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After shortly analysing data relevant to fission hindrance of odd-A nu-
clei and high-K isomers in super-heavy (SH) region, we point out the in-
consistency of current fission theory and propose an approach based on
the instanton formalism. A few results of this method, simplified by re-
placing selfconsistency by elements of the macro–micro model, are given to
illustrate its features.
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1. Introduction

Occurrence of isomers — relatively long-lived excited states — is well-
established in many nuclei, including SH region, see e.g. Ref. [1]. It is
believed that the approximate conservation of the high-K quantum number
(related to the axial symmetry of a nucleus) combined with the low excitation
result in the hindrance of their electromagnetic decay. The macro–micro
model based on the deformed Woods–Saxon (W–S) potential predicts [2–4]
high-j orbitals lying close to the Fermi level in Z = 102–110 nuclei. This
explains presence of known isomers and suggests both new ones and high-K
ground or low-lying states in odd and odd–odd nuclei. Such states could live
longer than the ground states (g.s.) — see Refs. [2, 4, 5], which makes the
study of their stability and, in particular, of their spontaneous fission (SF),
very interesting.
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2. SF hindrance in odd nuclei and isomers

It is known that fission half-lives of odd nuclei are 3–5 orders of magni-
tude longer than those of their even–even neighbours — see e.g. the recent
review [6]; slightly smaller odd–even hindrance is observed for fission isomers
in actinides [7]. This phenomenon is usually attributed to the specialization
energy — increase in fission barrier due to configuration (K-number) con-
straint. Notice, however, that such an increase should depend on the Ω
(projection of the single-particle angular momentum on the symmetry axis)
of the odd orbital, because of smaller level densities for larger Ω, while the
data contradict this [6].

The data on fission hindrance of high-K isomers in heaviest nuclei are
given in Table B and Fig. 13 in Ref. [8]. After eliminating the likely erroneous
point for 262Rf — see Ref. [6], the one for 256Fm, based on only two observed
fission events [9], and not much informative lower bounds on Tsf(iso) (i.e.
much smaller than Tsf(g.s.)), only data for 250No [10] and 254No [11] are
left. The recent measurement [12] added new data on 254Rf. All three are
given in Table I and may be prudently summarized by saying that hindrance
factors HF= Tsf(iso)/Tsf(g.s.) > 10 are possible. Data on multiple fission
isomers in even–even actinides [7], when interpreting higher lying ones as
high-K configurations in the second well, suggest HF= 1–10 for Pu isotopes
and 103–104 in Cm isotopes.

TABLE I

Fission half-lives and hindrance factors for the K isomers and ground states in the
first well.

Nucleus Kπ Tsf(g.s.) Tsf(iso) HF = Tsf(iso)/Tsf(g.s.)
250No [10] (6+) 3.7 µs > 45 µs > 10
254No [11] 8− 3×104 s 1400 s ≈ 1

20
254Rf [12] (8−) 23 µs > 50 µs > 2

(16+) > 600 µs > 25

Within the present theory, the fission hindrance is related to the block-
ing mechanism: one blocked orbital corresponds to a configuration of an
odd nucleus, two blocked orbitals give rise to a 2 quasi-particle isomer in an
even–even nucleus, etc. One expects an increase in energy of the isomeric
configuration Econf , which involves a specialization energy for blocked or-
bitals, relative to the adiabatic one over a whole region of deformation. In
general, this modifies both the shape and height of the isomer fission barrier
in comparison to that of the g.s., as it follows from the energy landscape
Econf −Eexc, with Eexc — the excitation energy of the isomer above the g.s.
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In reality, the specialization energy must depend both on the symmetry of
a nucleus along the fission path and the non-adiabatic effects in tunnelling
dynamics. While the data suggest that specialization energy increases the
barrier in some cases, a very large isomeric vs. g.s. fission barrier increase
is obtained in calculations for many configurations with blocked high-Ω or-
bitals. In Fig. 1, we show energy landscapes around and beyond the second
minimum in 242Cm: the adiabatic one and for a fixed K = 10 state (no in-
trinsic parity is indicated as the reflection symmetry is broken), correspond-
ing to the Kπ = 10−, dominantly ν11/2+[615], ν9/2−[734] configuration in
the 2nd well, a unique candidate for a high-K isomer there. Huge rise of
the fission barrier height and width for the isomer relative to the adiabatic
one can be seen in Fig. 1. In view of this, the experimental relative HF [7]
for two shape isomers in 242Cm might be understood as coming solely from
the hindrance of the EM decay of the higher-lying isomer to the g.s. in the
2nd well, with the subsequent fission of the latter — see the discussion in
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Fig. 1. Energy relative to the spherical macroscopic contribution, E −
Emacr(sphere), for the lowest and isomeric Kπ = 10− (parity at the 2nd min-
imum) configurations in 242Cm around and beyond the second minimum. Seven
deformations β20–β80 were included in the grid; β10 was fixed by the center-of-mass
condition; each point results from the minimization over not displayed coordinates.
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Refs. [10, 12]. Another calculated large rise in barrier due to blocking the
high-Ω orbitals may be seen in Fig. 3 in Ref. [4], this time for the predicted
Kπ = 12− g.s. of the SH odd–odd nucleus 272Mt.

Triaxiality of the fission saddle could decrease specialization energy as
well as odd–even and isomeric HFs. Another mechanism acting in this di-
rection would be a non-selfconsistent variation of pairing gaps, minimizing
the action

∫ √
2B(q)(V (q)− E)dq proposed in Ref. [13] (q — deformation,

B(q) — mass parameter, V (q) — deformation energy and E — g.s. energy).
Based on an earlier idea of Ref. [14] and calculations [15], this interesting re-
sult is, however, doubtful since: (1) the cranking formula for inertia was used
as a general one beyond its limits, (2) an analog of the velocity–momentum
constraint, crucial for the condition of minimal action, was ignored — see
Ref. [18]. As we show below, the lack of a proper inertia parameter is the
main obstacle in the treatment of fission of a system with blocked levels.

3. Failure of the standard SF rate evaluation with blocked states

In even–even nuclei, pairing provides an energy gap of at least 2∆ be-
tween the g.s. and the lowest 2 q.p. excitation; this amounts to more than
1 MeV in heavy nuclei. One can thus assume that there are no sharp level
crossings of a many-body system and that the adiabatic approximation can
be applied. This leads to the well-known cranking formula for the inertia
parameter, which can be used to compose action integral and minimize it
over various fission trajectories.

The situation changes drastically for odd and odd–odd nuclei. In such
a case, the neutron or proton contribution to the cranking mass parameter
Bqiqj , derived as if the adiabatic approximation were legitimate, reads

Bqiqj = 2~2
 ∑
µ,ν 6=ν0

〈µ|∂Ĥ∂qi |ν〉〈ν|
∂Ĥ
∂qj
|µ〉

(Eµ + Eν)
3 (uµvν + uνvµ)

2

+
1

8

∑
ν 6=ν0

(
ε̃ν

∂∆
∂qi
−∆∂ε̃ν

∂qi

)(
ε̃ν

∂∆
∂qj
−∆∂ε̃ν

∂qj

)
E5
ν


+2~2

∑
ν 6=ν0

〈ν|∂Ĥ∂qi |ν0〉〈ν0|
∂Ĥ
∂qj
|ν〉

(Eν − Eν0)
3 (uνuν0 − vνvν0)

2 . (1)

Here, the ground state corresponds to the odd nucleon occupying the orbital
ν0. It is assumed that the one pairing gap∆ and one Fermi energy λ describe
simultaneously the g.s. and its two-quasiparticle excitations: those with the
odd particle in the state ν0 (which give contribution in the square bracket)
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and those with the odd particle in the state ν 6= ν0 and the orbital ν0 paired
(whose contribution is in the third line of the formula). The quantity ε̃ν is
defined by ε̃ν = εν − λ, u and v are the usual BCS occupation amplitudes.
It is clear that this expression is invalid whenever a close avoided crossing is
encountered, as the contribution proportional to (Eν0 −Eν)−3 is nearly sin-
gular there. Moreover, due to a partial occupation of levels, the singularity
may come about from a degeneracy of the quasiparticle energies of orbitals
at the opposite sides of the Fermi level. Already these two reasons make
the cranking formula unusable. However, there is still another deficiency: a
departure from the symmetry preserved on a part of the fission trajectory
produces a negative contribution to the inertia parameter whose magnitude
would depend on the proximity of the relevant level crossing and could dom-
inate the whole expression. Therefore, a more suitable method which goes
beyond the adiabatic approximation is needed.

4. Instanton-motivated approach to SF of odd nuclei and isomers

Our idea is based on the instanton formalism applied to the SF process,
which was formulated for the mean-field setting in Refs. [16, 17] and further
investigated in Ref. [18]. The instanton equations given there read

~
∂φi(τ)

∂τ
=
(
ζi − ĥ(τ)

)
φi(τ) , (2)

which are basically the time-dependent Hartree–Fock equations transformed
to the imaginary time t → −iτ with a periodicity fixing term ζiφi (since
the bounce solutions should fulfil the periodicity condition φi(−T/2) =
φi(T/2)). In these equations, φi, i = 1, . . . , N are the single-particle (s.p.)
states composing the N -body Slater state and ζi are the Floquet exponents
which for the selfconsistent instanton would be equal to the s.p. energies at
the metastable minimum, ζi = εi(qmin). However, for a finite imaginary-
time interval [−T/2, T/2], ζi 6= εi(qmin), although they tend to this limit
when T → ∞. Equation (2) conserve the overlaps 〈φi(−τ) | φj(τ)〉 = δij .
The instanton action is given by

S = ~
T/2∫
−T/2

dτ

N∑
i=1

〈φi(−τ)|∂τφi(τ)〉 =
T/2∫
−T/2

dτ

N∑
i=1

〈
φi(−τ)

∣∣∣ζi − ĥ(τ)∣∣∣φi(τ)〉 .
(3)

Equation (2) are more difficult to handle than their real-time counterparts
since the selfconsistent Hamiltonian ĥ[φ∗(−τ), φ(τ)] is now nonlocal in τ .
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Here, we replace the selfconsistent mean field in (2) by the phenomeno-
logical Hamiltonian with a deformed W–S potential. This can be viewed as
a simplification of a selfconsistent theory to a macro–micro version. In this
approach, the collective velocity q̇ must be provided as an external informa-
tion. We take it from

Beven(q)q̇
2 = 2(V (q)− E) , (4)

where q is a collective coordinate (e.g. the quadrupole moment) along a
chosen path through the barrier, E is the g.s. energy, V (q) — the macro–
micro potential energy, and Beven(q) — the cranking inertia parameter for
the neighbouring even–even nucleus.

In solving the equations with the W–S potential, we restrict to the sub-
space of the N adiabatic orbitals ψµ(q). In this subspace, there are N
bounce solutions φi(τ), each of which tends to the s.p. orbital ψi(qmin) at
the metastable minimum as T → ±∞. By expanding the solutions onto
adiabatic orbitals,

φi(τ) =
∑
µ

Cµi(τ)ψµ(q(τ)) , (5)

we obtain the following set of equations for the square matrix of the coeffi-
cients Cµi(τ):

~
∂Cµi
∂τ

+ q̇
∑
ν

〈
ψµ(q(τ))

∣∣∣∂ψν
∂q

(q(τ))
〉
Cνi = [ζi − εµ(q(τ))]Cµi . (6)

The conservation of overlaps leads to the condition on Cµl(τ):

N∑
µ=1

C∗µi(−τ)Cµj(τ) = δij . (7)

Thus, the quantity pµi(τ) = C∗µi(−τ)Cµi(τ) may be considered as a quasi-
occupation (it can be negative or even complex in general case) of the adia-
batic level µ in the bounce solution i, with

∑
µ pµi(τ) = 1,

∑
i pµi = 1. The

action coming from one occupied s.p. bounce state φi(τ) is

Si/~ =
1

~

T/2∫
−T/2

dτ
N∑
µ=1

[ζi − εµ(q(τ))] pµi(τ) , (8)

and the total action is a sum of the contributions from the occupied s.p.
bounce states: Stot =

∑
i,occ Si.
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One can ask whether the instanton action tends to the adiabatic one
in the limit of small q̇. The comparison of action values for various q̇ for
a two-level system is shown in Table II. The adiabatic action is generally
higher than the one obtained from the instanton, but with decreasing q̇ both
values converge to each other, as one would expect. For stronger interaction
between levels (implying smaller non-adiabatic coupling), the convergence
is even faster.

TABLE II

Instanton action values compared with the adiabatic ones in the 2-level system for
different maximal velocities q̇max and two values of interaction strength Vint. Here,
(ε2 − ε1)min = 2Vint and the ratio ~q̇max/(ε2 − ε1)min should be sufficiently small
for the adiabatic approximation to hold.

~q̇max/(ε2 − ε1)min 0.16 0.08 0.05 0.08 0.04 0.025

Vint [MeV] 0.5 1.0

Sinst/~ 1.183 0.770 0.569 0.398 0.218 0.149
Sadiab/~ 2.015 1.007 0.672 0.459 0.229 0.152

We present the behaviour of solutions to Eq. (6) and resulting action
values for four Ωπ = 1/2+ neutron levels taken from the deformed W–S
potential for 272Mt isotope along the axial (close to static) fission path. The
energy levels are depicted in Fig. 2. The continuous path was determined
based on the energy landscape calculated for β20, β40 deformation parameters
with the minimization over β60, β80.
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The instanton solution starting and ending as the last occupied state
below the Fermi level at the minimum (the lowest one in Fig. 2) is shown in
Fig. 3 in terms of quasi-occupations introduced above. One can see that the
particle remains mostly in the initial adiabatic state, except in the vicinity
of the avoided crossings where it excites to the second adiabatic level. As
long as these crossings are isolated (no other level comes close to them), the
excitations to higher states are negligible. This behaviour is in contrast to
what we know from the real-time dynamics; the closest analogy would be
the 2-level Landau–Zener model, where, if the system starts in the lower
state at t = −∞ and some non-adiabatic transitions take place during the
evolution, then there is a nonzero probability (given by the Landau–Zener
formula) that the system will end up in the upper state at t = +∞.
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Fig. 3. Quasi-occupations for instanton starting as the lowest adiabatic level.

A comparison of the instanton action (for the above solution) with the
adiabatic one is presented in Table III for three different collective velocities q̇
— the one from Eq. (4), and two scaled down by a constant factor. As may
be seen, the adiabatic formula overestimates the instanton action, giving the
values more than order of magnitude larger. This shows how far from the
adiabatic limit we actually are in this case of the unpaired level undergoing
sharp avoided crossings.

A difference in total action between the odd nucleus and its even–even
neighbour comes from: (1) a difference in q̇ and (2) the contribution of the
last state occupied by the unpaired nucleon. The integrands of the total
action for six or seven particles on the lowest four out of N = 8, Ωπ = 3/2+

neutron levels in 272Mt, with the 4th state empty or singly occupied, are
shown in Fig. 4. As one can see, the contribution of the odd nucleon is
rather smooth and moderate (in general, it can be negative). Note that
contributions to S from other Ωs and parity will still decrease its part in the
total.
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TABLE III

Comparison of the action corresponding to the lowest state obtained from the
instanton solution (Sinst) and in the adiabatic approximation (Sadiab) for a few
values of maximal collective velocity q̇max.

~q̇max [MeV] Sinst/~ Sadiab/~

0.14 2.6818 55.048
0.09 2.4892 36.699
0.06 2.3492 25.689
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Fig. 4. (Colour on-line) Comparison of the total action integrands for six (black
line) and seven (grey/red line) neutrons.

5. Conclusions

Experimental data suggest a mechanism for fission hindrance for high-K
isomers similar as that for odd-A nuclei in the whole SH region. The pairing-
plus-specialization energy (configuration-preserving) mechanism seems to
have a too strong effect, as judged from energy landscapes for some odd-A
nuclei. However, the current description of fission half-lives, employing adi-
abatic approximation, is not suitable for odd-A nuclei and isomers. The
instanton method adapted to the mean-field formalism may provide a basis
for the minimization of action. The preliminary, non-selfconsistent studies
indicate that in this method, the action is well-defined for an arbitrary path
and the contribution to action of the odd nucleon is not large. The formalism
for paired systems includes dynamic changes of pairing gaps as postulated
in Ref. [14], but such that follow from the Hamiltonian-like dynamics [18].
Their study and work on the inclusion of the selfconsistency are under way.
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