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This paper resumes and extends recent work by the author on the
dynamics of anomalously diffusing quantum particles that is probed by the
quasielastic neutron scattering from complex molecular systems. A model-
free description of the observed quasielastic neutron scattering spectra is
developed which is valid for moderate momentum transfers.
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1. Introduction

Anomalous free diffusion is an ubiquitous phenomenon which is charac-
terised by a non-linear growth of the mean-square displacement of the diffus-
ing particles with lag time, W (t) ≡ 〈(x(t)− x(0))2〉 ∼ tα, where 0 < α < 2.
The regimes 0 < α < 1 and 1 < α < 2 are, respectively, referred to as sub-
and superdiffusion, and the case of α = 1 corresponds to normal diffusion
which is described by the historic models of Fick and Einstein [1, 2]. Al-
though the number of publications concerning anomalous diffusion literally
exploded during the last 30 years, the phenomenon has been already ob-
served in 1935 by Freundlich and Krüger, who reported on subdiffusion of
quinones in electrolyte solutions [3]. A recent review on anomalous diffusion
can be found in Ref. [4].

The models for anomalous diffusion which have been developed so far are
essentially concerned with systems whose dynamics can be described by the
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laws of classical physics. The incorporation of quantum effects is an addi-
tional challenge from a theoretical point of view and of practical importance
for quasielastic neutron scattering (QENS) from complex condensed matter
systems. QENS is used to study the diffusive dynamics in these systems
on the atomic scale and the accessible time and length scales vary, respec-
tively, from pico- to nanoseconds and from 0.1 to 10 nanometers [5]. In
hydrogen-rich samples essentially the self-dynamics of the hydrogen atoms
is probed, which exhibits anomalous diffusion and slow multiscale relaxation
if complex molecular systems such as proteins and biological membranes are
concerned. Since hydrogen atoms have low masses, quantum effects play
a potential role and have effectively been observed by elastic incoherent
neutron scattering [6]. A theoretical description of QENS from complex
molecular systems which addresses both anomalous diffusion and quantum
effects is presented in this paper, which is based on recent publications by
the author on that subject [7–9].

2. Mean-squared displacement of quantum particles

The fundamental observable in a trajectory-based description of diffusion
processes is the mean-squared displacement (MSD) of the diffusing particles

Wcl(t) =
〈
(x(t)− x(0))2

〉
cl
. (1)

Here and in the following, we consider the atomic scale and 〈. . .〉cl defines a
classical equilibrium ensemble average over the phase-space coordinates of
the atoms in the system under consideration. One writes explicitly

Wcl(t) =

∫
dΓ ρ(Γ ) (x(Γ, t)− x(Γ ))2 , (2)

where Γ = (x, p) comprises all coordinates x and momenta p of all atoms
and

ρ(Γ ) = exp(−βH(Γ ))/Z (3)

is the equilibrium distribution function. H(Γ ) denotes the classical Hamil-
ton function and Z =

∫
dΓ exp(−βH(Γ )) the classical partition function.

As usual β = (kBT )−1, where kB and T are, respectively, the Boltzmann
constant and the absolute temperature in Kelvins. For simplicity, we con-
sider here one-dimensional motion, where x(Γ ) is the position of the tagged
particle defined by the initial point Γ in phase space, and x(Γ, t) is the
corresponding position after time t. The latter is obtained by solving the
Hamiltonian equations of motion ẋ = ∂H/∂p and ṗ = −∂H/∂x. Formally,
one may write x(Γ, t) = exp(itL)x(Γ ), where L = −i{∂H/∂P × ∂/∂X −
∂H/∂X × ∂/∂P} is the Liouville operator.
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In the quantum regime, we write

W (t) =
〈

(x̂(t)− x̂(0))2
〉
, (4)

where x̂(t) is the Hermitian position operator of the diffusing particle, and
〈. . .〉 denotes a quantum mechanical ensemble average

W (t) = tr
{
ρ̂ (x̂(t)− x̂(0))2

}
. (5)

Here, ρ̂ is the equilibrium density operator

ρ̂ =
e−βĤ

Z
, (6)

Ĥ is the Hamiltonian of the system and Z = tr{e−βĤ} is the quantum
partition function. The symbol “tr” denotes the trace and

x̂(t) = e
it
~ Ĥ x̂e−

it
~ Ĥ . (7)

Both the classical and the quantum MSD are intimately related to the
velocity autocorrelation function (VACF). Writing x(t)− x(0) =

∫ t
0 dτ v(τ),

it follows in the classical case that

Wcl(t) = 2

t∫
0

dτ(t− τ)c(cl)vv (τ) , (8)

where
c(cl)vv (t) = 〈v(0)v(t)〉cl . (9)

Here, the stationarity of the VACF has been used, i.e. 〈v(t0)v(t1)〉cl =
〈v(0)v(t1 − t0)〉cl, which leads also immediately to the symmetry relation

c(cl)vv (−t) = c(cl)vv (t) . (10)

The quantum VACF,
cvv(t) = 〈v̂(0)v̂(t)〉 , (11)

is instead a complex function fulfilling the symmetry relations

cvv(−t) = c∗vv(t) = cvv(t+ iβ~) . (12)

We note here arbitrary that quantum time correlation functions cAB(t) verify
the symmetry relations c∗AB(t) = cBA(−t) and cAB(−t) = cBA(t + iβ~).
Since the quantum VACF is a complex function and since the MSD must be
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real, relation (8) cannot be generalised to the quantum case by exchanging
the classical VACF with its quantum counterpart. Using that x̂(t)− x̂(0) =∫ t
0 dτ v̂(τ), in analogy with the classical case, one obtains here

W (t) = 2

t∫
0

dτ (t− τ)c(R)
vv (τ) , (13)

observing that v̂(0) and v̂(t) do not commute. The real VACF in expres-
sion (8) is here thus replaced by the real part of its complex quantum coun-
terpart.

3. Asymptotic analysis of anomalous quantum diffusion

3.1. Fractional diffusion constant

It follows from (13) that the MSD of diffusing quantum particles evolves
for short times “ballistically”

W (t)
t→0∼

〈
v̂2
〉
t2 , (14)

and for long times as W (t) ∼ tα. In order to characterise the approach to
the asymptotic regime, we write

W (t)
t→∞∼ 2DαL(t)tα , 0 ≤ α < 2 , (15)

where limt→∞ L(t) = 1 and Dα is the fractional diffusion constant with SI
units m2/sα. The case of α = 0, which corresponds to confined diffusion, is
here explicitly included. Formally, L(t) belongs to the class of slowly grow-
ing functions, which play an important role in asymptotic analysis [10], and
verify the relation limt→∞ L(λt)/L(t) = 1 for any λ > 0. The standard ex-
ample is the logarithm, L(t) = ln(t), but it is obvious that a function which
tends asymptotically to a plateau value belongs to the same class of func-
tions. The importance of asymptotic analysis for the theoretical description
of diffusion processes relies on the equivalence of (15) with the behaviour
of the corresponding Laplace transform for small values of s [7], which is
given by

W̃ (s)
s→0∼ 2L(1/s)Dα

Γ (1 + α)

s1+α
. (16)

We recall here that the Laplace transform of a function f(t) is defined
through f̃(s) =

∫∞
0 dt exp(−st)f(t) (<(s) > 0). In this context, it is impor-

tant to note that for arbitrary functions f(t), the behaviour of f̂(s) for small
values of s cannot be obtained from the behaviour of f(t) for long times.
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The condition is that the integral
∫ t
0 dτf(τ) diverges as t goes to infinity. For

the MSD, this condition is effectively fulfilled and, therefore, relations (15)
and (16) are, indeed, equivalent. This equivalence can be exploited to derive
a generalised Kubo formula which holds for anomalously diffusing particles
in the quantum case. Starting from (13), one uses that W̃ (s) = 2c̃

(R)
vv (s)/s2

or W̃ (s) = 2c̃
(R)
vv (s)/s2, and from the combination with the asymptotic ex-

pression (16), one finds that Dα = lims→0 s
α−1c̃

(R)
vv (s)/Γ (1+α). In the time

domain, this leads to

Dα =
1

Γ (1 + α)

∞∫
0

dt0∂
α−1
t c(R)

vv (t) , (17)

where ∂α−1t denotes here a fractional time derivative of the order of α− 1

∂α−1t c(R)
vv =

d

dt

t∫
0

dt
(t− τ)1−α

Γ (2− α)
c(R)
vv (τ) . (18)

Expression (17) is a generalisation of the well-known Green–Kubo relation
D =

∫∞
0 dt cvv(t) for the diffusion coefficient of normally diffusing classical

particles. For classical dynamical systems, c(R)
vv (t) is to be replaced by c(cl)vv (t).

The fractional diffusion coefficient defines the time scale for the transition
from ballistic to diffusive motion via [7]

τv =

(
Dα

〈v̂2〉

) 1
2−α

. (19)

Here, 〈v̂2〉 = kBT/m is the mean-squared velocity, where m is the mass of
the diffusing particle, and expression (19) is motivated by the exponentially
decaying VACF of a Brownian particle, where cvv(t) = 〈v2〉 exp(−γt) and
τv = γ−1. Using the characteristic time τv, we can more precisely define
that t→∞∼ and s→0∼ mean, respectively, t� tv and |s| � 1/tv.

The generalised Kubo formula (17) for the fractional diffusion constant
holds also in the case of α = 0, which corresponds to confined diffusion. Here,
the mean position of a diffusing particle is well-defined and the dynamics
of the diffusing quantum particle may be described by the operator û(t) =
x̂(t) − 〈x̂〉, noting that W (t) = 〈(û(t) − û(0))2〉. The diffusion constant
for confined diffusion can be derived from expression (17) by following the
argumentation in Ref. [7], with the classical VACF being replaced by the
real part of its quantum counterpart. The result is

D0 =
〈
û2
〉
, (20)
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and the characteristic time scale of the VACF is here given by

τv =

√
〈û2〉
〈v̂2〉

. (21)

The simple example of a harmonic quantum oscillator of mass m and (an-
gular) frequency Ω in thermal equilibrium shows that (21) is meaningful.
Here, we have 〈v̂2〉 = kBT/m and 〈û2〉 = kBT/(mΩ

2), such that τv = 1/Ω.

3.2. Long-time tails of the VACF

The asymptotic form (15) of the MSD entails particular forms for the
long-time tails of the real and imaginary part of the VACF, respectively. It
follows from (13) that c(R)

vv (t) = W ′′(t)/2 and with (15), one finds, therefore,
that the real part of the VACF decays for long times as

c(R)
vv (t)

t→∞∼ Dα L(t)α(α− 1)tα−2 . (22)

The function L(t) can be here treated like a constant since tnL(n)(t)
t→∞∼ 0

for slowly growing functions which fulfil in addition limt→∞ L(t) = 1. This is
seen as follows: It follows from limt→∞ L(λt)/L(t) = 1 that limt→∞ dn/dλn

{L(λt)/L(t)} = limt→∞ t
nL(n)(λt)/L(t) = 0. Since this relation is true for

any λ > 0 and since limt→∞ L(t) = 1, we can write limt→∞ t
nL(n)(λt) = 0.

Setting now in particular λ = 1 closes the proof.
The asymptotic form of the imaginary part of the VACF can be derived

from (22) and the symmetry relation (12). As outlined in [9], it follows
from (12) that the Laplace transforms of the imaginary and real part are
related through

c̃(I)vv (s) = − tan

(
β~s

2

)
c̃(R)
vv (s) , (23)

such that

c(I)vv (t) = − tan

(
β~
2

d

dt

)
c(R)
vv (t) (24)

with d/dt being a left derivative. Inserting here expression (22) shows that

c(I)vv (t)
t→∞∼ −β~

2
L(t)Dα α(α− 1)(α− 2)tα−3 . (25)

All faster decaying contributions∝ tα−n, with n = 4, 5, . . . , can be neglected.
Since 0 ≤ α < 2, the signs for the long-time tails of c(R)

vv (t) and c(I)vv (t) are
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the same and they vanish for α = 0 and α = 1, i.e. for confined and for
normal diffusion. Note that

lim
~→0

c(I)vv (t) = 0 , (26)

which is consistent with the fact the classical VACF is real, and the corre-
sponding symmetry relation (10) is retrieved from (12).

4. Quasielastic neutron scattering

4.1. Differential cross section and scattering functions

The basic quantity which is observed with QENS experiments and ther-
mal neutron scattering experiments, in general, is the differential scattering
cross section

d2σ

dΩdω
=

k

k0
S(q, ω) . (27)

The symbols ω and q denote, respectively, the energy and momentum trans-
fer from the neutron to the sample in units of ~. Multiplied by the flux of
incoming atoms, the differential scattering cross section defines the number
of neutrons which is scattered per second, per solid angle interval dΩ, and
per energy transfer interval dω. The dynamic structure factor, S(q, ω), is
here the quantity of interest. It carries information about the atomic dy-
namics in the system of interest in space and time. In the following, we
will consider an isotropic scattering system such that the momentum trans-
fer can be chosen to point in the “x-direction”, q = q ex. We assume, in
addition, that the scattering results predominantly from hydrogen atoms
and, for simplicity, that all hydrogen atoms can be represented by one single
atom. The position of the scattering atom along the x-axis is represented by
the position operator x̂(t). With these prerequisites, the dynamic structure
factor per atom has the form of

S(q, ω) =
1

2π

+∞∫
−∞

dt e−iωtF (q, t) , (28)

where
F (q, t) = 〈exp (−iqx̂(0)) exp (iqx̂(t))〉 (29)

is the (incoherent) intermediate scattering function. The latter fulfils the
symmetry relation

F (q, t) = F (−q,−t+ iβ~) , (30)
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which follows from the symmetry relation CAB(t) = CBA(−t+ iβ~) of quan-
tum time correlation functions and which translates into the detailed balance
relation

S(q, ω) = exp(β~ω)S(−q,−ω) (31)

for the dynamic structure factor. The detailed balance relation expresses
that energy gain (ω > 0) of the sample is more likely than energy loss.

An important issue in this context is that the interpretation of QENS
experiments usually relies on the replacement of F (q, t) by its classical coun-
terpart

Fcl(q, t) = 〈exp (−iq[x(t)− x(0)])〉cl . (32)

This implies not only neglecting quantum effects in the sample, but also
to recoil effects resulting from the momentum transfer from the neutron to
the sample. In particular, for hydrogen atoms, this assumption is not nec-
essarily justified. Concerning the sample dynamics, quantum effects play
an important role at least at lower temperatures [6]. Low effective masses
of hydrogen atoms lead also to recoil effects, which are not true quantum
effects, but are accounted for in a quantum description of the neutron scat-
tering intensities [11]. The classical intermediate scattering function and the
corresponding dynamic structure factor fulfil the symmetry relations

Fcl(q, t) = Fcl(−q,−t) , (33)
Scl(q, ω) = Scl(−q,−ω) . (34)

4.2. Asymptotic Gaussian approximation of F (q, t)

For moderate momentum transfers, the intermediate scattering function
can be approximated by the Gaussian form

FG(q, t) ≈ exp

(
i
~q2t
2m

)
exp

(
−q2µ2(t)

)
, (35)

where µ2(t) is given by the convolution integral [12]

µ2(t) =

t∫
0

dτ1 (t− τ1)cvv(τ1) . (36)

Compared to the quantum MSD given in (13), here the full VACF appears
and not just its real part. The relation µ2(t) = W (t)/2 holds thus only
in the classical case, where the VACF is real. A general relation between
µ2(t) and W (t) can be derived by transforming expression (36) into the
Laplace domain, µ̃2(s) = c̃vv(s)/s

2. Writing now c̃vv(s) = c̃
(R)
vv (s) + ic̃

(I)
vv (s)
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and using (23), it follows that µ̃2(s) = (1− i tan(β~s/2)) c̃
(R)
vv (s)/s2. On

the other hand, we know from (13) that W̃ (s) = 2c̃
(R)
vv (s)/s2, such that

µ̃2(s) = 1
2 (1− i tan (β~s/2)) W̃ (s). In the time domain, we thus obtain

µ2(t) =
1

2

(
1− i tan

(
β~
2

d

dt

))
W (t) , (37)

noting again that d/dt is a left derivative.
The first factor appearing in (41) is due to the recoil of the scattering

atom. Defining

sG(q, ω) =
1

2π

+∞∫
−∞

dt exp(−iωt) exp
(
−q2µ2(t)

)
, (38)

it follows that the dynamic structure factor takes the form of

SG(q, ω) = sG(q, ω − ωr) , (39)

where

ωr =
~q2

2m
(40)

is the average recoil energy of the scattering atom in units of ~. The mass m
is here an effective mass, which is usually larger than the “bare” atomic mass
and depends on the motions of the scattering atom which can be excited
by the incoming neutrons. In QENS experiments, this energy does not
suffice to excite internal vibrations of (sub)molecules, which thus appear as
rigid to the incoming neutrons. In this case, m is the Sachs–Teller mass of
the scattering atom [13, 14]. Since recoil is a purely kinematic effect, the
recoil factor survives in a carefully taken physical classical limit, where the
momentum transfer ∆p = ~q is kept finite, and the limit ~ → 0 concerns
only the physical properties of the scattering system [11].

The asymptotic form of FG(q, t) is derived from (35) by inserting expres-
sion (37) for µ2(t), with W (t) replaced with expression (15). The resulting
asymptotic form of µ2(t) is obtained by using only the first term in the
Taylor series of the tangent function in (37), which leads to

FG(q, t)
t→∞∼ exp

(
i
~q2

2m
t

)
exp

(
−q2

(
1− iβ~

2

d

dt

)
DαL(t)tα

)
. (41)

Since FG(q, t) is an even function in q, it follows that

FG(q,−t) = FG(q, t+ iβ~) (42)

on account of the general symmetry relation (30).
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4.3. Confined diffusion and elastic scattering

For confined diffusion (α = 0), the asymptotic form of FG(q, t) takes the
form of

FG(q, t)
t→∞∼ exp

(
i
~q2

2m
t

)
exp

(
−q2L(t)

〈
û2
〉)
, (43)

where it has been used that D0 = 〈û2〉 and that L′(t) t→∞∼ 0. For t → ∞,
the factor exp

(
−q2L(t)〈û2〉

)
tends to the plateau value

EISF(q) = exp
(
−q2

〈
û2
〉)
, (44)

which is referred to as elastic incoherent structure factor (EISF) and which
gives information about the motional amplitude of the scattering atom.
Defining

∆sG(q, ω) =
1

2π

+∞∫
−∞

dt exp(−iωt)
(
exp

(
−q2µ2(t)

)
− EISF(q)

)
, (45)

the dynamic-structure factor takes the form of

SG(q, ω) = EISF(q)δ(ω − ωr) + ∆sG(q, ω − ωr) (46)

which shows that the EISF is amplitude of the spectrum of the elastic line
shifted by the recoil frequency ωr. The term elastic incoherent structure
factor is thus only justified if ωr ≈ 0. The Gaussian form (44) has been
abundantly used in the study of biological samples, noting that within a
harmonic model the mean position fluctuation 〈û2〉 = kBT/K gives access
to the force constant K defining the “softness” of a protein [15].

Noting that W (t) = 〈(x̂(t) − x̂(0))2〉 =
〈
(û(t)− û(0))2

〉
and that û(t)

and û(0) do not commute, one finds that the MSD can be here expressed as

W (t) = 2
(〈
û2
〉
−<{cuu(t)}

)
, (47)

where
cuu(t) ≡ 〈û(0)û(t)〉 (48)

is the autocorrelation function of the position fluctuation. Since 〈û2〉 =
cuu(0), the MSD thus describes the relaxation of cuu(t). Writing

<{cuu(t)} t→∞∼
〈
û2
〉
R(t) , (49)

it follows that the function L(t) describing the approach of the MSD to its
asymptotic limiting form is given by

L(t) = 1−R(t) . (50)
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4.4. Semiclassical approximation

Taking the classical limit “~→ 0”, it follows from (41) that

F (cl)
g (q, t)

t→∞∼ exp
(
−q2DαL(t)tα

)
(51)

is the classical intermediate scattering function in the Gaussian approxi-
mation. In the spacial case of confined diffusion, one has, in particular,
D0 = 〈u2〉cl, such that

F (cl)
g (q, t)

t→∞∼ exp
(
−q2L(t)

〈
u2
〉
cl

)
. (52)

Since F (cl)
g (q, t) is a classical time correlation function, it fulfils the symmetry

relation
F (cl)
g (q,−t) = F (cl)

g (q, t) . (53)

A semiclassical approximation [17] fulfilling strictly the symmetry relation (42)
can be defined by identifying the real and time-symmetric function

F (+)
g (q, t) = Fg(q, t+ iβ~/2) , (54)

with the classical intermediate scattering function

F (+)
g (q, t) ≈ F (cl)

g (q, t) . (55)

In the frequency domain, relation (54) corresponds to

Sg(q, ω) ≈ exp(β~ω/2)S(cl)
g (q, ω) (56)

and the semiclassical approximation implies, in particular, that the aver-
age recoil energy is not bigger than the thermal energy fluctuations of the
scattering atom,

~2q2

2m
<∼ kBT . (57)

5. Discussion and conclusion

In this paper, a model-free form of the quantum intermediate scattering
function for incoherent neutron scattering has been derived, which is valid
for moderate momentum transfers and for time scales beyond the diffusion
time scale τv which defines the transition from the ballistic to the diffusive
regime. Such a description is useful for practical applications if the energy
resolution of the spectrometer is much smaller than the energy transfer cor-
responding to τv, since, in this case, the quasielastic line is entirely described
by the asymptotic form of the intermediate scattering function. To discuss



904 G. Kneller

this point, we consider two instruments at the Institut Laue–Langevin, which
are frequently used for QENS studies on liquids and soft matter systems.
The first one is the IN6 spectrometer, which is a time-of-flight instrument,
and the second one is the high-resolution backscattering spectrometer IN16
at the same institution. These instruments have energy resolutions of, re-
spectively, ∆E = 50 µeV and ∆E = 0.75 µeV, which corresponds to time
scales of τr ≈ 83 ps and τr ≈ 55 ns. Even if we consider slow diffusion
processes, such as the lateral center-of-mass diffusion of lipid molecules in
lipid bilayers, τv is of the order of picoseconds [16] and thus much smaller
than τr. This shows that QENS spectra at moderate momentum transfers,
where the Gaussian approximation of the intermediate scattering function is
valid, can be conveniently described by the model-free approach presented
in this paper.

REFERENCES

[1] A. Fick, Ann. Phys. 170, 59 (1855).
[2] A. Einstein, Ann. Phys. 322, 549 (1905).
[3] H. Freundlich, D. Krüger, Trans. Faraday Soc. 31, 906 (1935).
[4] R. Metzler, J.H. Jeon, A.G. Cherstvy, Phys. Chem. Chem. Phys. 16, 24128

(2014).
[5] M. Bée, Quasielastic Neutron Scattering: Principles and Applications in

Solid State Chemistry, Biology and Materials Science, Adam Hilger, Bristol
1988.

[6] F. Natali et al., Physica B 301, 145 (2001).
[7] G.R. Kneller, J. Chem. Phys. 134, 224106 (2011).
[8] G.R. Kneller, Acta Phys. Pol. B 46, 1167 (2015).
[9] G.R. Kneller, J. Chem. Phys. 145, 044103 (2016).
[10] J. Karamata, J. Reine Angew. Math. 164, 27 (1931).
[11] G.R. Kneller, Mol. Phys. 83, 63 (1994).
[12] A. Rahman, K.S. Singwi, A. Sjölander, Phys. Rev. 126, 986 (1962).
[13] R.G. Sachs, E. Teller, Phys. Rev. 60, 18 (1941).
[14] G.R. Kneller, J. Chem. Phys. 125, 114107 (2006).
[15] G. Zaccai, Science 288, 1604 (2000).
[16] G.R. Kneller, K. Baczynski, M. Pasenkiewicz-Gierula, J. Chem. Phys. 135,

141105 (2011).
[17] P. Schofield, Phys. Rev. Lett. 4, 239 (1960).

http://dx.doi.org/10.1002/andp.18551700105
http://dx.doi.org/10.1002/andp.19053220806
http://dx.doi.org/10.1039/TF9353100906
http://dx.doi.org/10.1039/C4CP03465A
http://dx.doi.org/10.1039/C4CP03465A
http://dx.doi.org/10.1016/S0921-4526(01)00528-2
http://dx.doi.org/10.1063/1.3598483
http://dx.doi.org/10.5506/APhysPolB.46.1167
http://dx.doi.org/10.1063/1.4959124
http://dx.doi.org/10.1515/crll.1931.164.27
http://dx.doi.org/10.1080/00268979400101081
http://dx.doi.org/10.1103/PhysRev.126.986
http://dx.doi.org/10.1103/PhysRev.60.18
http://dx.doi.org/10.1063/1.2220037
http://dx.doi.org/10.1126/science.288.5471.1604
http://dx.doi.org/10.1063/1.3651800
http://dx.doi.org/10.1063/1.3651800
http://dx.doi.org/10.1103/PhysRevLett.4.239

	1 Introduction
	2 Mean-squared displacement of quantum particles
	3 Asymptotic analysis of anomalous quantum diffusion
	3.1 Fractional diffusion constant
	3.2 Long-time tails of the VACF

	4 Quasielastic neutron scattering
	4.1 Differential cross section and scattering functions
	4.2 Asymptotic Gaussian approximation of F(q,t)
	4.3 Confined diffusion and elastic scattering
	4.4 Semiclassical approximation

	5 Discussion and conclusion

