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The harmonic oscillator is one of fundamental models in physics. In
stochastic thermodynamics, such models are usually accompanied with
both stochastic and damping forces, acting as energy counter-terms. Here,
on the other hand, we study properties of the undamped harmonic oscilla-
tor driven by additive noises. Consequently, the popular cases of Gaussian
white noise, Markovian dichotomous noise and Ornstein–Uhlenbeck noise
are analyzed from the energy point of view employing both analytical and
numerical methods. In accordance to one’s expectations, we confirm that
energy is pumped into the system. We demonstrate that, as a function of
time, initially total energy displays abrupt oscillatory changes, but then
transits to the linear dependence in the long-time limit. Kinetic and po-
tential parts of the energy are found to display oscillatory dependence at
all times.
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1. Introduction

Many situations in natural sciences can be successfully described in the
stochastic manner [1–3]. In such an approach, it is usually assumed that
complex interactions of the system at hand with its environment can be
modeled with the use of noise. The choice of an appropriate noise-type is
case-dependent. If individual collisions are approximated as bounded and
independent, the noise is assumed to be the Gaussian white noise. In more
general and more realistic scenarios, the noise does not need to be white nor
Gaussian [4].
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Indeed, such effective approaches turn out to be very useful. There is a
growing interest in examination of fluctuations and their role in stochastic
systems with the special attention to noise induced effects, such as stochas-
tic resonance [5, 6], resonant activation [7], synchronization [8] and direct
transport (ratcheting effect) [9] being just a few examples. Moreover, ther-
modynamical properties of stochastic systems such as energetics [10] and
fluctuation theorems [11] became important part of research in the field of
stochastic thermodynamics [12] both at the theoretical [13] and the experi-
mental levels [14, 15].

Here, we study analytically and numerically energetic properties of the
undamped stochastic harmonic oscillator with special attention to time de-
pendence of energies (total, kinetic and potential). The studied setup, re-
quired theory and main results are presented in Model and results (Sec. 2).
The paper is closed with Summary and discussion (Sec. 3).

2. Model and results

In order to present the studied model in a broader context, we start our
presentation from the damped (stochastic) harmonic oscillator [16, 17]. We
use the convention employed in [18, 19]. In such dimensional units [18, 19],
the evolution of the state variable x(t) is described by the Langevin equation

m
d2x(t)

dt2
= −γmdx(t)

dt
− kx(t) +

√
2γkBTmξ(t) , (1)

where x(t) represents position, m particle mass, T temperature, kB Boltz-
mann constant and γ the damping coefficient. The form of Eq. (1) as-
sures that the stochastic harmonic oscillator fulfills the equipartition theo-
rem [18, 19]. At this stage, ξ(t) in Eq. (1) stands for the Gaussian white
noise satisfying

〈ξ(t)〉 = 0 (2)

and
〈ξ(t)ξ(s)〉 = δ(t− s) . (3)

The Gaussian white noise is interpreted as an interaction term between the
harmonic oscillator and the thermal bath of temperature T . Equation (1) is
the Newton second law accounting for such a random force. Due to the ran-
dom force, both deterministic variables position x(t) and velocity v(t) = ẋ(t)
become random variables distributed according to some probability density
P (x, v; t). Evolution of the probability distribution of finding the system
in a state characterized by (x(t), v(t)) is described [18, 19] by the diffusion
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(Fokker–Planck) equation

∂P (x, v; t)

∂t
=

[
−v ∂

∂x
+

∂

∂v

(
γv +

V ′(x)

m

)
+ γ

kBT

m

∂2

∂v2

]
P (x, v; t) , (4)

where V (x) = k
2x

2 and V ′(x) = kx. In the damped case, for any potential
V (x) such that V (x) → ∞ when x → ±∞, Eq. (4) has the stationary
solution of the Boltzmann–Gibbs-type

P (x, v) ∝ exp

[
− 1

kBT

(
mv2

2
+ V (x)

)]
. (5)

The exponent in Eq. (5) is the total energy E which is the sum of kinetic Ek
and potential Ep energies. Since the energy of the system E = Ek + Ep =
1
2mv

2+ k
2x

2 depends on its state (x(t), v(t)), the energies as such also become
random variables.

Equation (1) can be rewritten as a set of two first order equations{
dx(t)
dt = v(t) ,

dv(t)
dt = −γv(t)− ω2x(t) +

√
2γkBT
m ξ(t) ,

(6)

where ω2 = k/m. For the parabolic potential, these equations are linear,
consequently standard methods of solving linear differential equations can be
applied [19, 20]. The system described by Eq. (1) or Eq. (6) in the presence
of simple noises, e.g. the Gaussian white noise, the dichotomous noise or the
Ornstein–Uhlenbeck noise, can be studied analytically [19, 20].

From Eq. (6), one can derive equations for moments 〈v2(t)〉 and 〈x2(t)〉
from which evolution of energies can be calculated [12]. Multiplying the
relation

dx(t)

dt
= v(t) (7)

by kx(t) and performing (ensemble) averaging 〈. . . 〉 results in
d

dt
〈Ep(t)〉 = k〈v(t)x(t)〉 . (8)

Multiplying the second line of Eq. (6) by v(t) and (ensemble) averaging 〈. . . 〉
gives rise to

d

dt
〈Ek(t)〉 = −γm

〈
v2(t)

〉
− k〈v(t)x(t)〉+

√
2γkBTm〈ξ(t)v(t)〉 . (9)

The addition of Eqs. (8) and (9) produces the formula for the time derivative
of the average total energy 〈E〉

d

dt
〈E(t)〉 = −γm

〈
v2(t)

〉
+
√

2γkBTm〈ξ(t)v(t)〉 . (10)
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The various modifications of the system described by Eq. (1) have been
studied [21–26]. Here, we study properties of a simpler system. Starting from
now, we focus on the undamped stochastic harmonic oscillator [27], i.e. we
assume that in Eq. (1) there is no damping term (−γmv(t)). Consequently,
we study the time dependence of the energy in the stochastic harmonic
oscillator described by the following Langevin equation:

d2x(t)

dt2
= −ω2x(t) +

√
hξ(t) , (11)

or equivalently by
dv(t)

dt
= −ω2x(t) +

√
hξ(t) , (12)

where h is the parameter scaling the noise, v(t) = dx(t)
dt and ω2 = k/m. Due

to absence of the damping term, h becomes an independent of γ parameter
scaling the noise. In the simplest case of the Gaussian white noise, the
analytical evaluation of formulas (8)–(10) with the initial condition x(0) = 0
and v(0) = 0, followed by the integration, yields

〈Ek(t)〉 = h
2ωt+ sin(2ωt)

8ω
, (13)

〈Ep(t)〉 = h
2ωt− sin(2ωt)

8ω
, (14)

〈E(t)〉 = h
t

2
. (15)

In other words, in the case of missing damping (dissipative) term in Eq. (1),
the Gaussian white noise effectively pumps energy into the system. More-
over, one easily notices that for sufficiently large t, approximately half of the
total energy is stored into kinetic one, while the remaining half is stored as
the potential energy. With increasing t, the quality of this approximation
improves and the approximation becomes exact as t→∞.

Now, we turn our attention to the case of Markovian symmetric dichoto-
mous noise ξDN(t) replacing the Gaussian white noise, see [1]. We con-
sider Markovian symmetric dichotomous noise taking values ±1 (ξDN(t) ∈
{−1, 1}) obeying

〈ξDN(t)〉 = 0 (16)

and
〈ξDN(t)ξDN(s)〉 = exp [−2λ|t− s|] , (17)

where λ is the transition rate between states. Additionally, we have assumed
that

ξDN(0) ∈ {−1,+1} (18)
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with probability 1/2. Exact formulas for kinetic, potential and total energies
read

〈Ek(t)〉= h

(
4λ2+ω2

)
λt−4λ2 + e−2λt

(
4λ2 cos(ωt)− 2λω sin(ωt)

)
(4λ2+ω2)2

+∆(t) ,

(19)

〈Ep(t)〉= h
(4λ2+ω2)λt+ω2−e−2λt

(
ω2 cos(ωt)−2λω sin(ωt)

)
(4λ2+ω2)2

−∆(t) , (20)

〈E(t)〉= 〈Ek(t)〉+ 〈Ep(t)〉 , (21)

where ∆(t) is given by

∆(t) = h
λ sin(2ωt) + ω sin2(ωt)

8λ2ω + 2ω3
. (22)

In the limit of t→∞, the average total energy is increasing linearly with
time with the coefficient 2λh

4λ2+ω2 , i.e. asymptotically

〈E(t)〉 ≈ 2λh

4λ2 + ω2
t , (23)

while the kinetic and potential parts of the total energy have the asymptotic
form

〈Ek(t)〉 ≈
λh

4λ2 + ω2
t ' 1

2
〈E(t)〉 (24)

and
〈Ep(t)〉 ≈

λh

4λ2 + ω2
t ' 1

2
〈E(t)〉 . (25)

Therefore, for the Markovian symmetric dichotomous noise, analogously like
for the Gaussian white noise, asymptotically energy is equidistributed among
kinetic and potential energies, i.e. half of the energy is stored in the form of
kinetic (potential) energy.

Finally, we have replaced the Gaussian white noise with the Ornstein–
Uhlenbeck process [28] which is described by the following Langevin equation

dξOU(t)

dt
= −ρξOU(t) + ξ(t) , (26)

where ξ(t) is the Gaussian white noise, see Eqs. (2) and (3). For such a
choice, the Ornstein–Uhlenbeck process fulfills

〈ξOU(t)〉 = 0 (27)
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and
〈ξOU(t)ξOU(s)〉 =

1

2ρ
exp [−ρ|t− s|] , (28)

with the additional assumption that ξOU(−∞) = 0. Due to its similar form,
results for the Ornstein–Uhlenbeck noise closely resemble former equations
for the Markovian symmetric dichotomous noise

〈Ek(t)〉= h

(
ρ2+ω2

)
2ρt−3ρ2 + ω2+e−ρt

(
4ρ2 cos(ωt)−4ρω sin(ωt)

)
8ρ (ρ2+ω2)2

+∆̃(t) ,

(29)

〈Ep(t)〉= h

(
ρ2+ω2

)
2ρt+3ω2 − ρ2−e−ρt

(
4ω2 cos(ωt)+4ρω sin(ωt)

)
8ρ (ρ2+ω2)2

−∆̃(t) ,

(30)
〈E(t)〉= 〈Ek(t)〉+ 〈Ep(t)〉 , (31)

where ∆̃(t) reads

∆̃(t) = h
ρ sin(2ωt)− ω cos(2ωt)

8ρ3ω + 8ρω3
. (32)

In the limit of t→∞, the average total energy also grows linearly with
time, but with the coefficient 2λh

4λ2+ω2 , i.e. asymptotically

〈E(t)〉 ≈ h

2 (ρ2 + ω2)
t . (33)

For the kinetic and potential energies, we obtain

〈Ek(t)〉 ≈
h

4 (ρ2 + ω2)
t ' 1

2
〈E(t)〉 (34)

and
〈Ep(t)〉 ≈

h

4 (ρ2 + ω2)
t ' 1

2
〈E(t)〉 . (35)

Here, again, energy is asymptotically equidistributed between kinetic and
potential form. The last case, also studied numerically, corresponds to the
combined independent action of all studied noises, i.e. it is a sum of all
studied noises.

Numerical results for time dependence of average total 〈E(t)〉, potential
〈Ep(t)〉 and kinetic 〈Ek(t)〉 energies for the undamped stochastic harmonic
oscillator are presented in Figs. 1–4. Subsequent figures correspond to dif-
ferent driving noise: the Gaussian white, dichotomous (λ = 1), Ornstein–
Uhlenbeck (ρ = 1), and the combined action of all these noises. Analytical
solutions have been constructed with the help of Eqs. (8)–(10) and (analyt-
ical) solution of Eq. (11).
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Fig. 1. Average total (〈E(t)〉), kinetic (〈Ek(t)〉) and potential (〈Ep(t)〉) energies for
the undamped stochastic harmonic oscillator driven by the Gaussian white noise.
Solid lines present theoretical values given by Eqs. (13)–(15).
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Fig. 2. The same as in Fig. 1 for the Markovian symmetric dichotomous noise with
λ = 1. Solid lines present theoretical values given by Eqs. (19)–(21).

Numerical (Monte Carlo) results for the (undamped) stochastic harmonic
oscillator have been constructed by the algorithm presented in [29]. For the
sake of simplicity, it was assumed that h = 1, x(0) = 0 and v(0) = 0. As
it can be seen from Figs. 1–3 for the parabolic potential, the theoretical
curves nicely corroborate numerical simulations. To further compare ana-
lytical results with numerical approximations, we have repeated simulations
for the Markovian dichotomous noise with longer correlation time, which
corresponds to a smaller switching rate λ = 1/10, see Fig. 5. Analogously,
the Ornstein–Uhlenbeck noise with a smaller damping ρ = 1/10 has been
studied, see Fig. 6. In both cases, numerical simulations with longer correla-
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tion times are in perfect accordance with the analytical results. For nonzero
initial conditions, the complete agreement between numerical simulations
and analytical formulas has been also recorded (results not shown).
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Fig. 3. The same as in Fig. 1 for the Ornstein–Uhlenbeck noise with ρ = 1. Solid
lines present theoretical values given by Eqs. (29)–(31).
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Fig. 4. The same as in Fig. 1 for the sum of all considered noises. Solid lines present
theoretical values given by sums of appropriate energies given by Eqs. (13)–(15),
(19)–(21) and (29)–(31).

Noise in Eq. (11) is additive. Therefore, combined action of various types
of independent noises also results in pumping of the energy into the system.
The injected energy is the sum of pumped energies for each noise indepen-
dently. Figure 4 presents results for the sum of the Gaussian white noise,
the Markovian dichotomous noise and the Ornstein–Uhlenbeck noise. The
effect of combined action of all considered noises is the direct consequence
of their independence, see Eqs. (8)–(10) and Eq. (11).



Energetics of the Undamped Stochastic Harmonic Oscillator 879

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40 45 50

〈E
..
.〉

t

〈E〉
〈Ep〉
〈Ek〉

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10

〈E
..
.〉

t

〈E〉
〈Ep〉
〈Ek〉

Fig. 5. The same as in Fig. 1 for the Markovian symmetric dichotomous noise
with λ = 1/10. Bottom panel presents short-time dependence. Solid lines present
theoretical values given by Eqs. (19)–(21). Dashed lines in the top panel present
asymptotic scaling given by Eqs. (23)–(25).

Figures 5 and 6 demonstrate not only the short-time dependence of ener-
gies (bottom panel) but also longer time dependence (top panel). After the
subtraction of the linear trend and after the transient period, potential and
kinetic energies oscillate periodically. Such an effect is an inherent property
of the harmonic oscillator because its period does not depend on its energy,
see [30]. Therefore, despite pumping of the energy into the system, its pe-
riod remains unchanged. Consequently, clear oscillations of potential and
kinetic energies which are superimposed on the linear trend are visible, see
Eqs. (13)–(15), (19)–(21) and (29)–(31) and Figs. 5–6.
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Fig. 6. The same as in Fig. 1 for the Ornstein–Uhlenbeck noise with ρ = 1/10.
Bottom panel presents short-time dependence. Solid lines present theoretical values
given by Eqs. (29)–(31). Dashed lines in the top panel present asymptotic scaling
given by Eqs. (33)–(35).

3. Summary and conclusions

Using analytical calculations and computer simulations, we have studied
the time evolution of energy (total, kinetic and potential) in the undamped
stochastic harmonic oscillator. Due to lack of damping, the energy balance
is violated and, consequently, the energy is pumped into the system. In
the simplest cases of the Gaussian white noise, the Markovian dichotomous
noise and the Ornstein–Uhlenbeck noise, we have derived formulas for the
time dependence of the total, potential and kinetic energies. These formu-
las perfectly fit results of Monte Carlo simulations. In the long-time limit
energies (total, kinetic and potential) of the undamped stochastic harmonic
oscillator grow linearly in time. The linear growth is decorated by superim-
posed oscillations which are well-visible for kinetic and potential energies at
all times. The observed oscillations in the total energy, quickly disappear
due to half-cycle phase shifts in the time dependence of kinetic and potential
energies.
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