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The meaning and the features of Generalized Poisson–Kac processes
are analyzed in the light of their regularity properties in order to show
how the finite propagation velocity, characterizing these models, permits
to eliminate the occurrence of singularities in transport models. Apart
from a brief overview on their spectral properties, on the regularization
of boundary-value problems, and on their origin from simple Lattice Ran-
dom Walk models, the article focuses on their application in the study
of stochastic partial differential equations, and how their use permits to
eliminate the divergence of low-order moments that characterizes the cor-
responding field equations in the presence of spatially δ-correlated stochas-
tic perturbations, and to ensure positivity whenever needed. A simple
reaction-diffusion system subjected to a stochastically intermitted flux and
the Edwards–Wilkinson model are used to show these properties.
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“Not only does God play dice with the world.
He does not let us see what He has rolled.”

Stanisław Lem (from Golem XIV)

1. Introduction

Each first-rank scientist left a program (an “ideology” or an “aestetics
of science”, depending on the personal tastes) beyond his specific findings,
corresponding to his personal views on the physical reality and outlining
future research directions to be explored. Marian Smoluchowski is not an
∗ Presented at the XXX Marian Smoluchowski Symposium on Statistical Physics,
Kraków, Poland, September 3–8, 2017.
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exception to this rule. He marked the beginning of the last century with
a new approach to statistical physics paving the way to the birth of new
research fields, such as colloidal science, soft-matter physics, etc.

The legacy of Marian Smoluchowski has been clearly outlined by Ulam
in a 1957 article commemorating the 40th anniversary of his death [1]. It
resides essentially in having clarified the importance of statistical fluctua-
tions (and not only of averaged quantities) in understanding the properties
of interacting particle systems, and in having identified in the regularity
(“uniformity”) properties of natural laws a general principle applicable also
at the fluctuational level.

Hundred years after his departure, this scientific program is still ac-
tual and “progressive”, in the epistemological meaning given to this term
by Lakatos [2], and gravid of potentially revolutionary concepts not only in
statistical physics, but in physics as a whole.

This article analyzes the implications of Generalized Poisson–Kac pro-
cesses, (GPK, for short), recently introduced in [3–6] in the analysis of trans-
port phenomena, and extending the simple and powerful paradigm due to
Kac [7] of a process on the line possessing finite propagation velocity and
driven by Poissonian perturbations. Indeed, the connection with the above
mentioned Smoluchowski program is not a gentle tribute, suitable to the
occasion, to his scientific figure, but a strict epistemic connection. GPK
processes represent a simple and extremely versatile class of stochastic dy-
namics, defined in any spatial dimension, possessing finite propagation ve-
locity, approximating the Langevin dynamics driven by Wiener processes in
the long-term/large distance limit, and converging to them in Kac limit, see
Section 3.

The original one-dimensional model studied by Kac was motivated by
the problem of finding a stochastic model justifying the Cattaneo hyperbolic
heat transport equation [8] (see also the review article [9]), i.e., a stochastic
dynamics the probability density of which was a solution of the Cattaneo
equation. Subsequently, the Kac model has been object of an intense inves-
tigation in statistical physics, see e.g. [10–15], just to mention few relevant
contributions and review articles. Retrospectively, it is not too far from
truth the reflection that the research in the 80s and 90s on stochastic dy-
namics involving the original Kac’s process was primarily motivated by the
fact that this process is the simplest and analytically approachable example
of colored noise possessing an exponentially decaying correlation function
with time [16, 17]. Moreover, it was taken as a paradigmatic example of
bounded noise, simply because the stochastic perturbation flips amongst
two values, and consequently it has been often referred to as “dichotomous
noise” [18–20].
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While all these properties characterize the original Kac model (and, with
some caution, also GPK processes, at least when the number of stochastic
states is finite), the use of the Poisson–Kac model, as a simple paradigm
for colored noise, overlooks the main signature of this class of processes,
namely the finite propagation velocity or, equivalently, the regularity (almost
everywhere) of the trajectories. The latter two properties mark a straight
connection with the Smoluchowski program, involving the extension of the
regularity (“uniformity”) laws of nature even at the fluctuational level.

The connections between the original Kac’s stochastic dynamics and
the Cattaneo equation is a fortunate accident occurring solely in the one-
dimensional spatial case. In higher spatial dimensions, there is no stochastic
process admitting the Cattaneo equation as the evolution for its probabil-
ity density function. Indeed, the Cattaneo equation, in spatial dimensions
higher than one, does not even fulfil the requirement of positivity (i.e., the so-
lution of this equation can attain negative values starting from non-negative
initial conditions in the free-space propagation) [21]. In point of fact, positiv-
ity problems may arise also in the one-dimensional case, whenever bounded
domains (intervals) are considered, depending on the way boundary con-
ditions are set [22]. The statistical properties of stochastic processes pos-
sessing finite propagation velocity have been mathematically approached by
Kolesnik in a brilliant way in a series of articles [23–26]. Focusing on the evo-
lution equations for the overall probability density function, Kolesnik showed
that these equations are governed by extremely complex (hyperparabolic)
operators. The application of these equations, whenever transport prob-
lems in bounded domains are considered, makes the setting of the proper
boundary conditions extremely cumbersome.

The failure of a stochastic interpretation of the Cattaneo equation in
higher spatial dimensions and his lack of positivity imply that all the trans-
port and thermodynamic theories grounded on the Cattaneo equation as
a building block expressing the constitutive equations for fluxes, suffer the
same conceptual/physical shortcomings (see Section 2). GPK theory as de-
veloped in [3–6] is specifically aimed at providing the stochastic background
for hyperbolic theories of transport, in which the finite propagation velocity
of the fluctuations is assumed as the fundamental physical Ansatz (it cor-
responds to a “weak relativity principle” for any physical field evolving in a
Minkowskian space-time), and the positivity is automatically fulfilled.

The aim of this article is to describe how the GPK approach matches
the Smoluchowski program of regularity. At the end, any scientific program,
no matter how progressive and elegant in terms of its internal mathematical
structure is, should match experimental evidence. Micro- and nanofluidic
experiments on the motion of single particles both in gas and liquid confirm
the regularity of fluctuations at short time/length scales [27–29].
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The article is organized as follows. Section 2 develops a preliminary
analysis on different pathways in non-equilibrium thermodynamics associ-
ated with the generalization of Fickian constitutive equations to Cattaneo-
like ones. Section 3 introduces the formalism of GPK processes, and some
of their main qualitative properties. Section 4 is dedicated to the study of
their regularity properties, starting from their derivation from simple Lat-
tice Random Walks. Spectral properties and elimination of singularities in
boundary-layer theory are briefly discussed. This section is essentially a
succinct review of results that can be found in published (or not yet pub-
lished) articles, but presented in a slightly new light. Section 5 presents new
material, namely the application of Poisson–Kac and GPK processes, as
physically meaningful mollifiers of noise-perturbations in stochastic partial
differential equations. The latter issue is of current interest due to the recent
developments in the theory of stochastic partial differential equations due
to Hairer [30] and to the growing application of fluctuating hydrodynamics
in the understanding of chemical–physical properties at nanoscales [31].

2. Pathways in non-equilibrium thermodynamics

The commonly accepted approach to non-equilibrium thermodynamics,
used in the overwhelming majority of engineering and physical applications,
is expressed by the Theory of Irreversible Processes (TIP) crystallized in the
monograph by de Groot and Mazur [32]. TIP, starting from the assumption
of smoothness for the five fields, mass density ρ(x, t), velocity v(x, t) and en-
ergy density e(x, t), couples mechanical balances with thermodynamic laws
by enforcing for the latter the expressions derived at equilibrium. The latter
assumption implies to extend the Gibbs equation for the specific entropy pro-
duction at equilibrium (Eq. (1.4) in [33]) also to non-equilibrium conditions.
Enforcing the second principle of thermodynamics, i.e., the non-negativity
of the entropy source contributions, TIP derives the thermodynamic con-
straints for the fluxes of the transported entities (mass, momentum and
energy), the so-called “phenomenological equations”, that within the TIP
paradigm should be proportional via non-negative phenomenological coef-
ficients (diffusivity, viscosity, thermal conductivity) to the gradients of the
associated fields (density, velocity, temperature) with reverse sign.

In terms of microscopic dynamics, this phenomenological picture corre-
sponds to a stochastic model expressed in terms of the Langevin equations
driven by the Wiener processes, the simplest example of which is given by

dx(t) = v(x(t)) dt+
√
2D dw(t) , (2.1)

where x ∈ Rn, dw(t) are the increments of a n-dimensional vector-valued
Wiener process [34], v(x) a deterministic field, andD the (constant) diffusiv-
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ity. The probability density function associated with Eq. (2.1) is a solution
of the parabolic Fokker–Planck equation

∂p(x, t)

∂t
= −∇ · [v(x) p(x, t)] +D∇2p(x, t) (2.2)

from which it follows that the probability flux Jp(x, t) = Jcp(x, t)+Jdp(x, t)
is the sum of a convective Jcp(x, t) = v(x) p(x, t), and of a diffusive contri-
bution

Jdp(x, t) = −D∇p(x, t) (2.3)

related to the stochastic perturbation, and of Fickian structure. In the
light of this analogy, it is not devoid of significance to claim that Wiener
fluctuations represent the paradigmatic model of equilibrium fluctuations in
thermodynamic systems.

The formal structure of the TIP theory, albeit internally consistent and
able to solve a huge and diversified variety of practical problems, is indeed
unsatisfactory from a theoretical point of view, at least for two main reasons:

— it does not provide any insight into the thermodynamic regimes charac-
terizing out-of-equilibrium conditions. The properties of non-equilib-
rium fluctuations are flattened out to those characterizing equilibrium
by the constitutive Ansatz of this theory;

— it contains intrinsically fundamental paradoxes (inconsistencies), such
as the occurrence of infinite propagation velocity in the evolution of
the physical field variables (density, momentum, temperature).

The latter problem has been tackled by Müller and Ruggeri, by expand-
ing, in the form of a thermodynamic theory, the original observation due to
Cattaneo [8, 9] of modifying the Fickian phenomenological laws. In the Cat-
taneo approach, memory effects are included in the constitutive equations
for the fluxes, in order to restore a finite propagation velocity, thus obtaining
balance equations of hyperbolic, instead of parabolic, nature. This radical
shift in the mathematical structure of the balance equations marks the birth
of Extended Thermodynamics [33], lately evolved in the Rational Extended
Thermodynamics [35] by including in the theory concepts and formalism
derived by the Rational Thermodynamics of Truesdall and Noll [36].

In Extended Thermodynamic theories, the fluxes, say Jp(x, t), are ex-
pressed by constitutive equations of Cattaneo-type with respect to the con-
centration p(x, t) that, in the simplest case, are of the form of

τ
Jp(x, t)

∂t
+ Jp(x, t) = −D∇p(x, t) , (2.4)
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where τ is the characteristic relaxation time. This form of phenomenologi-
cal laws derives essentially by generalizing the Gibbsian expression for the
specific entropy by including quadratic terms in the fluxes, see e.g. Eq. (2.8)
in [33].

3. GPK processes

3.1. Introduction

The 1974 article by Kac [7], containing the probabilistic interpretation
of the Cattaneo equation, provided a first insight into the stochastic back-
ground underlying extended thermodynamic theories. The model considered
by Kac is defined on R by the equation of motion

dx(t) = b0(−1)χ(t,λ) dt , (3.1)

where b0 is a constant having the dimension of a velocity and χ(t, λ) is a
Poisson process characterized by the transition rate λ. Indicate with X(t)
the stochastic process associated with Eq. (3.1) at time t. Its overall prob-
ability density function p(x, t) is a solution of the Cattaneo equation

τ
∂2p(x, t)

∂t2
+
∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
, (3.2)

where τ = 1/2λ and D = b20/2λ. This result stems from the fact that the
statistical description of the non-Markovian process X(t) involves the two
partial probability density functions p±(x, t), where

p±(x, t) dx = Prob
[
X(t) ∈ (x, x+ dx) , (−1)χ(t,λ) = ±1

]
(3.3)

satisfying the hyperbolic system of equations

∂p±(x, t)

∂t
= ∓b0

∂p±(x, t)

∂x
∓ λ [ p+(x, t)− p−(x, t)] . (3.4)

Out of Eq. (3.4), the evolution equation (3.2) for the overall probability
density function p(x, t) = p+(x, t) + p−(x, t) follows.

It is worth mentioning that the use of stochastic processes characterized
by a bounded velocity was already addressed by Goldstein in 1951 [39] and
referred by him to as persistent random walk, reworking an original idea
due to Taylor associated with the description of turbulent diffusion [40].
After elaborate calculations, Goldstein proved that the Laplace transform
of the probability density function associated with the persistent random
walk satisfies a telegrapher’s equation, The 1974 article by Kac is written
in a very simple and apparently non-technical way. It is just the simplicity
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and the far-reaching physical insights that make this article the cornerstone
in the theory of stochastic processes possessing finite propagation velocity.

The final comment by Kac in [7] is indeed interesting. After showing that
the Laplace transform of the probability density function associated with the
process (3.1) is a solution of the telegrapher’s equation, he concluded:

“The same proof goes also for higher number of dimensions.
Again it is simply a matter of writing the Laplace transform and
verifying the same formula.”

There are several ways of interpreting this observation, that essentially
is a classical, ritual sentence for concluding an article throwing a bridge
towards more general and future developments. If interpreted verbatim,
it suggests that exactly the same approach leading to the one-dimensional
Cattaneo equation from stochastic grounds can be extended to higher spatial
dimensions without problems.

But this is not the case. Even for simple two-dimensional systems, gen-
eralizing Eq. (3.1), such as

dx(t) = b0 (−1)χ1(t,λ) dt , dy(t) = b0 (−1)χ2(t,λ) dt , (3.5)

where χ1(t, λ) and χ2(t, λ) are two independent Poisson processes character-
ized by the same transition rate λ, the resulting overall probability density
function does not satisfy a Cattaneo equation [41]. This result is even more
evident from the mathematical elaborations by Kolesnik [23, 24] for rela-
tively simple processes in the plane.

In spatial dimensions higher than one, the Green function for the Cat-
taneo equation attains negative values [21]. This clearly indicates that it
cannot represent an evolution equation for the probability density function
of any stochastic process, and that the one-dimensional problem considered
by Mark Kac constitutes a “lucky dimensional singularity” for the Cattaneo
equation. This observation has significant implications in extended thermo-
dynamic theories, as it indicates that the Cattaneo building blocks in the
formulation of the constitute equations should be replaced by other formal
structures, consistent with the positivity requirement, and providing, at the
end, hyperbolic transport equations.

A way for achieving this program is to start from a stochastic dynamics,
possessing finite propagation velocity and sufficiently flexible to be easily
extended in any spatial dimension and for any problem of physical interest.
This is the physical motivation for the introduction of GPK processes.

3.2. Structure of GPK processes

GPK processes have been introduced in order to provide a stochastic
background to transport theories characterized by a finite value of the ve-
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locity of propagation of physical fields, with the further consistency condi-
tion, that in some limit, the Kac limit, they provide the same quantitative
description of classical Langevin equations driven by Wiener perturbations
[3–6].

The starting point is to consider an arbitrary number N of stochas-
tic states, the transitions amongst them being described by a Markov-
chain dynamics. This is the meaning of the N -state finite Poisson process
χN (t, Λ,A), as a stochastic process attainingN possible states α = 1, . . . , N ,
characterized by a vector of transition rates Λ = (λ1, . . . , λN ), λα > 0, and
by a transition probability matrixA = (Aα,β)

N
α,β=1, which is a left-stochastic

matrix, i.e.,

Aα,β ≥ 0 ,
N∑
α=1

Aα,β = 1 , ∀β = 1, . . . , N . (3.6)

The statistical description of χN (t, Λ,A) satisfies a Markov chain defined by
Λ and A. More precisely, let P̃α(t) = Prob[χN (t, Λ,A) = α], α = 1, . . . , N ,
the evolution equation for the probabilities P̃α(t) is expressed by

dP̃α(t)

dt
= −λα P̃α(t) +

N∑
β=1

Aα,β λβ P̃β(t) . (3.7)

To complete the construction, a family of N constant velocity vectors
{bα}Nα=1 of Rn should be introduced, corresponding to the characteristic
velocities in each of the N stochastic states. A GPK process X(t) in Rn is
thus defined simply by the stochastic evolution equation

dx(t) = bχN (t,λ,A) dt (3.8)

corresponding to a stochastic convective motion, where the bounded veloci-
ties switch at the pace of χN (t, Λ,A). The process so defined is statistically
characterized by a system of N partial probability densities pα(x, t), where
pα(x, t) dx = Prob[X(t) ∈ (x,x+dx) , χN (t, Λ,A) = α], that are solutions
of the system of hyperbolic equations

∂pα(x, t)

∂t
= −bα · ∇pα(x, t)− λα pα(x, t) +

∑
β=1

Aα,β λβ pβ(x, t) . (3.9)

The basic quantities, namely Λ, A and {bα}Nα=1, defining an N -state
GPK process in Rn, are not completely independent, if the consistency re-
quirement with respect to the Wiener limit should be met. This issue is
thoroughly analyzed in [4], and here is briefly reviewed, in a simple case.
Let bα = b0 b̃α, λα = λ0 λ̃α, where O(|b̃α|) = O(λ̃α) = 1, and for making
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the analysis notationally simpler consider λ̃α = 1. Assume the following
conditions: (i) the dyadic tensor b̃α b̃α is isotropic

1

N

N∑
α=1

b̃α b̃α = κ I , (3.10)

where κ > 0, and I is the identity tensor, and (ii) there is a constant δ < 1
such that

N∑
α=1

bαAα,β = δ bβ . (3.11)

These two conditions are fulfilled for typical GPK schemes as discussed in
[4]. Next, consider the evolution for the overall probability density function
p(x, t) =

∑N
α=1 pα(x, t),

∂p(x, t)

∂t
= −∇ · Jp(x, t) , (3.12)

where the probability flux vector Jp(x, t) =
∑N

α=1 bα pα(x, t) satisfies the
equation

∂Jp(x, t)

∂t
= −b20∇ ·

(
N∑
α=1

b̃α b̃α pα(x, t)

)

−λ0Jp(x, t) + λ0

N∑
α,β=1

bαAα,β pβ(x, t) . (3.13)

Equation (3.13) is still a constitutive equation “with memory” for the flux
Jp(x, t), as the time-derivative of the flux is involved, but not of the Cattaneo-
type. Consider the limit of this equation for b0, λ0 → ∞, keeping constant
the value b0/2λ0 = Dnom, that can be viewed as the “nominal” diffusivity of
the GPK scheme. This corresponds to the Kac limit of the process for un-
bounded propagation velocities. For arbitrarily large λ0, the recombination
dynamics amongst the N partial probability waves is arbitrarily fast so that

pα(x, t) =
p(x, t)

N
+O

(
λ−1

0

)
, (3.14)

where O(λ−1
0 ) is a quantity going to zero for λ−1

0 → 0. Applying Eq. (3.10),
the first term at the r.h.s. of Eq. (3.13) can be expressed as

∇ ·
(

N∑
α=1

b̃α b̃α pα(x, t)

)
= ∇ ·

(
1

N

N∑
α=1

b̃α b̃α p(x, t)

)
+O

(
λ−1

0

)
= κ∇ · (I p(x, t)) +O

(
λ−1

0

)
= κ∇p(x, t) +O

(
λ−1

0

)
. (3.15)
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Enforcing the transition condition (3.11) amongst the velocity vectors bα,
Eq. (3.13) simplifies in the Kac limit as

Jp(x, t) = −
b20 κ

λ0 (1− δ)
∇p(x, t) = −2κDnom

1− δ ∇p(x, t) . (3.16)

It follows from Eqs. (3.12), (3.16) that the overall probability density func-
tion p(x, t) is a solution, in the Kac limit, of the diffusion equation
∂p(x, t)/∂t = Deff ∇2p(x, t) with an effective diffusion coefficient given by
Deff = 2κDnom/(1− δ). This means that p(x, t) coincides with the solution
(for the same initial conditions) of the forward Fokker–Planck equation as-
sociated with the classical Langevin equation dx(t) =

√
2Deff dw(t) driven

by a vector-valued n-dimensional Wiener process, the increments of which
in the interval dt are dw(t).

GPK processes can be easily extended to include the presence of a deter-
ministic velocity field v(x), to a continuum of stochastic states, and to the
dependence of both bα(x) and λ(x) on the state variable x (conceptually
analogous to the case of non-linear Langevin equations). The analysis of
these extensions can be found in [4–6].

What is important to point out in the present analysis is that the GPK
process (3.8) does not only approach a Wiener dynamics in the Kac limit, but
also in its long-term dynamics, for any value of the parameter b0 and λ0. This
means that all the equilibrium properties and the associated results (e.g. the
fluctuation–dissipation relations), that in statistical mechanics are derived
from the equilibrium properties of Langevin equations driven by Wiener
perturbations, can be equally well interpreted within the GPK formalism,
with the further conceptual advantage that the latter does possess regularity
properties at short timescales, and is immune from the unpleasant paradox
of infinite propagation velocity typical of parabolic transport models.

4. Regularity properties

This section briefly addresses how the constraint of finite propagation
velocity permits to regularize classical transport problems eliminating un-
physical divergences characterizing parabolic models.

Preliminarly, next paragraph analyzes how GPK process naturally arises
in the statistical description of systems of interacting particles, whenever
continuous hydrodynamic limits, respectful of the requirement of finite prop-
agation velocity, are considered.
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4.1. “A good old boy”: origin of GPK from LRW

Lattice Random Walk (LRW, for short) is probably the simplest model
of stochastic particle dynamics and represents one of the milestones in sta-
tistical physics [42]. Consider a lattice Z of points on R with lattice spacing
δ > 0, and assume that at regular time intants tn = nτ , n = 1, 2, . . . , τ > 0,
particles perform random jumps to one of the nearest neighboring sites with
probability r1 > 0 (to the right) and r2 > 0 (to the left), see Fig. 1. Particle

r1r2

k − 1 k k + 1

Fig. 1. Schematic representation of the asymmetric LRW.

motion is specified by the three parameters δ, τ and r = r1−r2 ∈ [0, 1), and
described by the evolution equation

xn+1 =

{
xn + δ with Prob. r1 ,
xn − δ with Prob. r2 ,

(4.1)

where xn is the particle position at the discrete time tn = n τ . Indicating
with p(xk, tn) the probabilities of finding at time tn a particle at lattice
position xk, from Eq. (4.1) it follows that this system of probabilities satisfies
the evolution equation

p(x, t) = r1 p(x− δ, t− τ) + r2 p(x+ δ, t− τ) =Mτ [p(x, t)] (4.2)

that defines the Markov operatorMτ of the discrete lattice model.
One of the main issues in LRW as well as in any model of interacting par-

ticles is to define a continuous limit for Eq. (4.2). This is usually performed
by letting the lattice parameters δ and τ go to zero, assuming a suitable
rescaling for them, i.e., a relation of the form δ = g(τ) connecting the space
and time scales of the process as δ, τ → 0. Two cases are typical. By assum-
ing a purely convective rescaling, i.e., δ/τ = b0 = const., the hydrodynamic
limit of Eq. (4.2) is expressed by the continuity equation

∂p(x, t)

∂t
= −v ∂p(x, t)

∂x
, (4.3)

where
v = r b0 = (r1 − r2)

δ

τ
. (4.4)
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Conversely, if a diffusive rescaling δ2/2τ = D0 = const. is assumed, and if
the hopping probabilities depend on δ,

r1 =
1 + α δ

2
, r2 =

1− α δ
2

, (4.5)

where α = v/2D0, then the hydrodynamic limit of Eq. (4.2) is the advection–
diffusion equation for p(x, t)

∂p(x, t)

∂t
= −v ∂p(x, t)

∂x
+D0

∂2p(x, t)

∂x2
. (4.6)

All this is well-known [43]. In the latter case (diffusive rescaling), the lattice
velocity b0 diverges. The paradox of infinite propagation velocity for the
solutions of Eq. (4.6) is, therefore, an artifact of the approach used to obtain
the hydrodynamic limit (4.6), while it is completely absent in the original
lattice particle model.

It is, therefore, natural to ask whether it would be possible to derive con-
tinuous hydrodynamic equations without performing the limit for δ, τ → 0,
consistently with the bounded value of the lattice velocity b0 [44]. This
effort is also reasonable in the light of elementary physical considerations.
Consider LRW as a “crude” lattice model of a particle gas system. In this
case, both δ and b0 are physical quantities related to the mean free path and
to the root mean square velocity, and ultimately depending on temperature
and pressure. The physics of the system indicates that both δ and τ attain
finite values for given thermodynamic conditions.

The construction of the continuous model is essentially based on two key
steps:

— a continuation of the lattice random walk both in space and time in
order to consider x ∈ R and t ∈ R+. As regards the spatial coordi-
nate, this can be easily achieved by assuming uncertainty in the initial
conditions. This means that the initial condition x(t = 0) = x0 is a
random variable defined by the probability density function px0(x0)
possessing compact support in (−δ/2, δ/2). For the time variable,
its continuation involves solely the linear continuation of particle tra-
jectories between two subsequent lattice positions xn and xn+1, as
x(t) = xn + (xn+1 − xn)(t− tn)/(tn+1 − tn), t ∈ [tn, tn+1). This linear
continuation of the trajectories bears some analogies with the classical
Wong–Zakai interpolation of Wiener processes [45].

— While the original lattice model (4.1) is strictly Markovian, as results
from Eq. (4.2), the continuous extension introduced above defines a
non-Markovian process for X(t). This stems from the fact that in
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order to keep a continuous description of particle trajectories, also
the local velocity direction s should be considered as a state variable,
attaining values s = 1 (motion towards positive x-values) or s = −1
(motion towards negative x-values).

Starting from the two conceptual steps described above, the development
of a continuous statistical description is essentially a matter of “mathemati-
cal–physical technology” and is thoroughly addressed in [44]. The final result
of this analysis can be summarized as follows. The continuous hydrodynamic
equations involve the two partial partial probability densities p±(x, t) =
Px,s(x, s = ±1, t) that are solutions of the hyperbolic equations

∂p+

∂t
= −b0

∂p+

∂x
− 2

τ
p+ +

2

τ

[
(1 + r)

2
p+ −

(1 + r)

2
p−

]
,

∂p−
∂t

= b0
∂p−
∂x

+
2

τ
p− +

2

τ

[
(1− r)

2
p+ +

(1− r)
2

p−

]
(4.7)

and contain solely the lattice parameters δ and τ , as b0 = δ/τ , and r. The
overall probability density function is p(x, t) = p+(x, t) + p−(x, t). Equa-
tion (4.7) corresponds to the statistical description of a GPK process on the
real line possessing two states α = 1, 2 corresponding respectively to s = ±1
and defined by

dx(t) = bχ2(t,Λ,A) dt , (4.8)

where b1 = b0, b2 = −b0, Λ = (2/τ, 2/τ), and a probability transition matrix

A =
1

2

(
1 + r 1 + r
1− r 1− r

)
. (4.9)

Figures 2 and 3 depict the comparison between the stochastic simulation
of LRW at r = 0.8 (δ = τ = 1 a.u.), and the solution of the continuous
hyperbolic hydrodynamic model (4.7), as regards the lower-order moments,
(mean and squared variance in Fig. 2) and the overall probability density
function p(x, t) at the initial stage of the process (Fig. 3).

The lattice simulations involve an ensemble ofNp = 108 particles initially
located at x0 = 0. Correspondingly, the initial conditions for Eq. (4.7)
are p±(x, 0) = p0

±δ(x), where, assuming balanced initial conditions, p0
± are

the entries of the Frobenius eigenvector p0 = (p0
+, p

0
−) of the matrix A,

Ap0 = p0, p0
± ≥ 0, p0

+ + p0
− = 1.
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Fig. 2. Mean value 〈x(t)〉 and squared variance σ2
x(t) for the time-continued asym-

metric LRW at r = 0.8, δ = τ = 1, starting from x(0) = 0. Lines are the results
obtained from the moments of the hyperbolic hydrodynamic limit (4.7), symbols
are the theoretical results for the time-continued LRW. Line (a) and (�) correspond
to 〈x(t)〉, line (b) and (◦) to σ2

x(t).
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Fig. 3. Probability density function p(x, t) for the asymmetric LRW at r = 0.8,
δ = τ = 1, starting from p(x, 0) = δ(x). Solid lines correspond to the solution
of the hyperbolic continuous model, symbols to the results of lattice simulations,
normalized in a continuous way (see the main text). The arrow indicates increasing
time instants t = 20, 40, 60, 80, 100.

Observe that the hyperbolic continuous model not only provides a correct
quantitative reproduction of the scaling characterizing the time-continued
version of LRW, including the initial ballistic behavior σ2

x(t) ∼ t2, induced
by the linear continuation of the trajectories, but accurately reproduces the
particle density function p(x, t) even at the early stages of the process, as
can be observed from the data depicted in Fig. 3.
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At these short-time scales, the probability density function of the LRW
process is a combination of a relatively small number, 2 t + 1, of impul-
sive contributions, p(x, t) =

∑t
k=−t pk(t) δ(x − k δ) of intensity pk(t), but

solely a small fraction of these terms admits appreciable intensities pk(t).
Conversely, the overall probability density function of the associated GPK
process is an almost smooth function of x. In order to achieve a graphically
meaningful comparison of the two models, the impulsive probability density
functions associated with LRW processes have been interpolated smoothly in
a logarithmic way in each interval [k δ, (k+1) δ], where pk(t) and pk+1(t) are
different from zero (logarithmic linear interpolation means that log p(x, t) is
linearly interpolated in each elementary interval), and the resulting values
have been probabilistically normalized to unit integral over the real line.

Moreover, the classical continuous limit (4.6) can be viewed as the Kac
limit of Eq. (4.7) for b0, 1/τ →∞ keeping constant the value D0 = δ2/2τ .

4.2. Physical regularity properties

The occurrence of a finite propagation velocity characterizing GPK pro-
cesses and the associated transport models has several physical implications
as regards the regularity of physical observables. Two simple paradigmatic
examples are reviewed below taken from [46, 47], considering for simplicity
one-dimensional spatial models.

To begin with consider the original Poisson–Kac model defined by
Eq. (3.4). In the Kac limit, it converges to the parabolic diffusion model on
the real line with a diffusivity equal to D = b20/2λ. The eigenfunction of
the Kac-limit operator Dd2ψ(x)/dx2 = µψ(x) are obviously φk(x) = ei k x,
i =
√
−1, and the corresponding eigenvalue spectrum is expressed by

µ(k) = −Dk2 , k ∈ R . (4.10)

The real part of the eigenvalues (indeed the eigenvalues are real by self-
adjointness of the operator) diverges to −∞ for high wavenumbers k. This
phenomenon determines that the evolution operators St = exp

(
tD ∂2/∂x2

)
associated with the solutions of the parabolic diffusion equation form a semi-
group of transformations defined solely for t ≥ 0. Conversely, the eigenfunc-
tion spectrum of the Poisson–Kac operator

LPK =

(
−b0 ∂/∂x− λ λ

λ b0∂/∂x− λ

)
(4.11)

is still given by vector-valued planar-wave functions ψk(x)=(ψ+
k,0, ψ

−
k,0) e

i k x,
but the corresponding eigenvalues

µ(k) = −λ±
√
λ2 − k2 b20 (4.12)
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possess negative real part lower-bounded by −2λ for any wavenumber k.
Specifically, high-frequency spatial modes decay in time at most exponen-
tially as e−λ t. As a consequence of this property, the corresponding evolution
operators, parametrized with respect to time t, form a group of transforma-
tions defined also for t < 0. There are several thermodynamic implications
of this result, and some of them are addressed in [46].

Another typical example of the regularization induced by the finite prop-
agation velocity involves boundary layer theory. Singularities in the ex-
pression of the interfacial fluxes often appear in boundary layer problems
governed by parabolic transport models, associated with the occurrence of
concentration discontinuities. The hyperbolic formulation of the same prob-
lems eliminates the singularities as far as the propagation velocity is kept
bounded.

Consider the simplest example of thermal boundary layer: a material
medium extending for x ∈ (0,∞) and initially at temperature Tin, say
Tin = 0 upon a suitable shift of the temperature scale, is heated by a solid
boundary located at x = 0 and kept at temperature T0 > 0. Indicating
with D = k/ρcp the “thermal diffusivity”, the classical parabolic model for
heat conduction, ∂T/∂t = D∂2T/∂x2, T |x=0 = T0, T |t=0 = 0, predicts an
interfacial flux at x = 0 given by

J0(t) =

√
D

π t
T0 (4.13)

that is singular at t = 0 just because of the initial discontinuity in the tem-
perature profile deriving from the mismatch between initial and boundary
conditions at x = 0 and t = 0.

Next, consider the hyperbolic formulation of the same problem based on
the Poisson–Kac transport formalism. In this case, the temperature field
is described by the two partial waves T±(x, t), solution of Eq. (3.4), with
p±(x, t) replaced by T±(x, t). The overall temperature is T (x, t) = T+(x, t)+
T−(x, t), the parameters b0 and λ satisfy the condition b20/2λ = D, and the
heat flux is expressed by the relation J(x, t) = b0 [T+(x, t)− T−(x, t)]. The
hyperbolic equations (3.4) for T±(x, t) are equipped with the boundary and
initial conditions T+(x, 0)+T−(x, 0) = 0 for x > 0 and T+(0, t)+T−(0, t) =
T0 for t > 0. This model can be solved analytically and the expression for
the interfacial flux J0(t) = J(0, t) is [47]

J0(t) = b0e
−b20 t/2D I0

(
b20t

2D

)
T0 , (4.14)

where I0(·) is the modified Bessel function of first kind and order zero. It
follows from Eq. (4.14) that the interfacial flux J0(t) is bounded by

J0(t) ≤ b0T0 . (4.15)
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Moreover, enforcing the asymptotic expansion for the Bessel function enter-
ing Eq. (4.14), one obtains

J0(t) =

√
D

π t
T0

[
1 +O

(
2D

b20 t

)]
. (4.16)

Equations (4.15)–(4.16) imply that, while the initial singularity of the in-
terfacial flux is cured by the finite-propagation velocity characterizing the
hyperbolic model, the long-term properties (corresponding to time scales
t� 2D/b20) are quantitative the same of the classical parabolic model based
on the Fourier law.

5. Regularizing stochastic partial differential equations

Langevin equations driven by vector-valued Wiener noise represent the
prototypical model of evolution equations for a physical system driven by a
deterministic velocity field in the presence of superimposed stochastic fluc-
tuations. The statistical nature of a Wiener process w(t) (possessing un-
correlated increments w(t + δ) − w(t), δ > 0, characterized by Gaussian
probability density function with zero mean and variance equal to the time
interval δ), can be regarded as the natural legacy of a large number Ansatz,
in which the effects of many unknown and uncorrelated perturbations jus-
tify the Gaussian nature for the statistics of the increments of the stochastic
forcing.

Analogously, in dealing with stochastic field equations (stochastic partial
differential equations),

∂φ(x, t)

∂t
= N [φ(x, t)] + a(φ(x, t)) fs(x, t) , (5.1)

where N is a non-linear operator of the field variable φ(x, t), the most com-
mon assumption for the stochastic spatio-temporal forcing fs(x, t) is that it
possesses zero mean and δ-correlated increments both in space and time

〈fs(x, t)〉 = 0 ,
〈
fs(x, t) fs

(
x′, t′

)〉
= δ

(
x− x′

)
δ
(
t− t′

)
, (5.2)

where 〈·〉 indicates the mean value with respect to the probability measure,
For this reason, this term can be “formally” viewed as the “derivative” of
a Wiener process. This is the classical model adopted in stochastic field
theory [48–50].
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However, the δ-correlated structure of the stochastic fluctuations, espe-
cially as regards their spatial dependence, poses several consistency issues:

— in the case the field φ(x, t) represents a concentration (mass density, a
molar concentration, or temperature expressed in absolute units), the
evolution equation should satisfy the positivity requirement. Problems
with the lack of positivity often arise in the presence of stochastic
perturbation satisfying Eq. (5.2) [51, 52];

— for δ-correlated perturbations fs(x, t), even in the presence of simple
functionals such as N [φ] = ∇2φ + V (φ) (where V (φ) is a function
of φ, such as in the Schrr̈odinger equation), the solutions may not
exist from a mathematical point of view, or their lower-order moments
may diverge, depending on the dimensionality of the space coordinate
(see Section 5.2).

In this framework, the use of Poisson–Kac or GPK processes for model-
ing the stochastic perturbations fs(x, t) provides a physically reasonable and
simple alternative to the “harsh” δ-correlated processes, possessing from the
one hand the same long-term properties, and from the other hand regulariz-
ing the short-scale behavior, with the effect of eliminating the mathematical
problems associated with positivity, with the non-existence of solutions or of
their lower-order moments. Two simple examples are thoroughly addressed
in order to elucidate this claim.

5.1. Positivity: a simple transport problem

In many transport problems, the stochastic fluctuations should satisfy
positivity requirements. Below, a simple but non-trivial problem is ad-
dressed. Consider transport and reaction of a reactant inside a catalytic
pore of length L. Let D be the reactant diffusivity and kr the reaction
rate constant (assuming a first-order reaction and isothermal conditions).
In non-dimensional form, the balance equation reads

∂c(x, t)

∂t
=
∂2c(x, t)

∂x2
− φ2 c(x, t) , (5.3)

where φ2 = krL
2/D is the square Thiele modulus, x ∈ (0, 1) and t is a

non-dimensional time corresponding to the physical time rescaled with re-
spect to the diffusion time L2/D. Let us further assume that initially the
reactant is absent, and that for t > 0 a stochastic feeding occurs at the open
pore boundary (the other boundary x = 0 is impermeable to transport),
corresponding to a reactant flux equal to J0 µ(t), where J0 is a constant and
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µ(t) a stochastic process. This means that Eq. (5.3) fulfills the initial and
boundary conditions (see Fig. 4)

c(x, 0) = 0 ,
∂c(x, t)

∂x

∣∣∣∣
x=0

= 0 ,
∂c(x, t)

∂x

∣∣∣∣
x=1

= γ µ(t) , (5.4)

where γ = J0 L/DCref , and Cref is some reference concentration value. The
stochastic process µ(t) is, by definition, non-negative, as reactant is fed
into the catalyst pore, and this ensures that the solutions of the stochastic
equation (5.3) are also non-negative, owing to the maximum principle for
the Laplacian operator. A simple way for achieving this is to model µ(t) via
Poisson–Kac processes in the form of

µ(t) =
1− (−1)χ(t,λ)

2
, (5.5)

where the Poisson process χ(t, λ) is characterized by its transition rate λ,
that controls the exponential decay of correlations of µ(t). In this way, µ(t)
attains solely the values 0 or 1, depending on the parity of χ(t, λ).

0 x L

∂tc(x, t) = D∂2
xc(x, t)− kr c(x, t)

D∂xc(x, t)|x=L = J0 µ(t)∂xc(x, t)|x=0 = 0

c(x, 0) = 0 , µ(t) = [1− (−1)χ(t,λ)]/2

Fig. 4. Overview of the reaction-diffusion model considered in the presence of a
stochastic reactant flux at the boundary of a catalytic pore. In this picture, the
quantities x, t and c(x, t) are dimensional.

Introduce the auxiliary field u(x, t) as

c(x, t) = u(x, t) + µ(t) c∗(x) , (5.6)

where c∗(x) is the stationary solution of the corresponding problem in which
the stochastic inlet condition is substituted by dc∗(x)/dx|x=1 = γ

c∗(x) =
γ

φ

cosh(φx)
sinh(φ)

. (5.7)

The auxiliary field u(x, t) satisfies the equation

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
− φ2 u(x, t)− µ′(t) c∗(x) , (5.8)
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where µ′(t) = dµ(t)/dt, equipped with homogeneous boundary conditions
∂u(x, t)/∂x|x=0,1 = 0, and with the initial condition u(x, 0) = −µ(0) c∗(x).
Expressing the solution in the eigenbasis {ψn(x)}∞n=0 of the diffusion-reaction
operator L = ∂2/∂x2 − φ2, L[ψn(x)] = −ν2

n ψn(x), ν2
n = n2 π2 + φ2, n =

0, 1, . . ., (ψm(x), ψn(x))L2([0,1]) = δm,n

u(x, t) =

∞∑
n=0

un(t)ψn(x) , (5.9)

the Fourier coefficients un(t) satisfy the stochastic system of equations
dun(t)

dt
= −ν2

n un(t)− µ′(t) c∗n , (5.10)

where c∗n = (c∗(x), ψn(x))L2([0,1]), c0 = γ/φ2, c∗n =
√
2 γ (−1)n/(n2 π2 + φ2),

n = 1, 2, . . . The solution of Eqs. (5.3)–(5.4) thus reads

c(x, t) =
∞∑
n=0

c∗n ν
2
n

t∫
0

µ(τ) e−ν
2
n(t−τ) dτ ψn(x) (5.11)

and the integral in Eq. (5.11) is simply a stochastic Riemann integral. Since
the averages of the noise boundary perturbations are

〈µ(t)〉 = 1

2
, 〈µ(t)µ(t′)〉 = 1

4

[
1 + e−2λ|t−t′|

]
, (5.12)

it follows that the mean concentration 〈c(x, t)〉 at x in the long-time regime
equals 〈c(x, t)〉 = c∗(x)/2 as intuitively expected from the structure of
the stochastic perturbation. The pointwise square concentration variance
σ2

c (x, t) = 〈c2(x, t)〉 − 〈c(x, t)〉2 in the long-time limit takes the expression

σ2
c (x, t) =

1

2

∞∑
m=0

∞∑
n=0

ν2
m ν

2
n c
∗
m c
∗
n

ν2
m + ν2

n

(
1

ν2
m + 2λ

+
1

ν2
n + 2λ

)
ψm(x)ψn(x) .

(5.13)
Indicating with C and V the average concentration and squared variance
over all domain, one obtains in the long-term limit

C =

1∫
0

〈c(x, t)〉 dx =
γ

2φ2
, V 2 =

1∫
0

〈
σ2

c (x, t)
〉
dx =

1

4

∞∑
n=0

ν2
n (c
∗
n)

2

ν2
n + 2λ

.

(5.14)
Figure 5 depicts some realization of the process, i.e., the concentration value
at the mid-point x∗ = 1/2 and the associated probability density functions
Pc(x;x

∗) for the pointwise concentration c at x∗ in the long-term regime,
for different values of the Thiele modulus φ. These data have been obtained
by considering 105 realizations of the process.
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Fig. 5. Realizations, panels (a), (c) and (e), of the stochastic reaction–diffusion
model considered in the main text at x∗ = 0.5, γ = 1 for different values of
the Thiele modulus. Panels (b), (d) and (e) represent the corresponding density
functions Pc(c;x

∗) for the concentration values c at x∗. Panels (a) and (b) refer to
φ = 0.1, (c) and (d) to φ = 1, and (e) and (f) to φ = 10.

Depending on the value of the Thiele modulus, the density functions asso-
ciated with the local concentration values attain extremely different shapes,
ranging from almost Gaussian profiles at low φ values (panel (b)), to almost
flat distributions (panel (d)) at intermediate φ ∼ O(1) values corresponding
to the transition from reaction-controlled to diffusion-controlled regimes, to
singular ones, peaked at two characteristic concentrations for high φ val-
ues (panel (f)), corresponding to the dichotonomous behavior of the local
concentration values (see panel (e) in Fig. 5).
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A final comment refers to the noise-to-signal ratio V/C, expressed as the
ratio of the variance to the mean concentration and its dependence on φ.
The behavior of this global quantity is depicted in Fig. 6 for several values
of λ.
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10
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2

V
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b

Fig. 6. Noise-to-signal ratio V/C vs. the Thiele modulus φ at γ = 1. The arrow
indicates decreasing values of λ = 10, 1, 0.1, 0.01, 0. Line (a) represents the scaling
V/C ∼ φ, line (b) V/C ∼ φ1/2.

Two observations follow from the inspection of these data. The overall
statistical behavior of the process is characterized by the occurrence of three
different scaling regimes: (i) V/C ∼ φ at small values of φ, (ii) V/C ∼ const.
at intermediate values, and (iii) V/C ∼ φ1/2 at large values of φ. Moreover,
the ratio V/C can attain arbitrarily large values for large φ, corresponding to
an arbitrarily large variance compared to the mean, still keeping rigorously
the positivity of the concentration field.

5.2. Convergence of lower-order moments: the Edwards–Wilkinson model

The Edwards–Wilkinson model (EW, for short) corresponds to the diffu-
sion equation in the presence of a stochastic forcing, and is a classical model
for surface growth [57–59]. In non-dimensional form it reads as

∂u(x, t)

∂t
= ∇2u(x, t) + κ ξ(x, t) , (5.15)

where x ∈ Ω ⊂ Rn, κ is a constant parameter and ξ(x, t) is a white-
noise stochastic perturbation, satisfying conditions (5.2), i.e., 〈ξ(x, t)〉 = 0,
〈ξ(x, t) ξ(x′, t′)〉 = δ(t − t′) δ(x − x′). In the present analysis Ω = [0, 1]n,
and the problem is equipped with periodic boundary conditions. Without
loss of generality set κ = 1.
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This means that the eigenfunctions of the Laplacian are ψk(x)=e
i2πk·x,

and the corresponding eigenvalues are νk=−4π2 |k|2, where k=(k1, . . . , kn),
kh integers. Without loss of generality, assume vanishing initial conditions
u(x, 0) = 0.

In the presence of δ-correlated stochastic perturbations, the EW model
admits bounded lower-order moments (variance) solely for n = 1 [53, 54].
The solution of Eq. (5.15) can be expanded in the Laplacian eigenfunctions
u(x, t) =

∑
k uk(t)ψk(x), where the Fourier coefficients uk(t) are given by

uk(t) =

t∫
0

e−νk(t−τ) ξk(τ)dτ (5.16)

and

ξk(t) = (ξ(x, t), ψk(x))L2([0,1]n) =

∫
[0,1]n

ξ(x, t) e−i 2π k·x dx (5.17)

are characterized by

〈ξk(t)〉 = 0 ,
〈
ξk(t) ξm

(
t′
)〉

= δ
(
t− t′

)
δ̃(k +m) , (5.18)

where δ̃(k) = 1 for k = 0 and zero otherwise.
In the applications to surface growth, where u(x, t) is the local height of

the surface, the quantity of interest is the deviation w(x, t) from the overall
spatial mean value, i.e.,

w(x, t) = u(x, t)− 1

meas(Ω)

∫
Ω

u(x, t) dx , (5.19)

where meas(Ω) indicates the measure of Ω, in the present case, meas([1, 0]n)
= 1. The Fourier coefficients of w(x, t) with respect to the Laplacian basis
are related to those of u(x, t) by the relation

wk(t) =

{
0 , k = 0 ,
uk(t) , k 6= 0 .

(5.20)

Obviously 〈w(x, t)〉 = 0, while for the spatially averaged squared variance
W 2(t) one obtains

W 2(t) =

∫
[0,1]n

〈
w2(x, t)

〉
dx =

∑
k 6=0

1− e−2ν2
k
t

2 ν2
k

. (5.21)
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In practical calculations, the expression for W 2(t) is truncated to a finite
number of modes, e.g. by considering |kh| ≤ N , h = 1, . . . , N . This cor-
responds to considering 2N + 1 Fourier modes per coordinate. Figure 7
depicts the behavior of W 2(t) vs. t for several values of the truncation or-
der N in the two- and three-dimensional case. As it is well-known [53],
the variance of w(x, t) depends on the number of Fourier modes chosen,
and this represents a serious inconvenience of the EW model. This phe-
nomenon is clearly depicted in Fig. 8 that shows the asymptotic limit value
W 2
∗ (N) =

∑
k 6=0,|kh|≤N 1/2ν2

k as a function of the modal resolution N .
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Fig. 7. Behavior of W 2(t) vs. t for n = 2 (panel (a)) and n = 3 (panel (b)), for
different values of the truncation order N . The arrows indicate increasing values
of N . Panel (a) N = 103, 2 × 103, 104, 4 × 104. Line (a) represents the scaling
W 2(t) ∼ log t. Panel (b) N = 102, 4 × 102, 103. Line (a) represents the scaling
W (t) ∼ t.

The lack of convergence of the squared variance is a consequence of the
assumption of δ-correlated noise, especially as regards the dependence on
the spatial coordinates, that is “too rough” to ensure convergence for n > 1.
A similar problem arises a fortiori in the case of non-linear stochastic partial
differential equations driven by δ-correlated stochastic perturbations.
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Fig. 8. Behavior of W 2
∗ (N) vs. N (symbols •) for the two-dimensional and three-

dimensional EW model. Panel (a) n = 2. The solid line represents the scaling
W 2

∗ (N)∼ logN . Panel (b) n = 3. The solid line represents the scalingW 2
∗ (N)∼N .

The divergence of the EW model can be cured by considering a Poisson–
Kac representation for the stochastic perturbation. The simplest way for
achieving this is to consider for ξ(x, t) the following expression in n-dimensio-
nal spatial problems:

ξ(x, t) = Λ (−1)χ0(t,λ0)
n∏
h=1

(−1)χh(xh,λh) , λ =

√√√√λ0

n∏
h=1

λh , (5.22)

where x = (x1, . . . , xn), and χ(t, λ0), χh(xh, λh), h = 1, . . . , n are, obvi-
ously, independent Poisson processes with respect to time and space coordi-
nates, characterized by the transition rates λ0, λh, h = 1, . . . , n, respectively.
Model (5.22) can be viewed as a mollification of the original δ-correlated pro-
cess, converging to it for λ0, λh →∞.

Expressed in the Fourier modes, the formal solution for uk(t) is given by

uk(t) = ΛBk

t∫
0

e−ν
2
k

(t−τ) (−1)χ0(τ,λ0) dτ , (5.23)

where

Bk =

n∏
h=1

 1∫
0

(−1)χh(xh,λh) e−i 2π kh dxh

 =
n∏
h=1

Bkh . (5.24)

Assuming as initial condition for all the processes Prob[χh = 0] =
Prob[χh = 1] = 1/2, then 〈u(x, t)〉 = 0. In terms of the w(x, t) process,
〈w(x, t)〉 = 0, while the squared variance is given by〈

w2(x, t)
〉
= Λ2

∑
k 6=0

∑
m 6=0

〈BkBm〉 C(t, λ0,k,m) ei 2π(k+m)·x , (5.25)
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where

C(t, λ0,k,m) =

t∫
0

dτ

t∫
0

dτ ′e−ν
2
k

(t−τ)e−ν
2
m(t−τ ′)e−2λ0 |τ−τ ′| (5.26)

and the correlations 〈BkBm〉 factorize

〈BkBm〉 =
n∏
h=1

B̃(λh, kh,mh) , (5.27)

where the function B̃(λ, a, b) entering Eq. (5.27) is given by

B̃(λ, a, b) =

1∫
0

dx

1∫
0

dy e−2λ |x−y| e−i 2π(ax+by)

=
λ

2

(
1

λ2 + π2 a2
+

1

λ2 + π2 b2

)
δ̃(a+ b)

+
1

2

λ2 − π2 a b

(λ2 + π2 a b)2 + λ2 π2(a− b)2
(
1− e−2λ

)
, (5.28)

where δ̃(a) = 1 for a = 0 and zero otherwise. The spatially averaged squared
variance W 2(t) takes the simpler expression

W 2(t) = Λ2
∑
k 6=0

n∏
h=1

B̃(λh, kh,−kh)C(t, λ0,k,m) , (5.29)

where from Eq. (5.28)

B(λ, k,−k) = λ

λ2 + π2 k2
+

1

2

λ2 − π2 k2

λ2 + π2 k2

(
1− e−2λ

)
. (5.30)

This completes the statistical analysis of the Poisson–Kac EW model as
regards its lower-order moments. Let us analyze the convergence and the
scaling properties of this model. To begin with, consider the one-dimensional
spatial case (n = 1), for which the δ-correlated EW model converges. Fig-
ure 9 depicts the behaviour of W 2(t) for a very high value of the temporal
transition rate λ0 = 109, and for increasing values of the spatial transition
rate λ1.

As expected, for sufficiently high values of λ1, the behavior of the δ-cor-
related process is exactly reproduced by its Poisson–Kac counterpart. For
the time scales considered, t ≥ 10−8, this implies to choose λ1 ∼ O(109).
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Fig. 9. W 2(t) vs. t for the one-dimensional Poisson–Kac EW model at λ0 = 109 for
several values of λ1. The arrow indicates increasing values of λ1 = 1, 101, 102, 109.
Symbols (•) correspond to the solution of the δ-correlated EW model. Line (a)
represents the scaling W 2(t) ∼ t, while line (b) represents W 2(t) ∼ t1/2.

The occurrence of three different scalings can be observed: (i) an initial
linear scaling W 2(t) ∼ t, corresponding to the situation where the effects
of spatial roughness of ξ(x, t) are negligible, and the squared variance of
w(x, t) scales with time as classical Brownian motion; (ii) an intermediate
W 2(t) ∼ t1/2, which is the typical signature of the universality class of the
EW model in space dimension one, and (iii) finally, the saturation towards
a constant value W 2

∗ .
Of course, the convergence of the Poisson–Kac model towards the δ-cor-

related EW dynamics applies also in higher spatial dimensions, provided that
the model is truncated to a finite number of spatial modes. This phenomenon
is depicted in Fig. 10, considering the two-dimensional case (n = 2) as an
example, and λ1 = λ2.
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Fig. 10. The two-dimensional truncated Poisson–Kac EW model, using N = 104

as modal resolution. Line (a) refers to λ0 = λ1 = 109, line (b) to λ0 = λ1 = 1012.
Symbols are the results of the corresponding δ-correlated EW process at the same
modal resolution.
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Contrarily to δ-correlated EW processes, the Poisson–Kac counterparts
possess, for finite values of λ0 and λhs, convergent and bounded lower-order
moments in any spatial dimension n.

Figure 11 illustrates the behavior of the saturation value W 2
∗ (by con-

sidering a sufficiently high number of modes to ensure convergence) as a
function of the transition rate λ0 for fixed values of λ1 = λ2. It is interesting
to observe the occurrence of a crossover behavior: for small values of λ0,
W 2
∗ ∼ λ0, while for large values of λ0, keeping λ1 bounded, W 2

∗ saturates
towards a constant value. The analogous plot as a function of λ1 = λ2,
for fixed λ0, is depicted in Fig. 12. It can be observed a non-trivial scaling
W 2
∗ ∼ λ3

1 occurring from small values of λ1.
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Fig. 11. Behavior of the saturation value W 2
∗ for the two-dimensional Poisson–Kac

EW model as a function of λ0, for different values of λ1. The arrows indicate in-
creasing values of λ1 = λ2. Panel (a) log–log plot, λ1 = 1, 101, 102, 102, 103, 104.
Line (a) represents the scaling W 2

∗ ∼ λ0. Panel (b) log–normal plot, λ1 =

101, 102, 103, 104.

To conclude, the use of Poisson–Kac perturbations in stochastic field the-
ories permits to avoid the occurrence of unpleasent divergences induced by
δ-correlated spatial perturbations. The extension to non-linear models, such
as the Kardar–Parisi–Zhang equation [60] will be developed in forthcoming
works.
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Fig. 12. Behavior of the saturation value W 2
∗ for the two-dimensional Poisson–Kac

EW model as a function of λ1 = λ2, for different values of λ0. Line (a) refers to
λ0 = 1, line (b) to λ0 = 104. Line (c) corresponds to the scaling W 2

∗ ∼ λ31.

6. Concluding remarks

In the light of the regularity Ansatz characterizing the Smoluchowskian
approach to statistical physics, this article has analyzed the properties of
Poisson–Kac and GPK processes focusing on the role of finite propagation
velocity, peculiar of this models, in regularizing stochastic dynamics.

It is important to stress that GPK processes emerge naturally from the
analysis of simple particle systems, as addressed in Section 4 using the asym-
metric LRW as a paradigmatic example. The extension of the GPK formal-
ism to system of interacting particles, in which interaction potentials are
included in the statistical description of particle dynamics, is particularly
promising and will be developed in forthcoming works.

The application of Poisson–Kac processes in field-theoretical models is
also worth attention in order to mollify the stochastic perturbations and
to ensure the existence of the solutions and of their lower-order moments.
The classical Edwards–Wilkinson model has been analyzed in this article,
but the extension of this approach to non-linear model is feasible and, in
principle, will provide an alternative tool to renormalization methods [30]
in order to define properly the solutions of stochastic partial differential
equations. This is particularly compelling in all those models (e.g. emerging
from fluctuational hydrodynamics [31]), in which a mathematical solution
of the stochastic partial differential equations does not exist sensu stricto in
the presence of δ-correlated noise, and physical approximations involve the
use of coarse numerical methods.
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