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We present a new method for constructing conformal Yano—Killing ten-
sors in the five-dimensional Anti-de Sitter space-time. The found tensors
are represented in two different coordinate systems. We also discuss, in
terms of CYK tensors, global charges which are well-defined for asymp-
totically (five-dimensional) Anti-de Sitter space-time. Additionally, in Ap-
pendix A, we present our own derivation of conformal Killing one-forms in
four-dimensional Anti-de Sitter space-time as an application of the Theo-
rem 4.
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1. Introduction

We generalize the construction of the conformal Yano—Killing tensors
presented in [1] to the case of the five-dimensional Anti-de Sitter space-time
which is intensively explored in the context of the AdS/CFT correspon-
dence. In particular, one can try to generalize formulae (3.11)-(3.17) from
Section 3.2 in [10] to the case of conformal tensors. More precisely, ten-
sor product of two conformal Killing vector fields K* can be replaced by
a symmetric conformal Killing tensor K*: KFKY(O,,) — K" (Ou),
but for the skew-symmetric tensor F),, (primary operator) one can consider
the expression Q,,, (F*”), where @ is the conformal Yano-Killing two-form!.
We also generalize constructions from [1| to show how the conformal Yano—
Killing tensors can be used to define global gravitational charges in the case
of the five-dimensional Anti-de Sitter space-time.
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! Obviously, higher rank tensors with more indices are also possible, both symmetric
and skew-symmetric.
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1.1. Construction of the five-dimensional Anti-de Sitter space-time

Anti-de Sitter space-time can be constructed in the following way. We
consider six-dimensional affine space V', which is modeled on the vector
space V. The vector space V is equipped with a pseudo-scalar product

(v,w) = = 0%’ + Z

The affine space V is naturally a flat manifold. If we choose one point in
V, then it effectively turns our affine space V into vector space V which is
1§omorph1(: to RS but not canonically. Next, we consider in the affine space
V identified with the vector space V the locus of the equation

(z,2) = —1?. (1.1)

Bound (z,z) = —I? defines five-dimensional submanifold of V, which as a
manifold is the five-dimensional Anti-de Sitter space-time. In the case of
affine space V we have canonical isomorphism ¥ wcv La V ~ V. This means

that V is a (pseudo)-Riemannian manifold. Therefore, we can pull back the
metric to the locus (x,7) = —I? from the ambient space V. That way our
five-dimensional Anti-de Sitter, later denoted AdS5, gains the structure of
the (pseudo)-Riemannian manifold.

Each linear transformation of V' that respects quadratic form (-, -), that
is a transformation from SO (2, 4) group, preserves AdS5 as a subset, because
if f € SO(2,4) then it follows that (z,x) = (fz, fz). The metric of AdS5
is also preserved, because transformation f preserves the (pseudo)-scalar
product of the space V, so it also preserves (pseudo)-Riemannian metric of
the affine space V. That means that it also preserves metric induced on
AdS5, which is submanifold of V. This shows that SO (2,4) is a subgroup
of the isometry group of AdS5 (it is, in fact, the whole isometry group).

2. Description of the metric submanifold

Inspired by this example, let us consider general situation. We have a
pair (N, g), where g is a metric of manifold N. We also have submanifold M

N
of codimension 1 with metric g induced from N. Let VxY be the Levi-Civita
derivative of the vector field Y tangent to N with respect to the field X,
which is also tangent to V. If fields X, Y are tangent to M, that is X, Y €

N
I'(TM), we will also write VxY understanding that in this notation, fields
X,Y are substituted by their arbitrary local extensions. The result on M



Conformal Yano—Killing Tensors for Space-times with Cosmological ... 787

M
does not depend on the choice of those extensions. Next, we denote as VxY
the derivative of the field Y tangent to M with respect to the field X also
tangent to M with respect to the metric connection on M. In this notation,

N M
we have X,Y € I'(TM) = VxY = VxY + K(X,Y), where K(X,Y) is the
form of external curvature. It is also called the second fundamental form.
It is known that K(X,Y) L TM and K(X,Y) = K(Y, X).

If we choose a local coordinate system x1,...,Z,4+1 on some open subset
of N which satisfies ) # {p € N | 41 = 0} C M, then the collection of
functions z1, ..., T, is a local coordinate system on M. Let Latin indices go
from 1 to n, whereas Greek letters go from 1 to n+1. We also choose normal
field n defined on M such that n € I'(TN), n L TM, and (n,n) = £1. Here,
we choose the sign depending on the type of the surface (null surfaces are not
considered here). We can now write K(X,Y) = K(X,Y)n which defines K

as a symmetric tensor of rank 2. We also use convenient notation, in which
N M
vk, = Vot and vy = Vot

Theorem 1. Let w be a one-form on the manifold N. Then

Whla = Wha — Kpwunt'.

The proof of this theorem can be found in Appendix B.

Theorem 2. The external curvature form Ky satisfies equation K =
_Llp
skng-

The proof of this theorem can be found in Appendix B.

Theorem 3. In the case of N = V and M = AdS5, we have K = Cg,
where C' is some real function on M.

Proof. We have the identity K = —%En g. On the vector space with pseudo-
scalar product we can always choose coordinates (r,¢;), where r(p) =
V]1g(p—0,p=0)], p € N (0 here is an arbitrarily chosen point in N)
is the distance from the zero vector, whereas ¢; are some angles that are
coordinate system of the pseudo-sphere of constant r. Additionally, we can
choose coordinates ¢; in such a way that the metric has the form of

g = +dr? £r%j, (2.1)

where ¢ is a metric of the unit pseudo-sphere parametrized by ¢; and does
not depend on the coordinate r. The Lie derivative along the field n = 0,
of the metric g is, of course, proportional to ¢ which is proportional to the
induced metric on pseudo-sphere. O
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So far the results are repeated to fix the notation — the subject of
Theorems 1-3 is well-established.

3. Pulling back conformal tensors to submanifolds

Theorem 3 suggests restricting our considerations to the case when K ~ g.
From now on we assume that this condition holds. Now, we can prove the
following theorem.

Theorem 4. If k is a conformal Killing one-form on N, then its pullback
to M is a conformal Killing one-form on M.

Proof. Let us compute
E(app) + Kapn''ky = ko) (= Agap)

where A is a function. We see that k() ~ ga» because both terms above are
proportional to the metric tensor g, on M. Let us notice that in this case,
the restriction of a Killing one-form, that is one-form such that k) = 0,
in some cases will not be a Killing one-form on M but only a conformal
one. O

Theorem 5. We have the following identity for computing the covariant
derivative of the two-form Q) on the manifold N :

Qac b — Qac;b - KabQuch - Kchaunu .
\

Proof. We contract the two-form ) with arbitrary vector field v tangent
to M. We can compute the derivative of the resulting one-form using formula
(B.7).

(Qauvu)“, = (Qacvc);b - Kale/,u'UMnV = Qac;bvc + Qacvc;b - KabQuuUMnV .

(3.1)
On the other hand,
(Qa#v“)w = Qucp?” + Qacvly + QapKpcvn” . (3.2)
Comparison of the two sides of equations leads to the conclusion that
Qac\bvc = Qac;bvc — KgpQuen”ve — Qa,uKchCnM ) (3-3)

SO
Qac\b = Qac;b - KabQuch - Kchaunu . (34)
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It is easy to generalize this identity to arbitrary n-forms. For a three-form,
the identity is given by Theorem 9. The identity for a two-form can be
written as

Qab|c = Qab;c - Qach + QbKac ) (35)
where g, = Qqun*. O

Definition 6. The two-form Q satisfying equation Qqg;y) = 0 is called the
Yano—Killing tensor.

Theorem 7. If Q is a Yano-Killing tensor on the manifold N, then its
pullback to sub-manifold M denoted by Q) satisfies

Qab;c + Qac;b = 2q~agcb - (jbgac - (jcgab )
where § is a certain one-form?®.

Proof. Let us check what equation is satisfied by the pullback of the form
Q to M. We have

0= Qab|c + Qac\b = Qab;c + Qac;b —2qaKep + @pKac + qeKab - (36)

So it turns out that pullback of the Yano—Killing tensor is satisfying a bit
different equation then Yano—Killing tensors. This equation looks like this

Qab;c + Qac;b = 2q~agcb - (jbgac - (jcgab ) (37)

where ¢, is a certain one-form. ]

Last theorem suggests the following definition:

Definition 8. If M is a Riemannian manifold and Q is the two-form sat-
isfying equation

Qab;c + Qac;b = 2@agcb - (jbgac - Cjcgab

for some one-form q, then Q is called the conformal Yano—Killing tensor.
We will often use abbreviation CYK tensor for the conformal Yano—Killing
tensor.

We decided to find CYK tensors on the five-dimensional Anti-de Sitter
space-time. In the ambient vector space V that surrounds five-dimensional
Anti-de Sitter space-time, it is easy to find some CYK tensors. We can
just choose two-forms which have constant coefficients in the Cartesian co-
ordinates. This way, we can obtain 15 CYK tensors on the Anti-de Sitter
space-time. However, it is known that there are 35 linearly-independent
CYK tensors on this space-time. We will now present a way to find the
remaining 20 CYK tensors.

2 § is obviously related to the divergence of Q by contraction of the indices in the above
equation.
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Theorem 9. Analogously to equation (3.3), it can be proved that the covari-
ant derivative of the three-form Ti,g. looks like this

Taveld = Tabesd — QveKad + QacKpa — QavKea (3.8)
where Qup = Topn*.
Proof. Analogous to the proof of Theorem 5. O

Theorem 10. If a three-form T on the manifold N satisfies the equation
Top(y15) = 0, then its pullback to the manifold M satisfies the equation

2Tab(c;d) = 2C?abgcd - Qacgbd - Qadgbc + chgad + degac
with a certain two-form Q.

Proof.
2T ap(eld) = 2Tap(csa) — 2Qab K ca+ Qac Kpa+ Qaa Koe — Qb Kad — Qualac - (3.9)

From this equation it follows that if 7" satisfies T(,5(y|5) = 0, then pullback
T to M satisfies

2Tab(c;d) = 2Qabgcd - Qacgbd - Qadgbc + chgad + degac . (310)
]

Definition 11. The three-form Ty satisfying equation (3.10) is called the
CYK three-form.

4. Five-dimensional case

In this section, we do not take into considerations the surrounding man-
ifold N. Additionally, all tensor fields are defined on M and dim M = 5. In
this case, we have the following well-known theorems.

Theorem 12. Hodge dual of the CYK three-form is a CYK tensor.

The proof can be found in Appendix B but a general case is also given
in Proposition 3.2 in [2].

Theorem 13. If k is conformal Killing one-form for the metric g, and 22
is a positive smooth function, then 2°k is a conformal Killing one-form for
the metric £2%g.
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Proof. Let us denote as X the vector field associated with one-form k as
follows X* = g k; (in this proof, indices 4, j go through all functions from our
coordinate system). It is known that conformal Killing equation V,ky) =
N gap, where X' is some function is equivalent to the equation Lxg = Ag.
Now let us compute Lx (£2%g) = Lx(2%)g + 2°Lxg = (‘}3?2 + \)(£229).
This shows that vector field X is related to conformal Killing one-form b for
the metric 22¢. This one-form is equal to b; = Q2g¢ij = 0%k;. O

Theorem 14. If Q is a CYK tensor for the metric g, then 22Q is a CYK
tensor for the metric £2%g.

The proof can be found in [3].

4.1. Construction of conserved charges in asymptotically
Anti-de Sitter space-times

Definition 15. Tensor field W is called spin-2 field if it satisfies

Wagys = Wasas = Wiag|he » Waisys) =0,
0, VisWojas = 0.

(6%
Bad
An example of the spin-2 field is the Weyl tensor. In the case of this
tensor, we also know that conformal transformations do not change Weyl
components W%g.s .

Next theorem enables one to define conserved charges on space-times
that are asymptotically similar to the Anti-de Sitter space-time.

Theorem 16. If Q is a CYK tensor and W is a spin-2 field, then the
three-form Ty, = %6,1375"1/1/50“1,@“” is closed.

Proof. Let us define
F/w = W,ul/)\nQ)\K ) (41)

where @ is a certain CYK tensor. We will show that
FW., = 2WHrebQ g, (4.2)
where

ko (Q’g) = Q)\n;cr + Qcm;)\ - % (g)\aQyn;V + gn(AQo)”;u) » (43)
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so @ =01if Q is a CYK tensor (it follows from contraction of a pair of indices
in equation (3.7)). We can prove equation (4.2) in the following way:

Wveh Qaﬁv = Wmeb (Qaﬂ;V + Quﬁ;a) = (Wﬂmﬁ + Wﬂauﬁ) Qaﬁ;v
_ (Wuuaﬁ + %Wuauﬂ _ %Wuﬁua> Qaﬁ'u

— [%Wumﬂ _ % (Wuvaﬁ 4 WheaBy o Wuﬁvoc)] Qapuw
- W,

For this reason,
VW =V, (W9Qus) = (VW) Qug + WPV, Qs (44)
Let us notice that if we contract indices u and « in the equation
VaWas + ViWiras + ViWauap =0, (4.5)
then we will end up with
VoW, %3 =0, (4.6)

and finally,
V,FH = WWQBQO&;V = %Wﬂuaﬁgaﬁ% (4'7)

In our case, @ is a CYK tensor, so
V,F*¥ =0. (4.8)

We can always express F' as F' = «T. We can use identity *x F = (—1)°, s =
sgn det(g) (valid for two-forms F in the five-dimensional pseudo-Riemannian
space) to obtain

T = (-1)°+F. (4.9)
Next, we have
Vo F"H =1V, (e Top,) = §€1PY, Tgy = 5970, T 5,1 . (4.10)

We can change covariant derivatives to partial derivatives because the
Christoffel symbols are symmetric in their lower indices. This shows that
9, Topy = 0, and, therefore, dT" = 0. O
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4.2. A way to construct a quasi-local charge

In Theorem 16, we have found a way to obtain a closed three-form. For
space-time which is asymptotically similar to the Anti-de Sitter space-time
(it means that there exists a coordinate system in which metric is similar
to the Anti-de Sitter metric close to infinity, see [4]), we can construct an
asymptotic CYK tensor which asymptotically satisfy CYK equation from
Definition 8. In this way, if we also have spin-2 field on our asymptotically
Anti-de Sitter space-time (for instance, the Weyl tensor), then we can con-
struct asymptotically closed three-form. We can now consider the slice of
constant time. We integrate our three-form on a large three-dimensional
sphere belonging to this slice and located in the asymptotic region. We will
end up with a quantity that asymptotically does not depend on the size of
this sphere or rather approaches (possibly finite) limit at infinity. This way,
we obtain some quasi-local charge. It turns out that if we change the metric
g (by conformal rescaling) to the £2?¢, and if our spin-2 field W is chosen to
be the Weyl tensor, then the corresponding form 7T transforms to 227

5. CYK tensors in coordinate systems

It follows from our past considerations that on AdS5 one can find CYK
tensors as pullbacks of constant two-forms on V' and as the Hodge duals of
pullbacks of constant three-forms on the surrounding space V.

We will use the convention that indices a,b,c go from 1 to 3, indices
i,j,k go from 1 to 4, indices u, v, A go from 0 to 4, and indices A, B,C go
from 0 to 5.

5.1. Poincaré coordinate system

Let us consider a parametrization of the Anti-de Sitter space-time with
coordinates t, ', 22, 23, y. This means that ¢ has index 0, 2! has index 1,
and so on. Quantity [ is a parameter that is related to the size of Anti-
de Sitter. This parameter is also a part of equation (X, X) = —I? (this is
equation (1.1)) defining AdS5. In these coordinates, we have

1
X0 = (P2 ) - )

2y

a xa

X* =1 ac{l,2,3},
Yy
1

X4 — @(yz_lz_i_iz_g)’
t

X5 = ~1, (5.1)

<
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where metric on the space Vis equal to

4
ds? = - (dx°)* + Y (ka)z — (dXP)? (5.2)
k=1

AdS5 is a locus
4
2
S = (X074 Y (xF) - (x9) (5.3)
k=1

It turns out that in these coordinates, the induced metric is conformally flat
and equal to
12 _
ds? = 7 (—dt? + dy? + dz?) , (5.4)
where ||z|? = (x1)2 + (332)2 + (x3)2, whereas dz? = 325_ | (dz®)®. For this
reason, if we choose conformal factor 2 = é in Theorem 14, then we see
that CYK tensors on AdS5 divided by 23 are CYK tensors on the five-
dimensional Minkowski space-time. Let us denote the pullbacks of constant
two-forms as

Cap =1i" (dX* N dXP) (5.5)

and the Hodge duals of pullbacks of constant three-forms as
Hape =" (AX4 AdXP A dXC) | (5.6)

where i is an immersion of the Anti-de Sitter space-time into 6 dimensional
ambient vector space V.

Let us adopt the following notation: D = z*dx®+ydy—tdt, D = z*dx®+
ydy, 7, = dx?, ™ = dy, K, = m“D—% (f2 + y2) T, g = yD—% (:E2 + y2) T4,
Loy = 20dxb — 2bdx?, Lo4 = 2*dy — ydz®.

We calculated the tensors Cyp and Hapc in Mathematica. We can
express them in the above notation. Let us consider an array of numbers
€'k which gives to the collection of indices i, 7, k,1 € {1,2,3,4} the sign of
the permutation associated with them or zero (if this collection of indices is
not a permutation, then the result is 0). We also use here the old summation
convention. This means that we contract the same indices even if they are
on the same level:
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Cos = @7 A(-D)],

Cos = (23%2 _—dt AKy + %let ATy +tTa AD — %t274 A dt] ,
Cus = (23112 -dt A(—Ky4) — %th ATy+trg AD— %t274 A dt] ,
Coa = Qsllz —£a74 AND + %(D, D)1y N4 — %l27'4 A Ta:| ,

Coa = (23%2 _—;l27'4 NTa+D ALy + %D27'4 A Ta:| ,

Cus = ol [dy A (tdz® — z*dt) + yda® A dt)] ,

l
31 a b
Cow = 0 7[c1yA(£ba)+ydac Adx} :
1 .
H0,475 = Qgisg?y |:26”k4$i7'j/\7'k:| ,

1 .. 1
Hog4 = QLg?y [2156‘1”473 NTj — §edab4£a7b A dt} ,

1 1 1
Hogs = §Q3Sgl¥ {edab“ (—ﬁmb AD — §D2Ta AT+ 5lzra A n,)] ,

1 ssgn 1 1
Hd,475 = 5037%2 y |:€dab4 (ﬁa,b A D + §D2Ta A Ty + 5[27}1 A Tb>:| 5

1
Hyq = 2250 [tD/\dxd + (—ICd +5 (242 dmd> A dt] ,

1
Hyy = 033877 [tDAdxd + (—icd +5 2 +2) da:d> Adt} ,

12
Hys = @Y [duyn D],
H1,273 = stgﬂ [dt/\D] .

All those CYK tensors are written in the form of «[f], where « consists of
conformal coefficient multiplied by locally constant terms like sgny and I.

Theorem 14 ensures us that 3 is a CYK tensor for the metric Q‘Q(i—z(—dtQ +
dy? + dz?)) = —dt? + dy? + dz? which is equal to the five-dimensional

Minkowski metric.
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5.2. Spherical coordinate system

Coordinates y, z!, 22, 23, ¢t are not convenient because we are interested

in the form of the CYK tensors on the conformal verge — scri. That means
that we want to set y equal to 0. The scri of AdS5 has the topology of R x S5,
however, in those coordinates the sphere is parameterized inconveniently.
For this reason, we consider the following parametrization:

t
Xo = VIZ2+1%cos (l> ,
Xi = rnk,

t
X5 = VI2+1r2sin <l> ,

where Z?:l (nZ)2 = 1. That means that n* can be parameterized with
3 angles. We also introduce the coordinate z which replaces the coordinate r

1— 22
=1 0,1]. 5.7
r=lig =, zelo (57)
The choice of this coordinate is justified by the observation that it solves

the equation

This means that in the conformally equivalent metric '1%2 g, the coordinate z is
easily related to the distance from the center of AdS5. In those coordinates,
the Anti-de Sitter metric equals

12 1+ 22\ % a2 1—22\?
gzz2<dz2—( J; ) l2+(2> dgg) . (5.9)
We can divide it by the conformal factor i—z = (22, and then go to the
conformal scri z = 0. Scri is a manifold that has metric defined up to the
conformal rescaling (this ambiguity arises because we could divide the Anti-
de Sitter metric by an arbitrary conformal factor). In those coordinates, scri
R x S2 is conveniently parameterized because ¢ parameterizes R, whereas
("k)kef1,2,3,4) Parameterize S3.
During calculations involving the Hodge dual, we used the following co-

ordinates:
2
t
Xg =1 1—1—”%”(:08() ,

2

Ly (5.8)

z

l
X, =pF  ke{1,2,3,4},
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5 = )14 2l g (1
5 l2 l )

where we denoted ||p||? := %, (pi)Q, and then we expressed the result-

ing CYK tensors through functions ¢, z, n', n?, n3, n* and their exterior
derivatives.

This way we obtained CYK tensors on the Anti-de Sitter space-time. We
adhered to our convention that Latin indices go from 1 to 4. We carried out

calculations in Mathematica.

2 2 .t ok 4 1) ain (t
Cop = diA (l(z +1)"sin(})n dz—l—l(z l)mn(l)dnk)

’ 423 422
2(,2 _1)\2 one (t
_l (z 1)3 COb(Z)dz/\dnk,
4z
AL Calt ) BV
05 = 123 z,
Cij = l(zzgl)dz A (n'dn? —n’dn') + l(z4221)dnZ Adnt
2 2 t 4 _ t
Crs = di A l(z —1—1) cos(l)nkdz+l(z 1)Cos(l)dnk
’ 423 472
2 (z2 - 1)231n (%) i
+ 3 dz Adn”, (5.10)
2 1)\2(.2 t 2(.2 s ('t
Hosy = leijkl l(z 1) (z +1)COS(l)dt—l (z 1)Sm(l)dz
" 2 8z3 222
2(.2  1\2.: (t 2
A (nldnk _ nkdnl> P21 21:3(1) (* + 1)dnl /\dnk] 7
1 .. l (22 — 1)2 (z2 + 1) sin (t) 12 (22 — 1) cos (t)
o gkl l l
Hs,; = 26 [( 3.3 dt + 9.2 dz
202 _1)\2 (.2 t
A (nldnk — nkdnl) + : (Z 1) ézzg—{_ 1) o0 (l) dn! A dnk] ,
y l(22+1)nl l(26—|—z4—22—1)
Hijk = ijldt A ( 222 dZ + 82’3 dnl y
Homs = —l(zngl) (em”knkdn’ /\dnJ) )
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6. Analysis of the five-dimensional black hole with negative
cosmological constant

6.1. Energy as the mass charge

Let us consider the solution of Einstein equations with the negative cos-
mological constant of the spherically symmetric black hole. The metric is
equal to

d?— (g (T 2 71d2 240 6.1
s = l2+ 2 t* + 12+ 2 e 4+redf2s, (6.1)

see e.g. equation (2.1) in [7]. Here, df23 denotes the metric of the unit three-
dimensional sphere. It turns out that if we use the CYK tensor Cpys from
equation (5.11) and the Weyl tensor of metric (6.1), we will end up with the
three-form T from Theorem 16 equal to

T=—w, (6.2)

where w is the volume three-form of the three-dimensional unit sphere. This

result was calculated in Mathematica. Therefore, the quasi-local charge
24mm?

equals ==77—. It means that the mass of the Anti-de Sitter is related with
Y

asymptotic) the CYK tensor ---5Cps = L > é)dt A dz. In this case, the
241 9674z

three-form (4.9) does not depend on z and is closed, so the energy charge
in this case is not only asymptotic — it is exact. In the asymptotically flat
case, we have the so-called ADM mass defined as

1 .
6.2 / (9iji — 9ii,j) dS7 .
S3

MADM ‘=

The coefficient # arises from the volume of three-dimensional sphere and
from the coefficient in the Einstein equation in this dimension (see Ap-
pendix D in [6]). More precisely,

Gy — 2(n — Nwp—1 [ 167 forn =3

7= n—2 ) 672 forn=4

We think that in our case, which is not asymptotically flat, we should also
multiply the result of integral on sphere by such factor. This means that it
is sufficient to take ﬁCog) in the definition of the CYK tensor responsible for
energy. In that case, the asymptotic three-form will be equal to the ADM
form.



Conformal Yano—Killing Tensors for Space-times with Cosmological ... 799

6.2. Canonical coordinates on five-dimensional black hole
with negative cosmological constant

Let us try to find the solution of equation (5.8) for metric (6.1). We have

2 2 2 2 2 2
(1 0z 9 17 [0z r 2m
-(0) @) wr=5(G) (Ger-T) o

1

o

Since we expect that z ~ -, we demand z > 0 and % < 0. For this reason,

we have
1
- 1 (6.4)
" Wi+l 2
d
logz+C = —/T. (6.5)
Wi +1-2p

We substitute w = % to obtain

/ dr _/ dw _/ dw
/5 +1- 22 w2\/w*2+1——2";§”2 w\/l—i-w2—111421—21

(6.6)

Denoting b := 21—72”, we get

2z = exp (/w\/HCZ”Z—_W> . (6.7)

It is easy to notice that if z satisfies equation (5.8), then az with a being

arbitrary constant also satisfies that equation. For this reason, the constant

arising from the integral in equation (6.7) is irrelevant. For small w, we have
. _dw < 0 5~ . .
e o logw so z >~ w. We can also calculate the asymptotic

dw dw 1 3 2
~ 1— = (w? = bw*) + = (w? — bw? >
/w\/1+w2—bw4 /w< 2( ) 8( )
dw 1 1 3
~ [ = (1-Zw?+ b+ )w?
/w( 2w +<2b+8>w>

1 1 3
og w 4w +<8 —|—32)w , (6.8)
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_ L o 3 4
z = wexp( 4w +(8b+32> )
1 3 1
= 1— Zw? il 4
w( il —|—<b+32+32> )

1
= w—Zw + = (b—I—l)w +- (6.9)

It is easy to check that if z = w + aw® + fw® + ---, then w = 2z — az® +
(3042 — B) 2% 4+ ... Therefore, we have

L la 1-2
w ==z z z .
4 16

We can now express the Schwarzschild metric in the coordinates w, t and
angles. We get the following metric:

12 1\?
2 _ -2 2\ 1.2 2
ds f(—l—w +bw)dt +(—bw6+w4+w2>dw —i—(w) ds.
(6.11)

(6.10)

From the construction, we know that

12 A
<—bw6+w4+w2>dw :(z> dz"

For this reason, we can now write everything in terms of z. We will obtain
the approximation of the real metric. Let us calculate the coefficient that
multiplies d¢?. Substituting w = z + wz> + 72°, we obtain

—1—w?+bw? = z+wz +712 )_2—|—b(z—|—(,uz3—i—7‘z5)2
1
z

— 22 1+wz —i—Tz) 2+bz2(2+wz3+725)2}

| 2

22

1

1
= 1+ 2% (=1 +2w) + 2* (27 — 3w® + )]
1 1-2b 3
— 2~ — " +b
22 ( 16 6" >}
1 1, 1
=5 [— — 57 +<—16+ b> ] (6.12)

Comparing this coefficient with analogous coefficient in equation (5.9)

[

: [—Z —1-1(=2) (w?+72%) —2 % (w2?)” + bzﬂ
-
-

2
we see that we should get — (#) . However, looking at equation (5.9)
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we see that in equation (6.12) coordinate z is 2 times bigger, because it is

behaving like z ~ L. For this reason, we are introducing z = 2%. Now, we

I8
have

171 1 1
1w+ bw? = = [— — =+ (—4 + 3b> ,24] . (6.13)

This result is in accordance with equation (5.9) when b = 0 (that is when
m = 0).
Now we only need to calculate the coefficient that multiplies df2. We

have
(i)Q - (i>2 (1+wz? + 72472
)2 (1 —2 (w2 +72%) +3 (wzQ)Q)

2
) (1—2wz2+z4(—27+3w2))
2
Lo af 1220 3
) 1 2z+z<2 6 +16>>

)2 (1 - %22 + <116 - ib) z4) : (6.14)

Again, let us express it with function Z, so we get

o~

12

|
7~ N 7N 7N 7N

V|~ W~ W~

EEOIE ORI

This result is in accordance with equation (5.9). We finally obtain
1\’ 1+ 22\ [dt)?
ds? ~ [ = 3631 — T2 —
z 2 l
1-22\?
+dz? + (( - ) +b24> dn

This metric is in accordance with equation (5.9). It turns out that our metric
differs from the Anti-de Sitter metric by terms that have rank 4 in Z. We
now use the fact that b = zl—gm to express the metric in terms of m. We get

. (6.16)
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d82 N £ 2 67m24 B 1 +22 2 @ 2
- \z 12 2 l
1-2\? 2m
~92 =4

The above asymptotic form is in accordance with the general form of the
asymptotically Anti-de Sitter metrics given by (1.2) in [4] which simply
means that Schwarzschild-AdS is an asymptotically Anti-de Sitter space-
time.

. (6.17)

7. Conclusion

We propose a new construction of CYK tensors in AdS5 using the obser-
vation that constant tensors in the ambient space restricted to the pseudo-
sphere AdS5 generate all solutions of CYK equation. We would like to stress
that theorems in Section 3 are nice tools and we show in Appendix A how
to use them to construct in explicit form standard 4D conformal covector
fields. One can argue that AdS5 is conformally equivalent to 5D Minkowski,
hence, using conformal transformation, we can translate the solution in flat
space to the solution in constant curvature space. However, the construc-
tion of solutions in flat space and corresponding conformal rescaling is not
so simple. We think that our construction is simple and natural, one can
say that the CYK tensors in AdS are simpler than in flat Minkowski because
they are naturally obtained from constant tensors. Obviously, CYK tensors
in Minkowski can be reconstructed from AdS via conformal transformation
or by limiting procedure (in the tangent space).

It turns out that in the case of five-dimensional Anti-de Sitter space-
time, one can carry out constructions very similar to those in the four-
dimensional case. Specifically in the five-dimensional case, one can find all
conformal Yano—Killing tensors in a way that is analogous to the reasoning
in [1] which solves the same problem in the four-dimensional case.

CYK tensors obtained in AdS5 enable us to define quasi-local charges
that have good asymptotic properties. We have chosen the CYK tensor
which defines the energy for the example of five-dimensional Schwarzschild
blackhole. Probably in the case of the five-dimensional Kerr black hole
with negative cosmological constant, it is possible to find CYK tensor which
is responsible for the angular momentum, but it seems to be quite heavy
calculation, so it will not be analyzed in this publication.

This work was supported in part by the National Science Centre, Poland
(NCN) under grant No. 2016/21/B/ST1,/00940.
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Appendix A

Conformal Killing one-forms in four dimensions

We will now find all conformal Killing one-forms on four-dimensional
Anti-de Sitter space-time. According to equation (1.8) in [9], the Anti-de
Sitter metric has the following form:

l2

g = —dt? + da? + sin® (z) o) , Al

g= o ()0) (A1)
where ¢ is a metric on a two-dimensional sphere, [ € R is a size of our
Anti-de Sitter spacetime, t € R, z € [0, 7]. ¢ has index 0, coordinates on the
sphere have indices 1 and 2, and x has index 3. According to Theorem 13, we

can find conformal Killing one-forms on the conformally equivalent metric
g = —dt* 4+ da® +sin? (z) o, (A.2)

and later multiply the found one-forms by the conformal factor & This
is our strategy.

We are now abandoning previous index conventions. Let us denote that
indices A, B go from 1 to 2. They are used to parameterize the sphere. We
will also use ; to denote covariant derivatives on the spheres of constant x
and ¢ (using metric connection of this sphere). Greek indices go from 0 to 3.
Additionally, i is a metric induced on the slice of constant time. We have
therefore nap = sin®zoap, nsAa = 0 and m33 = 1. Latin indices denote
spacial coordinates. In the following (unless stated otherwise), we will use |
to denote covariant derivative on the spacial slice (slice with constant t).
We see that according to Theorem 4 if we pull back a conformal Killing
one-form to the slice of constant time, we will obtain a conformal Killing
one-form on the slice. This is so because the slice has external curvature
equal to 0. Analogously, if we pull back a conformal Killing one-form to
the slice of constant time and constant x, we will obtain a conformal Killing
one-form on this slice.

We need to calculate the Christoffel symbols I'*g, for the metric g.
Coefficients I' g¢ are the same as Christoffel symbols on the unit sphere.
I'yp = %TIACTICAB = cot 6y, [Pap = —59%*nap)3 = —cot xnaB.

Those are all non-vanishing Christoffel symbols 1™ g,.

A.1 Two dimensional problem on the sphere

¢ is our conformal Killing one-form on the whole space-time (with metric
g conformally equivalent to the metric of Anti-de Sitter). Let us now consider
its pullback to the slice of constant ¢ and z (to the sphere). As we previously
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stated, this restriction is a conformal Killing one-form on the sphere, so it
satisfies the equation

éan+E€pa—naptfc =0, (A.3)

where ; denotes covariant derivative on the sphere (for a given point we pull
back one-form to the sphere and then we covariantly differentiate it using
metric connection on the sphere). Equality (A.3) means that {4 is a dipole
one-form. This can be shown in the following way. For every (pseudo)-
Riemannian manifold K with Riemann tensor R and one-form w, we have

Welba — Welab = Rabcdwd . (A4)

We are using here | to denote Levi-Civita derivative on the manifold K.
This can be generalized to the following identity:

m
2T fnliba] = Y B, T ",
k=1

=D Rapd™ T (A)
k=1

In the future calculations, we will use the character | to denote the covariant
derivative on the spacial part of Anti-de Sitter space-time with respect to
the metric induced from the metric g which is conformally equivalent to the
metric of Anti-de Sitter.

We are choosing a sphere of constant  and ¢. This sphere has a natu-
ral structure of the pseudo-Riemannian manifold which is the same as the
structure of sphere, which has radius r = sin x (that means that there exists
isomorphism from the category of pseudo-Riemannian manifolds between a
sphere of constant z and ¢ and a sphere of the radius r = sinx). We know
that Ricci tensor on the sphere of the radius r equals to Rap = %217,43. For
this reason, the Riemann tensor equals Raopcop = %2 (nacnBD — NADNBC)-
In the following calculations for the sphere, we will lower and rise the in-
dices using metric 7 induced from the metric g from equation (A.2). eap
will denote the volume form of our sphere with respect to the metric n. Ac-
cording to the Hodge—Kodaira theorem, each one-form can be expressed as
the sum of external derivative, coderivative and harmonic form. It is also
well-known that there are no harmonic one-forms on the sphere. For this
reason, we have

€a = %);A + GAB%;B , (A.6)

1 2 )
where v are v are some functions.
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We will show that 4 is a dipole function. We can find functions v and

3 in the following way:
At = vt (A7)
(we are using convention that all indices to the right of the ; are differenti-

ating the tensor field) and

C ) Bl poelC = 544 (A.8)

A
§a,0€ VB = 0.4

Therefore, if we will show that & A;CEAC and £44 are dipole functions, then
also £4 will be a dipole one-form.

Let us differentiate equation (A.3) covariantly with index A at the top.
We will end up with

0 = éap? +épat—cp
= &4+ RY%aPep +€pa? — €% cp

1
= 3ép+Epa’ =0. (A.9)

Equality (A.9) can be written in the form of
0
<A+1>5:0, (A.10)

0
where A denotes Laplacian created from the structure of the metric of the
unit sphere, and 1 denotes identity operator. This means that we are pulling
back & to the sphere, and then we are using the metric of the unit sphere
to calculate Laplacian of resulting {4. Equality (A.10) means that £4 is
a dipole one-form. Now let us covariantly differentiate equation (A.9) and
then contract resulting index with B

1 .
0= 77253’3 + AP+ RPARPep A + RPA4P e p
1 .
= &P +EpaPt
,
1 . . ;A . 2 .
= 77253’3 +&p 84t + (RPapPep)” =P 4t + T—2§A’A . (A1)

This proves that €44 is a dipole function.
To prove that & B;cGBC is a dipole function, we start with the following
identity:

1 1
RCABDGBC = —ﬁécDgABEBC = —ﬁﬁAD . (A.12)

We will now differentiate covariantly equality (A.9) and then contract the
result with €2¢. We will end up with
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1 B A B
0 = 72&3;06 C 4 epatoelC

1
BC A _BC A D BC A D BC
= 77253;06 +&pac e + Re" B Ep,ac” + Ro” a7 EB;pe

1 1 1
= 7§B;CEBC + €p.ac’ePC — 7€AD€D;A - 7§B;D63D
T T T
1 B A B D¢ A B
. 7253;06 C + ¢p.0aeBY + RoapPepeBC
1 BC By A L1 p,.oa
= ﬁgB;C’E + (53;06 );A - ﬁﬁA ép’

2
= 7Q—Q{B;CGBC + (SB;CEBC);A A (A.13)

c

The last equality means that & B;cEB is a dipole function.

Equations (A.13), (A.11), (A.7) and (A.8) prove that AAY and AAD
are dipole functions. Dipole functions belong to the eigenspace of Laplacian
with non-zero eigenvalue. That is why Laplacian A acts on them as an

. . . . 1 2 . .

isomorphism. For this reason, functions v and v are sums of dipole functions
and elements of the kernel of A, which are monopole functions. According
to equation (A.6), monopole parts of these functions do not matter because

. . o1 2 . .
in equation (A.6) functions v and v are differentiated.

A.2 Ezxpanding to the spacial slice

In this section, we will denote covariant derivative with respect to the
slice of constant time with the character |. We have to remember here that
we are using metric (A.2). The conformal Killing one-forms on the sphere
enable one to find conformal Killing one-forms on the whole slice of the
constant t. We are calculating the covariant derivatives

Gt = &ea — i,

§33 = §33,

Eaa = &34 — M348 = &34 —cotazéa,

§a;z3 = €az —cotxzéa,
§aB = §A:B — I3 4p&s = €ap + cot T napss.

On the spacial slice, we have

Skl + Sk = Mg - (A.14)

Let us calculate spacial derivative

e =185+ Peap = &3+ €44 + 2c0t 2 &5 (A.15)
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We have 2{’“‘;@ = 3a so
=2 (A.16)
It follows from the conformal Killing equation that
§3at8a3 = 0, (A.17
2833 = «, (A.18)
§aB t&BlA = anag,

~—

so contracting the last equation with 78, we get
n'Peap =a. (A.19)

We derive equation (A.20) from equation (A.17), whereas combined equa-
tions (A.18) and (A.19) lead to £4.4 + 2cotx &3 = nAB§A|B = o = 2{33.
This last equation is equivalent to equation (A.21).

537,44-5,473—2001;3:{14 =0, (A.ZO)
233 =44 + 2cot &3 (A.21)

We apply covariant derivative ; A to equation (A.20) and we obtain
Eaa™ + Eap P — 2cotz €4 = 0. (A.22)

Here, we used the fact that partial derivative 03 and covariant derivative
; A commute. This is the consequence of the fact that Christoffel symbols
do not depend on x. Equation (A.22) proves that A&s is a dipole function,
because the rest of this equality is a dipole function. For this reason, &3 has
only monopole and dipole parts.

We can also rewrite equation (A.21) in the form of

sin x

2< & ) sinz = ¢4, 4. (A.23)
,3

We see, therefore, that monopole and dipole parts of 3 evolve independently.
Let us rewrite equality (A.23) in the form of

2 <m€3> sinz = 0, (A.24)
3

sin x

sin x

d§3 . A
2< > sinx = {74, (A.25)
3
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where ™3 is the monopole part of &3, whereas 4¢3 is the dipole part of &3.
From the first of those equations, we get

"€ =asinz, (A.26)

where a is some constant. It is denoted with small letter because it is a
monopole function. Functions that are dipole will be denoted with capital
letters.

We can also rewrite equation (A.20) in the form of

&G+ et =0. (A.27)

Equation (A.27) was obtained by noticing that equation (A.27) can be ex-
pressed as §A73 = (sm_2 x JABéB) 3= sin~2 x UABfB’3—2 sin~3 z cos zoABép

(here 048 is a metric inverse to oAB) so it looks like {p 3 — 2cot z&p with

raised index. It is worth to remember that here &3 is treated as a func-
tion, so in the expression &334 covariant derivative acts as partial derivative.
We remember that in the covariant derivative ; A Christoffel symbols I' g¢
are independent of x. This means that covariant derivative ; A commutes
with d3. For this reason, we can calculate covariant derivative ; A of equa-
tion (A.27) and contract the indices. We end up with

&7+ (€%a) 5= 0. (A.28)
This equation can be rewritten as follows:

g £@+@{@3:0, (A.29)

sin® x

0
where A denotes Laplacian on the unit sphere. We, therefore, see that

7€

sin?

(€%a) 5 =2 (A.30)

—
By combining equations (A.30) and (A.25), we get

<< C‘lfg> sinx) = .d,£23 . (A.31)
sinz ) 5 , sz

)

¢
sin x

dz

and z = o Now

This equation can be solved. We introduce u =

% = wu. It has a solution of

equation (A.31) has the following form:
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u = Be* + Ce™%, where B, C are independent of z. This can be written as
u = log (sin (%)) — log (cos (%))

_ sin (%) cos (£)
u = Bcos ) +Csin (2) (A.32)
Aty — sin (z) (Btang +C’cotg> . (A.33)

In the last equation, the left-hand side is a dipole function, so A, B are also
dipole functions

& = "G+
. . x x
= asinx + sin (x) (B tan 5 + Ccot 5)

= qgsinz + 2 (Bsin2 g + C cos? g)

= qgsinz + 2 (Bsin2 g + C cos? g)

= asinz + B (1 —cosz)+ C (1 + cosz)
= asinz + K — Jcosx. (A.34)

Constants K and J are replacing the constants B and C in the following
way: K =B+ Cand J=B—-C.
We now use equation (A.21) to get

¢4 = 2633 — 2cot &3,

2acosx + 2Jsinz — 2cot z (asinx + K — Jcosz) = —2Kcota:+2<]—
sin

Now, we only need to find the rotational part of £4. In the previous subsec-
tion, we defined € as the volume form of the sphere of constant  and t. Now,
we want to think about the € as a tensor on the whole Anti-de Sitter space-
time with conformally equivalent metric from equation (A.2). We define e
on the whole Anti-de Sitter space-time by imposing relations €,3 = €,0 = 0,
€y = —€uyu, and €xp is the metric volume form of the sphere of constant
z and ¢ with respect to the metric induced g from equation (A.2). It is
easy to calculate that e —2cot zeB. We are differentiating covariantly
equation (A.20) with respect to the ; B 1ndex and then we are contracting
resulting equation with e*Z. By taklng into account the commutation of
the 05 and ; A, we get

AB

Eapse™? = 2cot & pe” = 0. (A.35)

We have, therefore,

Eap et = (EA;BEAB) — Eape’s? (A.36)
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and finally,
Eape™ =D, (A.37)

where D is a dipole function.
In that way we obtained the following:

Eape’® = D, (A.38)

Eat = —2Kcotz + 2J—, (A.39)
SINn T

¢ = asinz + K — Jcosx. (A.40)

The space of solutions is ten-dimensional, which is the maximal possible
number in three dimensions.
We now use equation (A.15) to get

&% = Ls+Ma+ 20ty
= 3acosz +3Jsinx. (A.41)

This means that o from the equation £,3 +gja = @gap (Greek indices may
be both spacial and temporal) is equal to

a = %&'k =2acosz +2Jsinx. (A.42)

A.8 One-forms in space-time

We should now consider the dependence of a, J, K, D, which are functions
that characterize £, on time

2800 = —«a, (A.43)
§03+ &0 = 0, (A.44)
§o,a+ 840 = 0. (A.45)

Let us apply the covariant derivative ; A to equation (A.45). We obtain the
following equation:
£O;AA = _SA;A,O . (A46)

0
This equation proves that A&y is a dipole function, because §A; 4 is a dipole
function.
For this reason,

So="6+"%. (A.47)
We will now differentiate equation (A.46) with respect to time. We obtain

00,4 = —€a 00 - (A.48)
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We can use the last equation together with equations (A.43) and (A.42) to

obtain . L1
€400 = st = - 5— (—2)2Jsinw. (A.49)
T 2 2 sin“ x

We now use equation (A.40) to obtain

1 1
—2K pocotx +2J pp—— = —2J —. (A.50)
sin sin

To obtain the second equation for the coefficients B, C, we have to differen-
tiate equation (A.44) with respect to time
1 1 .
.00 = —Co03 = 503 =5 (—2asinz + 2.J cos z)

SO
aposinx + Koy — Jopcosr = —asinz + Jcosx.

This equation splits into the dipole and monopole parts and we get

oo = —a, (A51)
Koo—Joocosz = Jcosz, (A.52)
J,OO - K700 cosx = —J. (A53)

The last equation is equivalent to equation (A.50). Equation (A.51) has a
solution
a = agpsint + aj cost. (A.54)

Let us multiply equation (A.52) by cosz and add the result to equation
(A.53). We get

Joosin®x = —Jsin?z. (A.55)
We have, therefore,
Joo=—J (A.56)
and
J = Josint + Jy cost. (A.57)

Let us add equation (A.52) to equation (A.53) multiplied by cosxz. We
obtain

Ko =0, (A.58)
K = G+ Ht. (A.59)

We can also covariantly differentiate equation (A.45) with respect to the
index ; B and contract the result with eAZ. We obtain

(Eape?) ;= 0. (A.60)
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Equation (A.60) has a solution
Eape’? =D, (A.61)
where D is a dipole function which is time-independent. Additionally,

& = asine + K — Jcosz
= (apsint + aj cost)sinz + G+ Ht — (Jpsint + Jy cost)cosz (A.62)

and )
4 = —2Kcotx + 20— (A.63)

sinx
Now, we only have to calculate the coefficient &. Let us calculate

a =2acosx + 2Jsinzx. (A.64)
We can use equation (A.43) to get

0,0 = —3a = —(agsint + aj cost) cosz + (—Jysint — Jy cost) sinz .
(A.65)
We have, therefore,

& = (apcost —aysint) cosz + (Jpcost — Jysint)sinz + F, (A.66)

where F' is a certain function with both monopole and dipole parts which
are time-independent. We do not know yet how they depend on z. If we now
substitute our results to (A.44), we will find that H = 0. More precisely,

&0 = (apcost —aysint)sinz + H — (Jycost — Jysint)cosx, (A.67)
€03 = —(apcost —aysint)sinx + (Jpcost — Jysint)cosax + Fg. (A.68)

We have, therefore, from equation (A.44)

H+F3=0. (A.69)

Equation (A.46) proves that

. -2
foat = — 5— (Jocost — Jysint)sinx + Fa?, (A.70)

sin® x
€4ty = —2Hcotx + —— (Jycost — Jysint) , (A.71)

sinz
S0
-2
0 = Fa*—2Hcotz = ——“F — 2Hcot v, (A.72)
sin®

1P = —Hsinzcosz. (A.73)
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This combined with equation (A.69) leads to H = 0. F is independent of x,
t and angles. Let us denote this constant quantity as F' = c.
To sum up, we have the following solutions:

. 2
E4? = —2Gcot = + e (Josint 4 Jy cost) , (A.74)
inz
¢ape®? =D, (A.75)
& = (apsint + aj cost)sinz + G — (Jysint + Jy cost) cosz,  (A.76)
& = (apcost — ay sint) cosx + (Jycost — Jysint)sinz + c. (A.T7)

Here, ag, a1, c are constants, whereas G, D, Jy, J; are dipole functions
independent of x and t.

The space of solutions has dimension 15, which is exactly the number
that was expected.

We can now write the basis of the space of all the conformal Killing
one-forms. According to equation (A.6), we have

€4 =04+ eal0p. (A.78)

, 1 2 . : .
Functions v and v may be calculated using previously derived formulas

(A 1 5 2 1
A" = VA =75V
sin® x
and 5
2 2 2
Eace® = eaBo.poet? = vt = —— 5.
sin“ x

We, therefore, have the following (linearly independent) conformal Killing
one-forms for the metric g from equation (A.2)

1

R = —isiHQmeABD,BdajA,

P = Gdz +sinzcosxdG,

T = cdt,
Bj, = —sinzsintdJy — Jgsintcosxdx 4 Jocostsinzdt,
D = ajcostsinxdx — aq sintcosxdt,
K; = agsintsinazdz + ag (costcosx — 1) dt,
Ky = (sinxzcosxz —sinzcost)dJ; — Jy (costcosx — 1) dx

—Ji sintsin zdt.
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From those conformal Killing one-forms for the metric g from equa-
tion (A.2), we can easily obtain conformal Killing one-forms for the 4-di-
mensional Anti-de Sitter metric from equation (A.1) by multiplying them
by the conformal factor ﬁ

Close to x = 0, our metric g from equation (A.2) is similar to the
Minkowski metric. We are, therefore, expecting that for x — 0, our Killing
forms will look similarly to the known conformal one-forms in the Minkowski
space-time. This turns out to be true. We see that R corresponds to the
generators of rotations in the Minkowski space-time, P corresponds to spa-
cial translations, T corresponds to time translation, Bj, to boosts, D to
dilation, Ky to time acceleration, whereas K j, to space accelerations.

Appendix B
Additional proofs

In this appendix, we will present proofs for some of the theorems used
in this paper.

Let us prove Theorem 1. It states that if w is a one-form on the mani-
fold N, then

wb|a = Wh;a — Kabwﬂn“ .

Proof. We can assume that

K(X,)Y)=K(X,Y)n=K;X**n. (B.1)
We have then
N b M b b
Vv’ =V’ + Kgevn’. (B.2)

Using | and ; (in the convention of Section 2), we obtain

vb|a = vb;a + Kyovn?, (B.3)

v"+1|a = Kavn™t, (B.4)

Here, v is tangent to M. We later have

b b c b
(v wb)|a = (”#wu)m = vt Wy + vHwye = 07 awp + Kacvnfwy, + 0wy -

(B.5)
However, on the other hand,

(vbwb)‘ = (vbwb) = vb;awb + vbwb;a, (B.6)
a a

)
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hence, we get the result

Whla = Wha — Kapwun' . (B.7)

O

Now we will prove Theorem 2. It states that the external curvature form
K satisfies equation K = —%Eng, where n is a normal normalized field.

Proof. Let X and Y be vector fields tangent to M. Now
(*Cng) (X7Y) = Ly (Q(Xv Y)) - g(‘cha Y) - g(X7 »CnY)
N
= vn(g(XaY))_ ([ aY) g TLY] X)
N
= 9<VnX,Y)+g< X)
= 2K(X,Y),

nY Vyn X>

where in the last step, we used the following equation:

0=Vx(g(n,Y)) =g (@Xn,y> +g (n @J) . (B.8)
O

Now, we will present the proof of Theorem 12. It states that the Hodge
dual of the CYK three-form is a CYK tensor.

Proof. Let us define s = sgn (det g). In the following calculations, we will
be using standard notations for symmetrization and skew-symmetrization
i.e. Qap)y 1= % (ab + apa) and gy = %(Oéab — apg). We define the Hodge
dual as *T¢f = %eefabCTabc. That is why we contracted (3.10) with tensor
%eef“bc, where € is a metric volume form of M. Additionally, we denote

Xf = *T°.. We end up with some identities
2Tab(c;d)%€efabc = *Tef;d + %Eefabc abd;c -

Let us evaluate %ee fabc abd;c- 1o this end, we remind ourselves that for the

k(n—k)+s

k-form on n dimensional manifold we have % x a = (—1) o, where
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s :=sgn (det g). We have

, 5 bel kh
26" Tapdic = 28€ef™ * *Lupase = 28€cf* 5€apd " *Thnse

b kh bdkh G
= Seefa “€abd *Tkh;c =S *Tkh;ceabeféea gccgjd

= ¥Tpn:cg9,26 %" e o

=2 (*Tfh;cghcged + *Tke;cgkcgfd + *Tef;d - *Teh;cghcgfd
—* Tpe.q — *T f;cgkcged>
= 2(Xf9ed — Xe9fd + 2 *Tepq — Xe9fd + Xf9ed)

= 8X[fYeja + 4 *Tefa,
where
5a1a2a3b1b2b3 — Z sgn (ﬂ_) H 6aﬁ(i)bi' (B.9)
weS(3) i€{1,2,3}
So
2T (i) §6ef ™™ = 5X(19ela + § *Tepa- (B.10)

However, from equality (3.10), it follows that

2Tab(c;d)%€efabC = %Eefabc (_2Q[abgc]d + Q[acgb}d - Q[bcga]d)
= Zeef™ (—4) Quvgea = —4 *Qefa , (B.11)
SO
*Tofiq = —3%Qefd + 5X[e9f)d - (B.12)
We check that
2xTo(pia) = 2 (Xe9fd — XfGed + Xe9df — XaJes)
= 2 (2Xe9fd — XfGed — XdTef) » (B.13)
which is an equation satisfied by the CYK tensor. O
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