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We investigate properties of the method based on time dependent su-
perfluid local density approximation (TDSLDA) within an application to
induced fission of 240Pu and surrounding nuclei. Various issues related to
accuracy of time evolution and the determination of the fission fragment
properties are discussed.
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1. Introduction

The time-dependent superfluid local density approximation (TDSLDA)
is an extension of time-dependent Density Functional Theory (TDDFT) to
superfluid systems using local pairing field. It is designed to describe real-
time dynamics of inhomogeneous fermionic systems subjected to perturba-
tions of arbitrary strength. The method is flexible and allows for applications
in various quantum systems which are defined through a suitable energy
density functional. It is also microscopic in a sense that fermionic degrees
of freedom are treated and evolved explicitly without any additional phe-
nomenological input. Various successful applications of TDSLDA include
physics of ultracold atomic gases [1], low-energy nuclear physics [2, 3], and
physics of the neutron star crust [4]. The main advantage of TDSLDA con-
sists of treating paired fermions as a dynamic field which has its own modes
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of excitations. Indeed, the correct treatment of pairing is crucial when de-
scribing nuclear reactions, such as fission, that are strongly influenced by
pairing correlations [3, 5].

In the context of nuclear reactions, the typical scenario in which TDDFT
is used consists of a system being initially in a ground state or a state
characterized by a certain deformation achieved using a constraint solution
(obtained within the standard DFT). Subsequently, the nucleus is acted
upon by a perturbation that drives it out of equilibrium. The external
perturbation in the nuclear system can be of various origins: it can be
caused by photon absorption, by neutron capture, or the perturbation can
arise as an interaction between the projectile and the target nucleus. It
has to be emphasized that the perturbation may be of arbitrary strength
since TDDFT can be applied both in the linear-response regime as well as
in the nonlinear regime. In particular, the external perturbations can be
strong enough to compete with, or even override the internal interactions
that provide the structure and stability of atomic nucleus, as in the case of
induced fission process.

The typical procedure used in the context of nuclear reactions is the
following:

— Prepare the initial state by solving static Kohn–Sham equations for a
nucleus (or nuclei if more than one system is involved in the reaction
process), to get a set of ground-state Kohn–Sham orbitals and orbital
energies.

— The time evolution can be obtained by applying certain external field
simulating e.g., the photon absorption, or through generating nonzero
velocities of nuclei towards each other. Then one solves the time-
dependent Kohn–Sham equation from the initial time to the desired
final time. The time propagation of the orbitals determines the time-
dependent densities.

— During time evolution, one may calculate the desired observable(s)
as functionals of densities used as building blocks of the energy den-
sity functional. It implies that TDDFT is particularly well-suited to
calculate one-body observables.

Hence, it is clear that in particular for calculations of induced fission
the stability of the evolution of nuclear system is crucial as it influences
the nascent fragment properties. In this paper, we discuss issues pertain-
ing to accuracy of induced fission of selected Pu isotopes within TDSLDA
employing Skyrme SLy4 nuclear energy density functional (NEDF).
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2. Time step and pairing coupling constant

The set of equations originated from TDSLDA has the following form:

i~
∂

∂t

(
Uµ(r, t)
Vµ(r, t)

)
=

(
h(r, t) ∆(r, t)
∆∗(r, t) −h∗(r, t)

)(
Uµ(r, t)
Vµ(r, t)

)
, (1)

where h and ∆ are determined by the energy density functional through
the densities which are constructed from amplitudes U and V (for clarity
we omit here spin and nucleon indices). Therefore, TDSLDA represents a
system of coupled, nonlinear time-depended partial differential equations. In
nuclear applications, the number of equations is of the order of hundreds of
thousands (depending on the lattice size). The time interval of the evolution
of the system depends on the physical problem studied, and in the case of
induced fission, it is set by the time needed for a nucleus to move from
saddle point to separated fragments, which requires around half a million
time steps.

In the case of induced fission, the time-depended equations of TDSLDA
are solved on a spatial lattice discretized by a lattice constant a. The lattice
spacing a = 1.25 fm sets the cubic momentum cutoff pc = ~kc ≈ 860 MeV/c,
where kc =

√
3π/a [7]. For fission of 240Pu, 238Pu and 242Pu, the (25 fm)2×

50 fm box is used, which is large enough to determine properties of two
separated fission fragments.

The time evolution is performed using the fifth-order Adams–Bashforth–
Milne predictor–modifier–corrector method [8]. The number of evolved am-
plitudes Uµ, Vµ is equal to 4Nxyz, where Nxyz is the number of lattice points
(factor 4 originates from two spin and two isospin values). This is due to
the fact that Bogoliubov transformation, which is defined at each time step,
has to fulfill completeness relations and, thus, requires to include all states
within the space defined by the lattice. Note that this is in contrast to
the static SLDA calculations, where the energy cutoff can be set at much
lower energies. In TDSLDA, one can prove that the energy of the system
is conserved only when all states are evolved (see Ref. [6] for discussion re-
lated to the energy cutoff in TDDFT). In practice, however, if only a short
time evolution is required, imposing a lower energy cutoff is enough as the
discrepancies occur only after a certain time interval. It is illustrated in
Fig. 1, where 240Pu is evolved at E∗ = 8.08 MeV on a (22.5 fm)2 × 50 fm
lattice for 3 different cutoff energies: 75 MeV (black/dashed line), 100 MeV
(green/dotted line), 120 MeV (blue/solid line). The relation between pair-
ing coupling constants for three energy cutoffs is set according to Ref. [10].
Clearly, the discrepancy between these three solutions is cutoff-dependent.
However, for short time scales, even a relatively low-energy cutoff is sufficient
to obtain accurate solutions.
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Fig. 1. (Color online) Time evolution of induced fission of 240Pu compound nucleus
with pure volume pairing on a 182× 40 lattice with a lattice constant of 1.25 fm at
E∗ = 8.08 MeV using a spherical cutoff for 3 different cutoff energies: 75 MeV (black
dashed line), 100 MeV (green dotted line), 120 MeV (blue solid line). Subfigure (a)
shows total energy as a function of time, and subfigure (b) shows quadrupole Q20

moment as a function of time.

In the induced fission studies, however, a long-time evolution is required
and, therefore, one needs to include all the states. The pairing coupling
constant needs to be renormalized through the relation [9]

∆ (r) = −geffχ (r) ,

1

geff
=

1

g
− meffK

4π~2b
, (2)

where χ is the anomalous density, b is the lattice constant andK = 2.4427496
is a numerical factor, resulting from the expression:

K =
12

π

π/4∫
0

dθ ln
(
1 + 1/ cos2 θ

)
(3)

as in Ref. [9].
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Using the cubic cutoff renormalization and evolving all the states, the
energy cutoff Emax ≈ 400 MeV is three times larger as compared to calcu-
lations with spherical cutoff [3] and, therefore, a time step ∆t ∼ 1/Emax

for the dynamic calculation needs to be reduced. Consequently, the time
step ∆t = 0.03 fm/c (≈ 10−25s) turns out to be sufficient to get a stable
solutions within the required time interval. The relative error for evolutions
with two different time steps is shown in Fig. 2. Namely, the time evolution
of 242Pu nucleus at E∗ = 4.90 MeV for T < 4000 fm/c with ∆t0 = 0.03 fm/c
and ∆t0 = 0.024 fm/c has been plotted. Note that for this case, the total
energy difference between the two trajectories with two different time steps
is within 1 eV!

Fig. 2. Time evolution of fissioning 242Pu up to 4000 fm/c. Top: octupole Q30

moment as a function of quadrupole Q20 moment (time step: ∆t = 0.030 fm/c).
Bottom: the differences in the quadrupole moment for two evolutions obtained
with time steps: ∆t = 0.030 fm/c and ∆t = 0.024 fm/c.

3. Energy conservation

The initial state for the simulation of the fission process has been pre-
pared by solving the static DFT equations with the constraint, which pro-
duced reflection asymmetric shape with a quadrupole moment q0≈16 500 fm2.
It corresponds to an excited configuration slightly beyond the outer bar-
rier (q0 ≈ 14 000 fm2). The initial state of 240Pu nucleus is 8.08 MeV
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above the ground state and corresponds to the neutron incident energy
En = 1.54 MeV. Analogously, the constrained static solution for 238Pu nu-
cleus is 4.64 MeV above the ground state. The constraint has been released
adiabatically, and the number of steps in the saddle-to-scission time evo-
lution is about 300–500 thousand. The average particle number in time-
evolution is conserved. The precision of the total energy conservation of the
system during the time evolution varies from 0.5 MeV to 3.5 MeV, which is
0.03% to 0.2% of the total energy, respectively (see Fig. 3).

Fig. 3. Total energy as a function of time during saddle-to-scission induced fission.
Subfigure (a) shows fission of 240Pu compound nucleus, and subfigure (b) shows
238Pu compound nucleus. Initial states of compound nuclei with a quadrupole
constraint q0 = 16500 fm2 correspond to Ex = 8.08 MeV and Ex = 4.64 MeV,
respectively.

Note that as shown in Fig. 2, top, the fission path for Pu isotopes is
not smooth. At various times during evolution, the nucleus rearranges its
structure and various internal degrees of freedom are excited along the fission
path. When the nucleus keeps rearranging, but cannot find a fission path,
the error in total energy keeps increasing and the nucleus does not fission.

4. TKE and excitation energies of the fragments

Within the framework of TDSLDA, one can easily extract the total ki-
netic energy (TKE) and, hence, the total excitation energy (TXE) of the
fragments, as well as the excitation and kinetic energies of each fragment
separately. It is one of the main advantages of TDSLDA over those based on
adiabatic assumptions or treating internal degrees of freedom within semi-
classical approaximation (e.g., based on the Langevin-type equation). TKE
of the fragments can be extracted when fragments are well-separated, i.e.,
at distances larger than 10 fm. The typical accuracy of TKE determination
is about 0.5 MeV, that is 0.3 %.
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The agreement of TKE with experimental data for 239Pu(n,f) at En <
6MeV [11] is within 3.5MeV, which corresponds to 2% error. For example:
TKE (En = 1.54 MeV) = 173.8 MeV (exp. 177.3 MeV), TKE (En =
5.63 MeV) = 176.1 MeV (exp. 175.8 MeV).

5. Conclusions

The superfluid TDDFT in the framework of TDSLDA is a perfect can-
didate to provide a fully microscopic description of nuclear fission and low-
energy nuclear reactions, among other approaches that have been suggested
over the years, with various degrees of theoretical assumptions about the
character of the fission dynamics (see [12] and references therein). As we
discussed above, the method, when applied on a leadership-class supercom-
puters, is capable to provide results concerning fission like TKE, TXE and
provide energy sharing between fragments, i.e., data which can be compared
directly to experiment. As discussed above, the accuracy of the description
of the fission process within TDSLDA is within 0.1 % of the total energy and
the calculated TKE allow for the 0.2% precision. These values can be grad-
ually decreased by employing higher order integration methods and smaller
lattice constants.
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