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Of the Ising spin chain with the nearest neighbor or up to the second-
nearest neighbor interactions, we fixed progressively either a single spin or
a pair of neighboring spins at the value they took. Before the subsequent
fixation, the unquenched part of the system is equilibrated. We found
that, in all four combinations of the cases, the ensemble of quenched spin
configurations is the equilibrium ensemble.
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1. Introduction

In a system of many degrees of freedom, we think of fixing/quenching
suddenly the degree of freedom of one group after another. The values taken
at the moment of quenching are registered as they are. The unquenched part
either continues the prescribed dynamics or is simply in contact with a heat
bath. The main interest is the statistics of the final quenched states. We
note that this is not so-to-say glassy state because we fix completely the
freedom.

For example, we extrude a molten liquid, such as of iron or polymer,
then the extruded part is suddenly quenched. We are then interested in the
structure of the surface or inside. Another example may be the process of
decision making in a community before a referendum. Some of the commu-
nity members will make up their mind very early, and they influence more
or less the other’s opinion. Then the people progressively make up their
minds, by the time of vote.

∗ Invited talk presented at the XXX Marian Smoluchowski Symposium on Statistical
Physics, Kraków, Poland, September 3–8, 2017.
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As another example, when we bake a pancake using a hot plate, the liquid
in contact with the hot plate is first baked, then the solid part progressively
grows upward. We are interested in the coarsening of the bubbles in the
pancake. Perhaps the formation of human personalities may be still another
example. Upon the birth, we have a lot of flexibility. In the course of life,
we progressively fix our viewpoint or the way of thinking and, finally, we
can have a lot of prejudices.

We will call this type of processes the Progressive Quenching or Pq, for
short. The fixed part acts as a boundary condition or as an external field
on the unquenched part of the system. When we suddenly fix some part of
unquenched degrees of freedom, the boundary condition is updated. As we
wrote above, the quantity of interest in common is the final state and its
statistics, when the whole system has been fixed.

Some time ago, one of the authors studied this type of problem for dif-
fusive Goldstone modes [1]. In the context of quasicrystal, the so-called
phason field obeys essentially the diffusion equation with non-conservative
thermal noise and this field is quenched progressively from the left to the
right with a fixed velocity, V . They found that the spatial spectrum in
the quenched sample is modified from the equilibrium one over the length
scale inferior to the diffusion length `, defined by the ratio, D/V , where D
is the diffusion constant. In a simplified version in one-dimensional space
with scalar phason field φ(x), this modification corresponds to the change
of mean-square displacement (MSD), 〈|φ(x) − φ(x′)|2〉 from ∼ |x − x′| in
equilibrium to ∼ |x − x′|3/2/`1/2 for |x − x′| . `. For V > 0, the MSD
is diminished by the factor (|x − x′|/`)1/2 due to the temporarily fixed
boundary value of φ at x = V t which breaks the symmetry of this Gold-
stone mode. From the viewpoint of the stochastic process, this boundary
condition renders the field φ(x, t) in the unquenched part to be martin-
gale [2] so that E[φ(x, t)|{φ(u) : u ≤ V t}] = φ(V t, t) holds approximately
for 0 < (x − V t) . `, where E[X|Y ] is the expectation value of X under
fixed Y .

Very recently, one of the authors studied the Pq of the globally coupled
spin model [3]. They observed the emergence of a martingale property.

All the above studies are either asymptotic or numerical. We here report
our study of several exactly solvable models. We ask if any martingale aspect
appears in some observables.

2. Model and protocol

2.1. Setup

Figure 1 (a) presents the basic setup of the Pq that we study in the
present paper. We consider a chain of classical Ising spins. After an event
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of quenching (see below) is done, the unquenched part is re-equilibrated.
Then a specified number of spins (a single spin in the case of Fig. 1 (a))
are fixed at their values they took at the moment. This is the quenching
event. The values of spins fixed are, therefore, chosen from the equilibrium
ensemble of the unquenched spins’ configurations. Those spins are subject
to the interactions with the quenched spins in addition to the interaction
among the unquenched part. We should note that this process is not quasi-
static even though we completely re-equilibrate every time after quenching
some spins. It is because the fixing of some spins implies to raise the barrier
for the flipping of these spins so that the mean flipping interval exceeds the
time-scale of observation/operation (see Chap. 7.1 of [4]).

1st	nb.	

1-spin	quench	

b)	

2-spin	quench	

1st	nb.	c)	

1st	+2nd	nb.	

1-spin	quench	
d)	

2-spin	quench	

1st	+2nd	nb.	e)	

a)	
quench	 re-equilibrate	

quench	 re-equilibrate	

Fig. 1. (a) Elementary iterative step of progressive quenching. After the un-
quenched part is re-equilibrated, a specified number of spins are fixed at their values
they took at the moment. Figures (b) to (e) present different systems and different
quenching units. In (b) and (c), the spins interact with their own first-nearest
neighbors, while in (d) and (e), the spins interact also with their second-nearest
neighbors. In (b) and (d), a single spin is quenched at a time, while in (c) and (e),
a pair of spins are quenched at a time.

We will study two Ising models. The one has the nearest neighbor inter-
action (Fig. 1 (b) and (c)) and the other has the nearest and second-nearest
interactions (Fig. 1 (d) and (e)). For the Ising chain with up to the second-
nearest neighbor interaction, the energy H can be written as

−H = J0

N−1∑
i=1

sisi+1 + J1

N−2∑
i=1

sisi+2 + h
N∑
i=1

si . (1)
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If J1 = 0, the system has only the nearest neighbor interaction. For J1 6= 0,
the model including the second-nearest interaction can be mapped into the
chain of spin-pair, where the spin-pair has only nearest neighbor interaction.
We introduce the composite variable, ξp ≡ {s2p−1, s2p}, and regroup the
energy H for N = 2P as follows:

−H =

P−1∑
p=1

(J0 [s2p−1s2p + s2p+1s2p+2]

+J1 [s2p−1s2p+1 + s2ps2p+2] + h [s2p−1 + s2p])

≡ −
P−1∑
p=1

E(ξp, ξp+1) . (2)

Then the third line on the r.h.s. is the nearest neighbor interaction between ξp
and ξp+1. Though such pairing introduces apparent breaking of the system’s
translational symmetry by one spin, the system’s physical behavior is intact.

We study two protocols of Pq. The one quenches a single spin at one
time (Fig. 1 (b) and (d)) and the other quenches a pair of spins at one time
(Fig. 1 (c) and (e)).

2.2. Transfer matrix and Markovian process along chain

In equilibrium, the models of Ising spin chain are analytically treatable
by the method of transfer matrix, as it is described in the standard textbooks
of statistical mechanics. The transfer matrix description allows to represent
the canonical partition function as the discrete-time path integral over the
Markovian processes, where the time is the position along the chain. When
the model has the second-nearest neighbor interaction, the time is associated
to each spin-pair. In Fig. 1, we see some similarity between the cases (b) and
(e) because the system and the protocol concern the single transfer matrix,
of a single spin for (b) and a pair of spin for (e). Although we will not use
the concrete expressions of the transfer matrix and its spectra, we will recall
them to view its Markovian aspects.

For the Ising chain with the first-nearest neighbor interaction, the canon-
ical partition function ZN for the spins {s1, . . . , sN} reads (hereafter, we use
the energy unit so that β = (kBT )

−1 = 1)

ZN = (1, 1)

(
M1,1 M1,−1
M−1,1 M−1,−1

)N−1(
eh

e−h

)
, (3)

where Ms,s′ = eJ0ss
′+hs with the coupling constant J0 and the external

field h. When we are interested in the equilibrium probability, Prob(sj =
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s, sk = s′) with 1 < j < k < N , we calculate

Probeq
(
sj = s, sk = s′

)
=

1

ZN
(1, 1)M j−1PsMk−jPs′MN−k

(
eh

e−h

)
,

(4)

where Ps is the projector matrix defined as P1 =

(
1 0
0 0

)
and P−1 =(

0 0
0 1

)
. In practice, we would take the limit of k →∞ andN−k →∞ in

keeping the value of k−j. Then the powerMK withK →∞ can be replaced
by |0〉λ0K〈0| with λ0 being the largest eigenvalue of M and |0〉 and 〈0| are,
respectively, the associated right and left eigenvectors. Formula (4) allows
to have the single-spin probability for s if we sum over s′, and then allows
to calculate the conditional probabilities as we wish, such as Probeq(sk =
s′|sj = s) = Probeq(sj = s, sk = s′)/Probeq(sj = s).

In order to use the transfer matrix formalism in the model having second-
nearest neighbor interactions, we introduce the four-space as {ξ} ≡ {(1, 1),
(1,−1), (−1, 1), (−1,−1)}. The partition function Z is then given as Z =
〈 |MP−1| 〉 with 〈 | = (1, 1, 1, 1) and | 〉t = (eJ0+2h, e−J0 , e−J0 , eJ0−2h), and
the components of the 4 × 4 matrix M are defined by Mξ,ξ′ = e−E(ξ,ξ

′),
where E(ξ, ξ′) has been defined in (2). By the same token as the nearest
neighbor interacting chain, we can calculate any correlation function about
ξs using this representation.

3. Quenched ensembles of spin configuration

Below, we study the quenched ensemble of the spin chain for each case of
Fig. 1 (b)–(e). The section is not arranged in this order, rather in the order
of increasing complexity of the argument. Somehow surprisingly the con-
clusion is unique: all the quenched ensemble is the same as the equilibrium
one for the given model, despite the non-equilibrium quenching operation.
Hereafter, we shall use the abbreviation, Peq(s) for Probeq(s) and Pqu(ξ, ξ

′)
for Probqu(ξ, ξ′) etc.

3.1. Ising chain with the nearest neighbor interaction quenched
one-after-one spin (Fig. 1 (b))

First of all, we notice that the Pq in this model is a Markovian process:
Suppose that those spins {si} with ∀i ≤ i0 are already quenched. Hereafter,
we assume that the total number of the spins N is large enough that the
effect of the both ends are negligible as long as the temperature is finite. The
equilibrium statistics of the unquenched spins {si} with i > i0 is influenced
only by the state of the spin si0 . In the next step of quenching, the state
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of si0+1 to be quenched is given by the equilibrium conditional probability,
Peq(si0+1|si0), which we can calculate using the transfer matrix technique.
Therefore, the conditional probability for the quenched spin configuration,
Pqu(si0+1|si0), is given by

Pqu (si0+1|si0) = Peq (si0+1|si0) . (5)

This is all what defines the statistics of the quenched sequence of spins.
Once we know the “transition probability” Pqu(si0+1|si0), we can find the

single spin probability in the quenched sequence, Pqu(si). We admit that,
after all the spins are quenched, the ensemble of the spin configurations is
expected to have a translational invariance. Then Pqu(s) should satisfy a
form of the Fredholm equation,

Pqu(s) =
∑
s0

Pqu (s|s0)Pqu (s0) , (6)

together with the normalization,
∑

s Pqu(s) = 1. This equation is the eigen-
value equation for the 2× 2 matrix, Pqu(s|si0), with the eigenvalue of 1. In
the way with (5) Pqu(s) = Peq(s) satisfies (6). If we admit the uniqueness
of the (normalized) solution for (6), we have1

Pqu(s) = Peq(s) . (7)

Therefore, we arrive at the conclusion: the ensemble of the quenched spins
are identical to the equilibrium one.

3.2. Ising chain with the nearest neighbor interaction
quenched two-by-two spins (Fig. 1 (c))

We will use the indexation of spin, . . . , s1, s2, s3, s4, s5, . . . = . . . ξ0, ξ, . . . ,
where ξ0 = {s1, s2} and ξ = {s3, s4}. Let us suppose that the quenching is
operated on the spin pair, (s2p+1, s2p+2), given the frozen configuration up
to s2p. We then have

Pqu (s3, s4|s1, s2) = Peq (s3, s4|s1, s2) , (8)

which is analogous to (5). Because the equilibrium spins (s3, s4) do not
see s1 if the value of s2, the r.h.s. is equal to Peq(s3, s4|s2). It, in turn,
means Pqu(s3, s4|s1, s2) = Pqu(s3, s4|s2) = Peq(s3, s4|s2). By summing over
s4, we have

Pqu(s3|s1, s2) = Pqu(s3|s2) = Peq(s3|s2) . (9)

1 The other eigenvector of Peq(s) is ∝ (1,−1) with the eigenvalue less than 1.
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Below, we are going to show that the same form of relation holds for the
shifted spin labels

Pqu(s4|s2, s3) = Peq(s4|s3) . (10)

Derivation — We prepare the equality

Pqu (s3, s4|s2) = Peq (s3, s4|s2) = Peq (s4|s3)Peq (s3|s2) . (11)

Dividing each ends by the each side of Pqu(s3|s2) = Peq(s3|s2), which we
mentioned above, we have

Pqu (s3, s4|s2)
Pqu (s3|s2)

= Peq (s4|s3) . (12)

As the l.h.s. is identical to Pqu(s4|s2, s3), we have

Pqu (s4|s2, s3) = Pqu (s4|s3) = Peq (s4|s3) Q.E.D. (13)

Once we have the “transition rates”, Pqu(s3|s2) and Pqu(s4|s3), the stationary
probabilities, Pqu(s3) and Pqu(s4) should satisfy

Pqu(s3) =
∑
s2

Peq(s3|s2)Pqu(s2) ,

Pqu(s4) =
∑
s3

Peq(s4|s3)Pqu(s3) . (14)

This is a coupled Fredholm equation for the four-vector composited by the
two-vectors, Pqu(s2) (even-labeled sites) and Pqu(s3) (odd-labeled sites). If
we admit the uniqueness of the normalized solution each for even and odd
two-vectors2, we conclude

Pqu(s3 = σ) = Pqu(s4 = σ) = Peq(σ) . (15)

Therefore, the quenched ensemble is the same as the equilibrium ensem-
ble in spite of the operation of Pq that apparently break the translational
symmetry.

2 It reduces to the eigenvalue problem, Pqu(s4)=
∑

s2

(∑
s3
Peq(s4|s3)Peq(s2|s2)

)
Pqu(s2),

for the same two-vector, Pqu. The second eigenvector of the matrix,(∑
s3

Peq(s4|s3)Peq(s2|s2)
)
, — the one other than the equilibrium one — is ∝ (1,−1)

with the eigenvalue less than 1.
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3.3. Ising chain with up to the second-nearest neighbor interaction
quenched one-after-one spin (Fig. 1 (d))

For the purpose of the simplicity of notation, we again introduce the
indexation of spin, . . . , s1, s2, s3, s4, s5, . . . = . . . ξ0, ξ, . . ., where ξ0 = {s1, s2}
and ξ = {s3, s4}. (Because of the translational symmetry under the shift by
a single spin, we could also assign like ξ0 = {s2, s3} and ξ = {s4, s5}.) The
protocol of Pq means Pqu(s3|s1, s2) = Peq(s3|s1, s2) and Pqu(s4|s2, s3) =
Peq(s4|s2, s3). We will study the conditional probability

Pqu (ξ|ξ0) = Pqu (s4|s1, s2, s3)Pqu (s3|s1, s2) = Peq (s4|s2, s3)Peq (s3|s1, s2) .
(16)

On the r.h.s. of (16), we used the fact that the statistics of s4 is independent
of s1 if s2 and s3 are specified. We are going to show that

Pqu (ξ|ξ0) = Peq (ξ|ξ0) , Pqu(ξ) = Peq(ξ) . (17)

Derivation — Multiplying the both ends of (16) by Peq(ξ0)

Pqu(ξ|ξ0)Peq(ξ0) = Peq(s4|s2, s3)Peq(s3|s1, s2)Peq(ξ0)

= Peq(s4|s2, s3)Peq(s1, s2, s3)

= Peq(s4|s1,s2, s3)Peq(s1, s2, s3)

= Peq(ξ0, ξ) . (18)

On the r.h.s. of (18), we used the fact that the statistics of s4 is independent
of s1 if s2 and s3 are specified. Equation (18) means that

Pqu(ξ|ξ0) =
Peq(ξ0, ξ)

Peq(ξ0)
= Peq(ξ|ξ0) . (19)

Now, admitting that the stationary probability Pqu(ξ) is the unique normal-
ized solution of the Fredholm equation, Pqu(ξ) =

∑
ξ0
Pqu(ξ|ξ0)Pqu(ξ0), and

that the equilibrium probability Peq(ξ) is the unique normalized solution of
Peq(ξ) =

∑
ξ0
Peq(ξ|ξ0)Peq(ξ0), relation (19) means that

Pqu(ξ) = Peq(ξ) Q.E.D. (20)

3.4. Ising chain with up to the second-nearest neighbor interaction
quenched two-after-two spins (Fig. 1 (e))

The first part of the argument is almost parallel as Subsection 3.1 except
that the spin si is replaced by the spin pair, ξp. Suppose that the Pq is done
by quenching the spin pair of the form, ξp ≡ (s2p+1, s2p+2).
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The Pq in this model is a Markovian process for {ξp} with p playing the
role of time. Following the argument of Subsection 3.1 line-to-line, we find
that

Pqu (ξp0+1|ξp0) = Peq (ξp0+1|ξp0) , (21)
Pqu(ξ) = Peq(ξ) , (22)

and, therefore, Pqu(ξp0 , ξp0+1) = Peq(ξp0 , ξp0+1).
We should still study separately the form of Pqu(s2p+2, s2p+3|s2p, s2p+1)

because the protocol of Pq breaks the translational symmetry of the spin
chain under the shift of a single spin position. Again, we introduce the
indexation of spin, . . . , s1, s2, s3, s4, s5, . . . = . . . ξ0, ξ, . . . , where ξ0 = {s1, s2}
and ξ = {s3, s4}. In this notation, (21) and (22) means Pqu(s1, s2, s3, s4) =
Peq(s1, s2, s3, s4). The question is if Pqu(s4, s5|s2, s3) = Peq(s4, s5|s2, s3)
holds. The answer is yes. It suffices to show

Pqu (s2, s3, s4, s5) = Peq (s2, s3, s4, s5) . (23)

Derivation — Pqu(s2, s3, s4, s5) = Pqu(s5|s2, s3, s4)Pqu(s2, s3, s4)
= Pqu(s5|s3, s4)Pqu(s2, s3, s4) = Pqu(s5|s3, s4) ×

∑
s1
Pqu(s1, s2, s3, s4) =

Peq(s5|s3, s4)
∑

s1
Peq(s1, s2, s3, s4) = Peq(s5|s3, s4)Peq(s2, s3, s4)

= Peq(s5|s2, s3, s4) × Peq(s2, s3, s4), where, to go to the last equality, we
used Peq(s5|s3, s4) = Peq(s5|s2, s3, s4) since in equilibrium the statistics
of s5 is independent of s2 if (s3, s4) are specified. We, therefore, have
Pqu(s2, s3, s4, s5) = Peq(s2, s3, s4, s5) Q.E.D.

4. Conclusion

What is in common between the present progressive quenching (Pq) and
the study in [3] is the way we fixed the spins: We did it as a snapshot of
the equilibrium state. For the Ising chains with the interaction with the
nearest neighbor or up to the second-nearest neighbor spins, we found that
Pq of a single spin or a pair of neighboring spins generates the ensemble
of spin configurations which is identical to the equilibrium ensemble of the
given system. It is somehow counter-intuitive that the non-equilibrium and
inhomogeneous operation of Pq leaves the equilibrium ensemble intact. The
evident source of the equilibrium ensemble is that, in our protocol, the un-
quenched part of the system is equilibrated before the quenching of spin or
spins and, moreover, the spatial Markovian nature of the equilibrium fluctu-
ations should be essential. In the case of globally coupled Ising model [3], the
ensemble generated by the Pq is qualitatively different from the equilibrium
one. In the latter case, however, there emerged a quasi-martingale property
in the unquenched equilibrium spin, mT in their notation, which reflect the
fact that the quenching is done as a snapshot of the equilibrium state.
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As non-trivial extensions of the present study, we may adapt a kinetic
Ising model either of Glauber [5] or of Kawasaki [6]. Then a characteristic
length should intervene in the quenched ensemble, as it was the case for the
phason system [1].

K.S. thanks the organizers of the XXX Marian Smoluchowski Sympo-
sium (September 2017, Kraków). We thank the Gulliver laboratory, ESPCI
for welcoming the training course during which this work has been accom-
plished.
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