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We address Lévy-stable stochastic processes in bounded domains, with
a focus on a discrimination between inequivalent proposals for what a
boundary data-respecting fractional Laplacian (and thence the induced
random process) should actually be. Versions considered are: the restricted
Dirichlet, spectral Dirichlet and regional (censored) fractional Laplacians.
The affiliated random processes comprise: killed, reflected and conditioned
Lévy flights, in particular those with an infinite life-time. The related con-
cept of quasi-stationary distributions is briefly mentioned.
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1. Motivation

Jump-type Lévy processes in a bounded domain are a subject of an active
study both in physics and mathematics communities. The physics-oriented
research is conducted with some disregard to an ample coverage of the topic
in the past and modern mathematical literature. The reason is rooted not
only in a methodological gap between the practitioners’ pragmatism and
the mathematically rigorous reasoning. An important factor is a scarce (or
even lack of) communication between various research groups and research
streamlines. This refers not only to rather residual physics–mathematics
interplay, but also to the mathematics community per se: relevant publi-
cations are scattered in a large number of highly specialized journals and
easily escape the attention of potentially interested parties.

Recently, an attempt has been made to establish a common conceptual
basis for varied frameworks in which fractional Laplacians appear. Formally
looking different, but actually equivalent, definitions of fractional Laplacians,
appropriate for the description of Lévy stable processes in Rn, n ≥ 1, have
been collected and their mutual relationships analyzed in minute detail in
Ref. [1].
∗ Presented at the XXX Marian Smoluchowski Symposium on Statistical Physics,
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There is a general consensus that the standard Fourier multiplier defi-
nition appears to be defective, if one passes to Lévy flights in a bounded
domain. This is a consequence of an inherent nonlocality of Lévy-stable
generators. Different proposals for the boundary-data-respecting fractional
Laplacians were given in the literature. Often, with a view towards more
efficient computer-assisted calculations (that mostly in connection with non-
linear fractional differential equations [2, 3]).

However, in contrast to the situation in Rn, these proposals are known
to be inequivalent, cf. Refs. [2–16], see also [17, 18]. Likewise, the induced
jump-type processes are inequivalent and have different statistical charac-
teristics. This in particular refers to a standard physical inventory, adapted
directly from the Brownian motion studies [19]: the statistics of exits from
the domain, e.g. first and mean first exit times, probability of survival, its
long-time behavior and asymptotic decay [20–26].

Interestingly, the existence problem for jump-type processes with an in-
finite life-time in a bounded domain, seems to have been left aside in the
physics literature (compare e.g. Ref. [27] in connection with diffusion pro-
cesses and Ref. [28] for a preliminary discussion of the Cauchy process in the
interval). On the contrary, permanently trapped Lévy-type processes (dif-
fusion processes like-wise) have their place in the mathematical literature.

One category of such processes stems from the analysis of the long-time
behavior of the survival probability in the case of absorbing enclosures which
actually allows to single out appropriate conditioned processes that never
leave the domain once started within. A related topic is that of quasi-
stationary distributions (cf. [29] in the random walk and Brownian contexts)
and the concept of so-called Yaglom limits [30, 31].

Another category refers to reflecting boundary data and to reflected
Lévy-stable processes (the reflected Brownian motion might be invoked at
this point and set against the killed/absorbed one, c.f. [20, 32, 33]). Actu-
ally, censored fractional Laplacians are interpreted as generators of reflected
Lévy-stable processes [17, 18].

Let us concisely state the main problem addressed. While giving meaning
to the Laplacian in a bounded domain D ⊂ Rn, denoted tentatively ∆D, we
must account for various admissible boundary data, that are local i.e. set on
the boundary ∂D of an open set D. One may try to define a fractional power
of the Laplacian by importing its locally defined boundary data on ∂D,
through the so-called spectral definition (−∆D)α/2.

This operator is known to be different from the outcome of the proce-
dure in which one first executes the fractional power of the Laplacian, and
next imposes the boundary data, as embodied in the notation (−∆)

α/2
D . In
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the case of absorbing boundaries, in contrast to (−∆D)α/2, the Dirichlet
boundary data for (−∆)

α/2
D need to be imposed as exterior ones i.e. in the

whole complement Rn\D of D.
Notwithstanding, the reflected Brownian motions belong to the bounded

domain paradigm [32, 33] and the related issue of reflected Lévy flights
should be explored in conjunction with the concept of censored and/or re-
gional fractional Laplacians [17, 18].

2. Generalities

2.1. Transition densities

Let us restate our motivations in a more formal lore (our notation is
consistent with that in Ref. [34]). Namely, given the (negative-definite)
motion generator L, we shall consider the (contractive) semigroup evolutions
of the form of

f(x, t) = Ttf(x) = (exp(tL)f)(x) =

∫
Rn

k(x, 0; y, t)f(y)dy = Ex[f(Xt)] ,

(1)
where t ≥ 0. In passing, we have defined here a local expectation value
Ex[. . . ], interpreted as an average taken at time t > 0, with respect to
the process Xt started in x at t = 0, with values Xt = y ∈ Rn that are
distributed according to the positive transition (probability) density function
k(x, 0; , y, t).

We, in fact, deal with a bit more general transition function k(x, s; y, t),
0 ≤ s < t that is symmetric with respect to x and y, and time homogeneous.
This justifies the notation k(x, s; y, t) = k(t − s, x, y) = k(t − s, y, x) and,
subsequently, k(x, 0; y, t) = k(t, x, y) = k(t, y, x). The “heat” equation

∂tf(x, t) = Lf(x, t) (2)

for t ≥ 0 is here presumed to follow. We recall that given a suitable transition
function, we recover the semigroup generator via

[Lf ](x) = lim
t→0

1

t

∫
Rn

[k(t, x, y)f(y)dy − f(x)] (3)

in accordance with an (implicit strong continuity) assumption that actually
Tt = exp(Lt).

For completeness, let us mention that the semigroup property TtTs =
Tt+s, implies the validity of the composition rule

∫
Rn k(t, x, y) k(s, y, z) dy =

k(t+ s, x, z).
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Let B ⊂ Rn, a probability that a subset B has been reached by the
process Xt started in x ∈ Rn, after the time lapse t, can be inferred from
P [Xt ∈ B|Xs = x] =

∫
B k(t− s, x, y)dy, 0 ≤ s < t and reads

P x(Xt ∈ B) =

∫
B

k(t, x, y)dy = k(t, x,B) . (4)

Clearly, P x(Xt ∈ Rn) = 1.
In general, for time-homogeneous processes, we have k(x, s;B, t) =∫

B k(t− s, x, y)dy, s < t, hence we can rephrase the Chapman–Kolmogorov
relation as follows:∫

Rn

k(x, s; z, u)k(z, u,B, t)dz = k(x, s;B, t)

= k(t−s, x,B) = P [Xt−s ∈ B|Xs = x] , (5)

where s < u < t.

2.2. Absorbing boundaries and survival probability

Now, we shall pass to killed Brownian and Lévy-stable motions in a
bounded domain. Let us denote D a bounded open set in Rn. By TDt , we
denote the semigroup given by the process Xt that is killed on exiting D.
Let kD(t, x, y) be the transition density for TDt . Then [10]

TDt f(x) = Ex[f(Xt); t < τD] =

∫
D

kD(t, x, y)f(y)dy (6)

provided x ∈ D , t > 0 and the first exit time τD = inf{t ≥ 0, Xt /∈ D}
actually stands for the killing time for Xt.

From the general theory of killed semigroups in a bounded domain, it
follows that in L2(D) there exists an orthonormal basis of eigenfunctions
{φn}, n = 1, 2, . . . of TDt and corresponding eigenvalues {λn, n = 1, 2, . . . }
satisfying 0 < λ1 < λ2 ≤ λ3 ≤ . . . Accordingly, there holds TDt φn(x) =
e−λnt φn(x), where x ∈ D, t > 0 and we also have

kD(t, x, y) =

∞∑
n=1

e−λnt φn(x)φn(y) . (7)

The eigenvalue λ1 is nondegenerate (e.g. simple) and the corresponding
strictly positive eigenfunction φ1 is often called the ground state function.
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For the infinitesimal generator LD of the semigroup, we have LDφn(x) =
−λnφn(x). The corresponding “heat” equation ∂tf(x, t) = LDf(x, t) holds
true as well.

It is useful to introduce the notion of the survival probability for the killed
random process in a bounded domain D [19, 27]. Namely, given T > 0, the
probability that the random motion has not yet been absorbed (killed) and
thus survives up to time T is given by

P x[τ > T ] = P x[XT ∈ D] =

∫
D

kD(T, x, y)dy , (8)

and is named the survival probability up to time T .
Proceeding formally with Eqs. (4) and (5), under suitable integrability

and convergence assumptions for the infinite series, we get

P x[τ > T ] =

∞∑
n=1

e−λnT an φn(x) ⇒ a1 e
−λ1T φ1(x) , (9)

where an = [
∫
D φn(y)dy], n = 1, 2, . . . We have arrived at the familiar ex-

ponential decay law of the survival probability, characteristic for e.g. the
Brownian motion with absorbing boundary data [19, 27]. Its time rate is
controlled by the largest eigenvalue −λ1 of ∆D. Note that asymptotically,
the functional profile (x-dependence) of the survival probability is kept sta-
tionary (exponential decay is executed as the continuous scale change) and
follows the pattern of the eigenfunction φ1(x).

2.3. Conditioned random motions in a bounded domain

For the absorbing stochastic process with the transition density (4) (thus
surviving up to time T ), we introduce survival probabilities P y[τ > T − t]
and P x[τ > T ], respectively at times T − t and T , 0 < t < T . We infer a
conditioned stochastic process with the transition density

qD(t, x, y) = kD(t, x, y)
P y[τ > T − t]
P x[τ > T ]

, (10)

which by construction survives up to time T and is additionally conditioned
to start in x ∈ D at time t = 0 and reach the target point y ∈ D, at time
t < T . An alternative construction of such processes, in the diffusive case,
has been described in [27], see also [35].

Given t < T , in the large time asymptotic of T , we can invoke (6), and
once T →∞ limit is executed, Eq. (7) takes the form of

qD(t, x, y) −→ pD(t, x, y) = kD(t, x, y)
φ1(y)

φ1(x)
exp(λ1t) . (11)
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We have arrived at the transition probability density pD(t, x, y) of the prob-
ability conserving process, which never leaves the bounded domain D. Its
asymptotic (invariant) probability density is ρ(y) = [φ1(y)]2,

∫
D ρ(y) dy = 1

(that in view of the implicit L2(D) normalization of eigenfunctions φn).
By employing (6) and the definition ρ(y) = [φ1(y)]2, we readily check the

stationarity property. We take ρ(x) as the initial distribution (probability
density) of points in which the process is started at time t = 0). The
propagation towards target points, to be reached at time t > 0, induces a
distribution ρ(y, t). Stationarity follows from:

ρ(y, t) =

∫
D

ρ(x)pD(t, x, y)dx = ρ(y) . (12)

Note that, in contrast to kD(t, x, y), the transition probability function
pD(t, x, y) is no longer a symmetric function of x and y.

2.4. Quasi-stationary distributions

In connection with the so-called Yaglom limits, [30], and in conjunc-
tion with the previous description of the conditioned random motions in a
bounded domain, it is useful to say few words about the so-called quasi-
stationary distributions. These appear to be a useful tool in the semi-
phenomenological analysis description of exponentially decaying in time pop-
ulations, whose probability distributions display specific shape invariance on
relatively long-times scales, while being close extinction, see e.g. [29, 36]. We
borrow the idea directly from Ref. [29].

Our major inputs are Eqs. (5)–(8). Let us define ψ(x) = 1
a1
φ1(x) and

introduce the expectation (mean) value of the function f(x), with respect
to ψ(x), as follows:∫

D

{
ψ(x)eλ1tEx[f(Xt); t < τD]

}
dx =

∫
D

f(x)ψ(x)dx

=

∫
D

f(x)dν(x) = Eν [f ] . (13)

We have introduced a new probability measure ν on D with ψ(x) as its
probability density. The latter density stands for the quasi-stationary distri-
bution associated with the killed (absorbed) process in its large time regime,
cf. Ref. [29].
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2.5. Reflected motions in a bounded domain

Reflected random motions in the bounded domain are typically expected
to live indefinitely, never leaving the domain, basically with a complete re-
flection form the boundary. (We cannot a priori exclude a partial reflection
that is accompanied by killing or transmission.)

In the case of previously considered motions, a boundary may be re-
garded as either a transfer terminal to the so-called “cemetery” (killing/
absorption), or as being inaccessible form the interior at all (conditioned
processes). In both scenarios, the major technical tool was the eigenfunc-
tion expansion (11), where the spectral solution for the Laplacian with the
Dirichlet boundary data has been employed. Thus, in principle, we should
here use the notation ∆D, where D indicates that the Dirichlet boundary
data have been imposed at the boundary ∂D of D ⊂ Rn.

Reflecting boundaries are related to Neumann boundary data, and then
we should rather use the notation ∆N . In a bounded domain, we deal with
a spectral (eigenvalue) problem for ∆N with the Neumann data-respecting
eigenfunctions and eigenvalues.

The major difference, if compared to the absorbing case, is that the
eigenvalue zero is admissible and the corresponding eigenfunction ψ0(x)
determines an asymptotic (stationary, uniform in D) distribution ρ0(x) =
[ψ0(x)]2 [32, 33]. In the Brownian context, the rough form of the related
transition density looks like

kN (t, x, y) =
1

vol(D)
+
∞∑
n=1

e−κnt ψn(x)ψn(y) , (14)

where κn are positive eigenvalues, ψn(x) respects the Neumann boundary
data and vol(D) denotes the volume of D (interval length, surface etc.). We
have ψ0(x) = 1/

√
vol(D).

3. Fractional Laplacians in Rn

In the present paper, up to suitable adjustment of dimensional constants,
the free evolution in Rn refers either to L = −∆ (Brownian motion) or
L = (−∆)α/2 with 0 < α < 2 (Lévy-stable motion). It is −(−∆)α/2 which
stands for a legitimate fractional relative of the ordinary Laplacian ∆.

For clarity of discussion, let us recall three formal (equivalent in Rn)
definitions of the symmetric Lévy stable generator, which nowadays are pre-
dominantly employed in the literature (we do not directly refer to fractional
derivatives).
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The spatially nonlocal fractional Laplacian has an integral definition (in-
volving a suitable function f(x), with x ∈ Rn) in terms of the Cauchy prin-
cipal value (p.v.) that is valid in space dimensions n ≥ 1

(−∆)α/2f(x) = Aα,n lim
ε→0+

∫
Rn⊃{|y−x|>ε}

f(x)− f(y)

|x− y|α+n
dy , (15)

where dy ≡ dny and the (normalization) coefficient

Aα,n =
2αΓ (α+n

2 )

πn/2|Γ (−α
2 )|

=
2ααΓ (α+n

2 )

πn/2Γ (1− α/2)
. (16)

Here, one needs to employ Γ (1− s) = −sΓ (−s) for any s ∈ (0, 1).
Coefficient (16) has been adjusted to secure that the integral definition

stays in conformity with its Fourier transformed version. The latter ac-
tually gives rise to the Fourier multiplier representation of the fractional
Laplacian [1, 5, 37]

F
[
(−∆)α/2f

]
(k) = |k|αF [f ](k) . (17)

We recall again that it is −(−∆)α/2 which is a fractional analog of the
Laplacian ∆.

We note that formula (15) can be rewritten in the form often exploited
in the literature [5, 6]

(−∆)α/2f(x) =
Aα,n

2

∫
Rn

2f(x)− f(x+ y)− f(x− y)

|y|n+α
dy . (18)

Another definition, being quite popular in the literature in view of the
more explicit dependence on the ordinary Laplacian, derives directly from
the standard Brownian semigroup evolution exp(t∆). The latter is explic-
itly built into the formula, originally related to the Bochner subordination
concept [1]

(−∆)α/2f =
1

|Γ
(
−α

2

)
|

∞∫
0

(
et∆f − f

)
t−1−α/2 dt . (19)

Clearly, given an initial datum f(x), we deal here with a solution of the stan-
dard (up to dimensional coefficient) heat equation f(x, t) = (exp t∆) f(x)
into the above integral formula. By invoking tools from functional anal-
ysis (e.g. the spectral theorem), this definition of the fractional Laplacian
extends to fractional powers of more general non-negative operators than
(−∆) proper.
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4. Fractional Laplacians in a bounded domain

4.1. Hypersingular (restricted) fractional Laplacian

As mentioned before, a domain restriction to a bounded subset D in Rn
is hard, if not impossible, to implement via the Fourier multiplier definition.
The reason is an inherent spatial nonlocality of the Lévy-stable generators.

Therefore, the natural way to handle e.g. the Dirichlet boundary data for
a bounded domain D is to begin from the hypersingular operator definition
(15) and restrict its action to suitable functions with support in D. It is
known that the standard Dirichlet restriction f(x) = 0 for all x ∈ ∂D is
insufficient for the pertinent functions. One needs to impose the so-called
exterior Dirichlet condition: f(x) = 0 for all x ∈ R\D.

By employing (15), (16), we define the restricted fractional Laplacian
(−∆)

α/2
D , essentially as (−∆)α/2 of Eq. (15), with a superimposed open

domain D restriction

(−∆)
α/2
D f(x) = (−∆)α/2f(x) = g(x) , (20)

where x ∈ D and f(x) = 0 = g(x) for all x ∈ Rn\D. In particular, the spec-
tral (eigenvalue) problem of interest takes the form of (−∆)

α/2
D φ(x) = λφ(x).

More detailed analysis of various eigenvalue problems for the restricted frac-
tional Laplacians can be found in Refs. [10, 13–16] and [34, 38–47].

We note that Eq. (20) can be converted to the form of the hypersingular
Fredholm problem, discussed in detail in Refs. [16, 44]. All involved singu-
larities can be properly handled (are removable) and the pertinent formula
reads

(−∆)
α/2
D f(x) ≡ −Aα,n

∫
D̄

f(u)

|u− x|n+α
du .

4.2. Spectral fractional Laplacian

We first impose the boundary conditions upon the Dirichlet Laplacian
in a bounded domain D i.e. at the boundary ∂D of D. That is encoded in
the notation ∆D. Presuming to have in hands its L2(D) spectral solution
(employed before in connection with (7)), we introduce a fractional power
of the Dirichlet Laplacian (−∆D)α/2 as follows:

(−∆D)α/2f(x) =

∞∑
j=1

λ
α/2
j fjφj(x) =

1

|Γ (−α
2 )|

∞∫
0

(
et∆Df − f

)
t−1−α/2 dt ,

(21)
where fj =

∫
D f(x)φj(x)dx and φj , j = 1, 2, . . . form an orthonormal basis

system in L2(D):
∫
D φj(x)φk(x)dx = δjk.
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We note that the spectral fractional Laplacian (−∆D)α/2 and the ordi-
nary Dirichlet Laplacian ∆D share eigenfunctions and their eigenvalues are
related as well: λj ↔ λ

α/2
j . The boundary data for (−∆D)α/2 are imported

from these for ∆D.
From the computational (computer-assisted) point of view, this spectral

simplicity has been considered as an advantage, compared to other proposals,
cf. [2, 3].

In contrast to the situation in Rn, the restricted (−∆)
α/2
D and spectral

(−∆D)α/2 fractional Laplacians are inequivalent and have entirely different
sets of eigenvalues and eigenfunctions. Basic differences between them have
been studied in [4], see also [5, 6] and [13].

We note one most obvious (and not at all subtle) difference encoded in the
very definitions: the boundary data for the restricted fractional Laplacian
need to be exterior and set on Rn\D, while those for the spectral one are
set merely on the boundary ∂D of D.

4.3. Regional fractional Laplacian
The regional fractional Laplacian has been introduced in conjunction

with the notion of censored symmetric stable processes [17, 18]. A censored
stable process in an open set D ⊂ Rn is obtained from the symmetric stable
process by suppressing its jumps from D to the complement Rn\D of D,
i.e., by restricting its Lévy measure to D. Told otherwise, a censored stable
process in an open domain D is a stable process forced to stay inside D.

Verbally, that resembles random processes conditioned to stay in a
bounded domain forever [27]. However, we point out that the “censoring”
concept is not the same [17] as that of the (Doob-type) conditioning out-
lined. Instead, it is intimately related to the reflected stable processes in
a bounded domain with killing within the domain, at its boundary and,
eventually, not approaching the boundary at all [17, 18].

In Ref. [18], the reflected stable processes in a bounded domain have
been investigated, and their generators identified with regional fractional
Laplacians on the closed region D̄ = D∪∂D. According to [18], the censored
stable processes of Ref. [17], in D and for 0 < α ≤ 1, are essentially the
same as the reflected stable process. We shall somewhat undermine this
view below.

In general, [17], if α ≥ 1, the censored stable process will never approach
∂D. If α > 1, the censored process may have a finite life-time and may take
values at ∂D.

Conditions for the existence of the regional Laplacian for all x ∈ D̄ have
been set in Theorem 5.3 of [18]. For 1 ≤ α < 2, the existence of the regional
Laplacian for all x ∈ ∂D is granted if and only if a derivative of each function
in the domain in the inward normal direction vanishes [18].
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For our present purposes, we assume 0 < α < 2 and D ⊂ Rn being an
open set. The regional Laplacian is assumed to act upon functions f on an
open set D such that ∫

D

|f(x)|
(1 + |x|)n+α

dx <∞ . (22)

For such functions f , x ∈ D and ε > 0, we write

(−∆)
α/2
D,Regf(x) = Aα,n lim

ε→0+

∫
y∈D{|y−x|>ε}

f(x)− f(y)

|x− y|α+n
dy (23)

provided the limit (actually the Cauchy principal value) exists. Note a subtle
difference between the restricted and regional fractional Laplacians. The
former is restricted exclusively by the domain property f(x) = 0, x ∈ Rn\D.
The latter is restricted by demanding the integration variable y of the Lévy
measure to be in D.

If we superimpose (enforce) the (Dirichlet) domain restriction upon the
regional fractional operator (for a sufficiently regular function f(x), defined
on the whole of Rn, with the property f(x) = 0 for x ∈ Rn\D of an open
set D), we arrive at the identity, valid for all x ∈ D [17]

(−∆)α/2f(x)− (−∆)
α/2
D,Regf(x) = κD(x)f(x) , (24)

where
κD(x) = Aα,n

∫
Rn\D

1

|x− y|n+α
dy . (25)

Note that Eqs. (23), (24) actually indicate how the restricted fractional
Laplacian (20) can be given the deeper meaning.

We note that if to replace D in Eq. (25) by D̄ = D ∪ ∂D, one arrives
at the definition of the generator of a reflected stable process in D̄, cf. [18],
(−∆)

α/2

D̄,Reg
f(x), provided suitable conditions (various forms of the Hölder

continuity) upon functions in the domain of the nonlocal operator are re-
spected. In particular, in the case of 1 ≤ α < 2, it has been shown that
(−∆)

α/2

D̄,Reg
f(x) exists at a boundary point x ∈ D if and only if the normal

inward derivative vanishes: (∂f/∂n)(x) = 0.
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5. Random motion in the interval

5.1. Brownian motion
5.1.1. Absorption vs. conditioning and quasi-stationary distributions

Diffusion processes in the interval with various boundary conditions
(Dirichlet, Neumann, mixed etc.) have become favored model systems in
the statistical physics approach to the Brownian motion, including exten-
sions of the formalism to higher dimensions [19, 48]. See also [49, 50] for
links with the previous formalism.

Let us consider the free diffusion (the customary diffusion coefficient
has been scaled away, e.g. set formally Dt → t) ∂tk = ∆xk within an
interval (a, b) ⊂ R, with absorbing boundary conditions at its end points
a and b. Accordingly, we deal with the Dirichlet Laplacian ∆D. The time
homogeneous transition density with x, y ∈ (a, b), 0 ≤ s < t and b − a = L
reads

kD(t, x, y) =
2

L

∞∑
n=1

sin
(nπ
L

(x− a)
)

sin
(nπ
L

(y − a)
)

exp

(
−n

2π2

L2
t

)
.

(26)
Note that limt→s k(x, t|y, s) ≡ δ(x− y).

Let c(x) be an arbitrary concentration function on the interval,
∫
D c(x)dx

= 0. Then c(x, t) =
∫
D kD(t, x, y)c(y)dy stands for a concentration at time

t > 0. Clearly, c(x, t) is a solution of the heat equation on the interval, e.g.
∂tc(x, t) = ∆Dc(x, t).

By employing the eigenfunction expansion (11), we readily arrive at
c(x, t) =

∑∞
n=1 cne

−λntφn(x) with cn =
∫
D φn(y)c(y)dy. Here: λn = n2π2/L2

and φn(x) =
√

2/L sin[(nπ/L)(x− a)].
The decay of c(x, t) for large times follows the exponential pattern of

Eq. (13)

c(x, t) −→
√

2

L
c1 sin

(π
L

(x− a)
)

exp

(
−π

2

L2
t

)
= c1φ1(x) exp(−λ1t) . (27)

The survival probability is now slightly redefined to the form, [19], S(t) =∫ L
0 c(x, t)dx, whose large time asymptotic reads

S(t) ∼ c1φ1(x0) exp
(
−Dπ2t/L2

)
≡ c1φ1(x0) exp(−t/τ0) ,

where τ0 = 1/λ1 stands for the decay time.
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For convenience, let us note that a transformation x → x′ = (x − a)/L
maps the interval [a, b] into [0, 1]. Another transformation x → x′ = x −
1
2(a+b) maps [a, b] into [−c, c], with c = L/2, whose special case (set L = 2)
is the interval [−1, 1]. With respect to the comparative analysis of Lévy
flights, we favor the symmetric interval [−c, c] with L = 2c, c > 0. (It is
often convenient to make another scale change of the time parameter and
ultimately set D = 1/2.)

We mention the large time asymptotic of the transition density (26)

kD(x, s; y, T ) = kD(T − t, x, y)

∼ sin
[π
L

(x+ c)
]

sin
[π
L

(y + c)
]

exp

(
−π

2

L2
(T − s)

)
(28)

that is useful while evaluating (8) and (10).
The emergent conditioned transition density (11) takes the form of

pD(t− s, x, y) = kD(t− s, x, y)
sin[ π2c(x+ c)]

sin[ π2c(y + c)]
exp

(
+
π2

4c2
(t− s)

)
. (29)

Note that by construction, we have L = 2c and there holds sin[ π2c(x+ c)] =
cos( π2cx).

By general principles, we deduce [35] the forward drift of the conditioned
diffusion process in question

b(y) = ∇ ln cos
( π

2c
y
)

= − π
2c

tan
( π

2c
y
)
, (30)

and the transport equation for a probability density in the Fokker–Planck
form (12) (partial derivatives are executed with respect to y): ∂tρ = 1

2∆ρ−
∇(bρ), with ρ(y, t) =

∫ c
−c ρ(x)pD(t, x, y)dx.

The asymptotic (invariant) probability distribution reads, remembering
about the L2(D) normalization of the eigenfunctions: ρ(x) = 2

L cos2(πx/L)
and clearly refers to a diffusion process that is confined to stay in the interval
forever (note a repulsion from the boundaries encoded in the drift function).

In accordance with (13), the associated quasi-stationary distribution
reads ψ(x) = (1/a1)φ1(x), where a1 =

∫
D φ(y)dy. In the present case,

we have (the L1(D) normalization being implicit)

ψ(x) =
π

4c
cos
( π

2c
x
)

(31)

which reads (π/4) cos(πx/2), if adapted to the interval [−1, 1], see e.g. p. 9
in Ref. [29].
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5.1.2. Reflected Brownian motion

The case of reflecting boundaries in the interval is specified by the Neu-
mann boundary conditions for solutions of the diffusion equation ∂tf(x) =
∆N f(x) in the interval D̄ = [a, b]. We need to have respected (∂xf)(a) =
0 = (∂xf)(b) at the interval boundaries. The pertinent transition density
reads

kN (t, x, y) =
1

L
+

2

L

∞∑
n=1

cos
(nπ
L

(x− a)
)

cos
(nπ
L

(y − a)
)

exp

(
−n

2π2

L2
t

)
.

(32)
The operator ∆N admits the eigenvalue 0 at the bottom of its spec-

trum, the corresponding eigenfunction being a constant. That refers to
a uniform probability distribution on the interval of length L, to be ap-
proached in the asymptotic (large time) limit. Solutions of the diffusion
equation with reflection at the boundaries of D can be modeled by setting
p(x, t) = kN (t, x, x0), while remembering that p(x, 0) = δ(x − x0). We can
as well resort to c(x, t) =

∫
D kN (t, x, y)c(y)dy, while keeping in memory that

k(t, x, y) = k(t, y, x).

5.2. Lévy flights
5.2.1. Restricted fractional case: hypersingular Fredholm problem

In Refs. [16, 51], a reduction of definition (20) to the so-called hyper-
singular Fredholm problem has been described. Let us choose D = (−1, 1)
⊂ R. Essentially, under the exterior Dirichlet boundary conditions, the
fractional Laplacian (−∆)α/2, while acting on suitable functions that vanish
everywhere on R\D, acquires the form of the hypersingular operator (all
potentially dangerous singularities are here removable, by a suitable regu-
larization of integration, either in the sense of the Cauchy principal value or
as the Hadamard-type regularization [16])

(−∆)α/2f(x) = −Aα

1∫
−1

f(u)

|u− x|1+α
du , (33)

where Aα,1 = Aα = (1/π)Γ (α + 1) sin(πα/2). The integral needs to be
understood as the Cauchy principal value relative to x ∈ (−1, 1). The eigen-
value problem for operator (33) has been discussed in detail, for various
stability parameter values, with the aid of numerical assistance, and com-
pared with other existing solutions (analytic and computer assisted), see
especially [13, 38, 39, 42].
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Although analytic results are here scarce, we have a detailed knowledge
of lowest eigenvalues and ground state functions shapes that are relevant for
the study of the large time asymptotic. The validity of an (approximate)
eigenvalue formula for n ≥ 1 and 0 < α < 2 [38, 39]

λn =

[
nπ

2
− (2− α)π

8

]α
−O

(
2− α
n
√
α

)
(34)

has been extensively tested for the Cauchy case (α = 1), with a number of
partial observations concerning other stability index values. Let us empha-
size that for n ≤ 10, numerically computed eigenvalues are much sharper
than these evaluated on the basis of Eq. (34) alone. Thus e.g. in the Cauchy
(α = 1) case, the numerically computed bottom eigenvalue is λ1 = 1.157791,
while the leading part of formula (34) would result in λ1 = 1.178097.

We note that the spectral solution for the ordinary (minus) Laplacian
in the interval reads λn =

[
nπ
2

]2, n ≥ 1. Up to dimensional coefficients, we
have here the familiar quantum mechanical spectrum of the infinite well set
on the interval in question.

In Refs. [13, 14], in Table I, a number of various eigenvalues for differ-
ent stability indices has been comparatively collected. Albeit with a rough
accuracy, these data give a quantitative picture of generic properties of the
fractional Laplacian spectrum in restricted, spectral and regional versions,
in the interval.

For the reader’s convenience, we list lowest (ground state) eigenvalues
for different stability indices: λ(0.2) = 0.9575, λ(0.5) = 0.9702, λ(0.7) =
1.1032, λ(0.9) = 1, 1032, λ(1) = 1.1578, λ(1.2) = 1.2971, λ(1.5) = 1.5976,
λ(1.8) = 2.0488, λ(1.95) = 2.3520, λ(1.99) = 2.4650, to be set against the
bottom eigenvalue of the standard Laplacian (−∆D): λ(2) = 2.4674.

Shapes of respective ground state eigenfunctions are not available in a
closed analytic form and basic results in this connection (we leave aside the
math-oriented research [10–12]) have been obtained numerically [13–16, 38–
45, 51].

Nonetheless, we can propose a general approximate formula encompass-
ing ground state functions for all 0 < α < 2, whose accuracy has been
extensively tested in the Cauchy case. Namely, our proposal is to approxi-
mate φ1(x) by

ψ(x) = Cα,γ
[(

1− x2
)

cos(γx)
]α/2

, (35)

where Cα,γ stands for the L2(D) normalization factor, while γ is consid-
ered to be the “best-fit” parameter, allowing to get the best agreement with
computer-assisted eigenfunction outcomes [15].

In the Cauchy case, α = 1, almost prefect fit (up to the available graphi-
cal resolution limit) has been obtained for γ = 1443

4096π, with C = 0.92175 [15].
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For the reader’s convenience, we reproduce a comparison of rough ap-
proximations of few ground states with the corresponding “best-fit” formulas,
Fig. 1. These graphical outcomes have been obtained very recently [52].

The analytical expressions for approximate ground functions, we com-
pare with computer-assisted ground-state solutions of the eigenvalue prob-
lems

ψ(x, α = 0.2) = 0.786902
[(

1− x2
)

cos
πx

2

]0.1
, (36)

ψ(x, α = 0.5) = 0.876206
[(

1− x2
)

cos
πx

2

]0.25
, (37)

ψ(x, α = 0.8) = 0.90856
[(

1− x2
)

cos(1.3x)
]0.4

, (38)

ψ(x, α = 1.0) = 0.921749

[(
1− x2

)
cos

1443π

4096
x

]0.5

, (39)

ψ(x, α = 1.5) = 0.969531
[(

1− x2
)

cos(0.91x)
]0.75

. (40)

The coefficients in the arguments of cosines have been chosen separately for
each α from the “best-fit” assumption.
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Fig. 1. Comparison of “exact” (for 30 × 30 matrix diagonalization, see [51]) and
approximate (Eqs. (36)–(40)) ground-state functions for different stability indices µ
(here, our proviso is to use the notation µ instead of α), shown in the panels. The
inset to panel (a) reports the case of µ = 0.2, when the approximation becomes
less accurate than this observed in µ ≥ 0.5 regimes [52].
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Remark 1 The (1−x2)α/2 behavior of the approximate ground state func-
tion (35) clearly conforms with results established in the mathematical liter-
ature, concerning the near-boundary properties of the involved “true” eigen-
function φ1(x) corresponding to the bottom eigenvalue of (−∆)

α/2
D (here,

in the interval [−1, 1)). Namely, it is known that for x ∈ D, we have a
two-sided inequality

c1δ
α/2(x) ≤ φ1(x) ≤ c2δ

α/2(x) ,

where δ(x) = dist(x, ∂D), while constants c1, c2 depend on D and the sta-
bility index α, see e.g. [10, 11]. In the interval (−1.1) that amounts to
the comparability criterion φ1(x) ≈ c3 (1 − x2)α/2, where c3 is a suitable
constant.

Remark 2 The semigroup TDt (α) = exp(−t(−∆)
α/2
D ), t ≥ 0 of the stable

process killed upon exiting from a bounded set D has an eigenfunction ex-
pansion of the form of (7). Basically, we never have in hands a complete set
of eigenvalues and eigenfunctions, and likewise, we generically do not know
a closed analytic form for the semigroup kernel kD(t, x, y) (7). A genuine
mathematical achievement has been to establish that when α ∈ (0, 2) and a
bounded domain D is a subset of Rn, then the stable semigroup TDt (α) is
intrinsically ultracontractive. This technical (IU) property actually means
that for any t > 0, there exists ct such that for any x, y ∈ D, we have [10]

kD(t, x, y) ≤ ct φ1(x)φ1(y) .

Actually, we have kD(t, x, y) =
∑∞

1 e−λntφn(x)φn(y). Accordingly,

kD(t, x, y)

e−λ1tφ1(x)φ1(y)
= 1 +

∞∑
2

e−(λn−λ1)t φn(x)φn(y)

φ1(x)φ1(y)
.

It follows that we have complete information about the (large time
asymptotic) decay of relevant quantities

lim
t→∞

kD(t, x, y)

e−λ1tφ1(x)φ1(y)
= 1 ,

and (for t > 1)

e−(λ2−λ1)t ≤ supx,y∈D

∣∣∣∣ kD(t, x, y)

e−λ1tφ1(x)φ1(y)

∣∣∣∣ ≤ Cα,De−(λ2−λ1)t .

Thus, what we actually need to investigate is the large-time regime of Lévy
processes in the bounded domain D, is to know two lowest eigenvalues λ1, λ2

and the ground state eigenfunction φ1(x) of the motion generator.
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Remark 3 The existence of conditioned Lévy flights, with a transition den-
sity (11) and an invariant probability density ρ(y) = [φ1(y)]2,

∫
D ρ(y) dy = 1

is here granted as well.

5.3. Spectral Dirichlet case

In the bounded domain, the spectral definition (21) of the Dirichlet frac-
tional Laplacian, effectively reduces to (−∆D)α/2f(x) =

∑∞
j=1 λ

α/2
j fjφj(x),

whose eigenfunctions are shared with the standard Dirichlet Laplacian
(−∆D), while the corresponding eigenvalues are raised to the power α/2,
e.g. read λ

α/2
n , n ≥ 1. We emphasize that the boundary data refer to the

boundary ∂D of D only.
In the context of jump-type processes that are killed at the boundary,

the spectral definition has been used explicitly in Ref. [20], through a direct
analog of the transition density (26)

kαD(t, x, y) =
2

L

∞∑
n=1

sin
(nπ
L

(x− a)
)

sin
(nπ
L

(y − a)
)

exp
[(
−nπ
L

)α
t
]
.

(41)
Here, 0 < α < 2. All elements of our discussion of asymptotic properties
of the corresponding random motion, cf. Sections 2 and 5 remain valid
in the present spectral case. In Ref. [21], a comparison has been made
of the spectral and restricted Dirichlet definitions of fractional Laplacians.
Numerical results for various average quantities do not substantially differ.
It has been noticed that the restricted Laplacian eigenfunctions are close to
the spectral Laplacian eigenfunctions (trigonometric functions) except for
the vicinity of the boundaries.

However, in view of the spectral formula (34), the time rate formulas
of the form of (8), (9), (11), (27) and those listed in Remark 2 show up
detectable differences. It is also instructive to make a direct comparison of
the pure Brownian case (Section 5.1) against the spectral one.

5.4. Regional (censored vs. reflected) Lévy flights

Reflected Lévy flights in bounded domains as yet have not received a
broad coverage in the literature [17, 18] and the censored ones likewise.
Leaving the mathematical research thread somewhat aside, let us focus
on interesting findings in this connection, in the physics-oriented publica-
tions [24, 25].

Namely, in Ref. [24], steady state (stationary) probability densities for
Lévy flights in the interval [−c, c], L = 2c (actually for an infinite well) have
been derived.
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The departure point has been the standard fractional equation of the
form (we scale away all dimensional coefficients), cf. Eq. (9) in Ref. [24]

∂tf(x, t) = −(−∆)α/2f(x, t) . (42)

Infinitely deep potential well conditions are set in two steps.
The first one amounts to a demand that f(x, t) = 0 for all |x| > c, while

an interval of interest is [−1, 1] and we say nothing specific about the values
of f(x, t) at the boundary ∂D of D. (The boundaries may be impenetrable,
but the process may take values on ∂D.)

For the second step, we invoke the hypersingular integral formula (33),
here adapted to the interval [−c, c] instead of the original [−1, 1].

The stationarity condition is imposed in the form of ∂tf(x, t) = 0, pre-
suming that the spectrum of generator (33) contains 0 as the bottom eigen-
value (that in view of (−∆)α/2φn(x) = λnφn). Hence, we can formally write

(−∆)α/2f(x) =

c∫
−c

f(u)du

|x− u|1+α
= 0 . (43)

The major assumption in Ref. [24] (by no means obvious and potentially
questionable in view of hypersingular integral involved) is that Eq. (43)
can be represented in the divergence form: ∇j(x) = 0. It is an auxiliary
condition that the (formally) resulting j(x) vanishes everywhere in [−c, c],
from which there follows the L1[−c, c] normalized probability density [24] in
the closed analytic form

ρα(x) = (2c)1−α Γ (α)

Γ 2(α/2)

(
c2 − x2

)α/2−1 (44)

valid for all 0 < α ≤ 2.
The special case of the Cauchy noise (α = 1) has been addressed in

Ref. [25], by an independent reasoning, with the outcome

ρ1(x) =
1

π

1√
c2 − x2

(45)

valid for all |x| < c.
In passing, we note that for α = 2, a uniform Brownian distribution 1/L

arises. That would suggest a link with reflected processes.
At the moment, we cannot give an exhaustive analysis of affinities and/or

differences between the censored and reflected Lévy processes. As well we
do not have a clear understanding whether the process, associated with any
probability density ρα(x) given above, is or is not a reflected stable process,
which takes values at ∂D.



940 P. Garbaczewski

In the whole stability parameter range 0 < α < 2, the probability density
ρα(x), Eq. (44), blows up to infinity at the interval boundaries. Hence, the
reflection condition of Ref. [18] for α = 1 is manifestly violated: ∂xρ1(x) =
x/π(c2− x2)3/2 blows up to ± infinity at the interval boundaries, instead of
vanishing there. This issue needs further analysis.

6. Prospects

We have described comparatively various aspects of the random motion
(Brownian and Lévy-stable), contributing to the ongoing discussion (both
from a purely mathematical and more pragmatic, basically computer assis-
tance oriented, points of view). Definitely, there is some freedom in the
definition of Lévy generators in a bounded domain that results in giving
access to new, not yet exhaustively investigated, Lévy-type stochastic pro-
cesses. Their similarities and differences are surely worth an analysis as well.
Additionally, some of the pertinent definitions (specifically the spectral one)
have gained popularity in the study of nonlinear fractional problems (related
to porous media), where they have proved to yield quite efficient computer
routines, see e.g. [2, 3].
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