrme pseudo-potential, as described in Refs. [5, 6, 11], is
a generalisation of the standard Skyrme interaction, corresponding to the
expansion of the momentum space matrix elements of a generic interaction
in powers of the relative momenta k,k′ up to the fourth order. It is written
as the sum of three terms [12]

VN2LO = V C
N2LO + V LS

N1LO + V DD
N1LO . (1)

1 N`LO with ` = 1, 2, 3, . . . is the name given to the pseudo-potential or a functional
when the highest power of the momentum operator kept before truncating the ex-
pansion is k2`.
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The central term reads
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In the above expression, a Dirac function δ(r1−r2) is to be understood [13].
The density-dependent term V DD

N1LO and the spin-orbit term V LS
N1LO have the

same structure as in the standard Skyrme interaction [14]. An alternative
to the use of a density-dependent term would be the inclusion of an explicit
three-body term. This possibility has been discussed in details in Ref. [15].

From the interaction given in Eq. (1), we are in position to derive the cor-
responding functional form by averaging over the Hartree–Fock (HF) states.
Since the focus of the article is the study of semi-magic even–even nuclei, we
limit ourselves to the time-even spherically-symmetric case and we obtain

E =
∑
t=0,1

Cρt ρ
2
t + C∆ρ

t ρt∆ρt + Cτt ρtτt − 1
2C

T
t J

2
t + C∇Jt ρt∇ · J t

+C
(4)∆ρ
t (∆ρt)

2 + C
(4)Mρ
t

(
ρtQt + τ2

t

)
+2C

(4)Mρ
t [τt,µν τt,µν − τt,µν ∇µ∇νρt]

+2C
(4)Ms
t [Kt,µνκKt,µνκ − 2Jt,µνVt,µν ] . (3)

We refer to Ref. [9] for a more detailed discussion on the properties of the
N2LO functional. By comparing Eq. (3) with the standard form of the
Skyrme functional (N1LO), see, for example, Ref. [16], we observe the ap-
pearance of new densities: Vt,µν ,Kt,µνκ, Qt, τt,µν whose complete expressions
can be found in Ref. [9]. In this reference, we have also given some other
expressions of scalar quantities related to these new densities.

In order to have a physical insight and give some order of magnitude, we
show in Fig. 1 the radial profile of all these local densities for 132Sn using
the SN2LO1 interaction. We observe that the density Q has similar order
of magnitude and shape as the kinetic density τ , while the other additional
densities are peaked at the surface of the nucleus and almost zero in the
bulk of the nucleus. It is presently difficult to estimate the respective role of
these new densities since only one parametrisation is available, but we plan
to investigate in the near future their properties in a more systematic way
along the nuclear chart.
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Fig. 1. Isoscalar densities in 132Sn obtained with SN2LO1 functional. See the text
for details.

3. Effective mass

The value of the effective mass at saturation density [17] has a strong
impact on the density of states around the Fermi energy and thus on the
underlying pairing properties. In the fitting protocol used to adjust SN2LO1,
we have imposed an explicit constraint on the value of the effective mass
m∗/m at saturation density (ρ0 = 0.16 fm−3) in infinite symmetric nuclear
matter (SNM). From our fit, we have obtained m∗/m = 0.71; such a value
should be compared with the one derived for SLy5* m∗/m = 0.7 and fitted
with a similar protocol [18]. In Fig. 2 (a), we show the evolution of the
effective neutron mass, m∗n/m, as a function of the density ρ for SNM and
pure neutron matter (PNM) for both interactions.

We observe that in both cases (SLy5* and SN2LO1), the behaviour of
neutron effective mass is very similar. In both cases, we observe the absence
of poles in the effective mass up to very high densities. In Fig. 2 (b), we
show the evolution of proton and neutron effective masses as a function of
the asymmetry parameter Y [19], from SNM (Y = 0) to PNM (Y = 1).
We notice that mass splitting is essentially zero at saturation density. The
splitting is slightly bigger in SN2LO1 than in SLy5*, but they are very close
to zero. We refer the reader to Ref. [17] for a devoted study of the isovector
mass splitting in the Skyrme functionals.

4. Pairing gaps

In this section, we perform a first systematic study of the pairing gaps
using the SN2LO1 functional. As for the SLy5* functional [18], it has been
fitted using properties of infinite nuclear matter and doubly-magic nuclei



Skyrme N2LO Pseudo-potential for Calculations . . . 335

0 0.08 0.16 0.24 0.32

ρ [fm
-3

]

0.5

0.6

0.7

0.8

0.9

1
m

*

n
/m

ρ
0

SN2LO1 (SNM)
SN2LO1 (PNM)
SLy5* (SNM)
SLy5* (PNM)

a)

0 0.2 0.4 0.6 0.8 1
Y

0.6

0.8

1

m
*
/m

SN2LO1 (n)
SN2LO1 (p)
SLy5* (n)
SLy5* (p)

ρ
0
=0.16 fm

-3

b)

Fig. 2. Panel (a): neutron effective mass calculated in SNM and PNM for the
two interactions as a function of the density of the infinite system. The vertical
dashed line represents the saturation density ρ0 of SNM. See the text for details.
In panel (b), we show the evolution of neutron and proton effective masses at
saturation density and in function of the asymmetry parameter Y .

with the additional stability constraint coming from Linear Response the-
ory [20–22]. This particular choice leaves us complete freedom in determin-
ing the parameters entering the pairing channel. Therefore, for the current
analysis, we have decided to use the numerical code WHISKY [9] to solve
the Hartree–Fock–Bogoliubov equations (HFB) [23] for a simple density-
dependent pairing interaction of the form of [24]

Vpair(r1, r2) = V0

[
1− ηρ(R)

ρ0

]
δ(r1 − r2) , (4)

where R = (r1 + r2)/2 is the center of mass of the interacting particles
and V0 is the strength of the interaction. To avoid an ultraviolet divergency
associated with such a contact interaction [25], we adopted a sharp-cut off in
the quasi-particle space Ecut = 60 MeV. It is then possible to determine the
pairing field ∆(r). As it is well-known, its shape can be modified by setting
the value of the parameter η to 0, 1/2 and 1, thus producing a volume, mixed
and surface pairing field [26], respectively. To quantify the amount of pairing
correlations, we calculated the average pairing gap defined as [27]

∆̄ =

∫
∆(r)ρ̃(r)dr∫
ρ̃(r)dr

, (5)

where ρ̃q is the pairing density. The results are depicted in Fig. 3. The
average pairing gaps have been obtained using SN2LO1 for the three values
of η = 0, 1/2, 1 mentioned above as a function of the neutron number N .
The experimental values have been extracted from experimental binding
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energies [28] using the standard three-point formula [29]. Since our numerical
code works in spherical symmetry only, we limited ourselves to the four
isotopic chains of semi-magic nuclei.
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Fig. 3. Evolution of average pairing gaps for Ca, Ni, Sn and Pb isotopic chains
in function of the neutron number N . Full symbols correspond to the SN2LO1
interaction, while the empty ones to SLy5*. The theoretical pairing gaps have
been calculated according to Eq. (5). See the text for details.

For these calculations, we have used a pairing strength of V0 =
−200 MeV fm3 (volume), V0 = −300.2 MeV fm3 (mixed) and V0 =
−496.6 MeV fm3 (surface). Since the pairing interaction is not adjusted
during the fitting procedure, we adjusted in a completely arbitrary way the
pairing strength to the same value of pairing gap in 120Sn. From this figure,
we can conclude that the underlying single-particle spectrum is reasonable
and the resulting pairing gaps give a reasonable description of available ex-
perimental data. For completeness, we have also repeated the same calcula-
tions using SLy5* for the mean field and the same pairing interaction. In the
figure, we have reported only (for clarity) the case of volume-type pairing
interaction (same strength). The two other not reported cases give simi-
lar results compared to the SN2LO1 ones. The small differences observed
among the two interactions are due to small differences in the underlying
single-particle structure.
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5. Conclusions

In this article, we have discussed some important properties of the ex-
tended Skyrme interaction N2LO. By using the set of parameters deter-
mined in Ref. [9], we have first studied the behaviour of the effective mass
as a function of the density and isospin asymmetry of the infinite nuclear
medium. The isovector mass splitting is still not compatible with ab initio
findings [30], but the current results go in the right direction. Therefore, one
may expect, adding such explicit constraint into the fitting protocol, that
we should be able to obtain a positive splitting [19].

We have discussed the isotopic evolution of pairing gaps for some rele-
vant isotopic chains of semi-magic nuclei using the SN2LO1 functional plus
density-dependent contact pairing interaction. At present, the extended
functional provides us with results that are qualitatively of the same level
of accuracy as SLy5*, both being fitted with a very similar fitting protocol
including the explicit constraint on the linear response of infinite nuclear
matter [22]. This is an improvement compared to the vast majority of ex-
isting functionals that manifest instabilities in the spin-channels. Unfortu-
nately, at present, we have not been able to find a quantitative indicator
that proves the necessity of using the extended pseudo-potential compared
to the simpler SLy5*. A more rigorous statistical analysis of the properties
of the new functional is now mandatory [31] as well as a rethinking of the
penalty function used during the fit to identify the most relevant observ-
ables that may help better constraining higher order parameters and avoid
sloppiness [32] in some directions of parameter space.

The work of J.N. has been supported by grant FIS2014-51948-C2-1-P,
Mineco (Spain). The work of A.P. is supported by the UK Science and Tech-
nology Facilities Council under grants No. ST/L005727 and ST/M006433.
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