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We present a method of deriving two boundary conditions at a thin
membrane for diffusion from experimental data. This method can be really
useful in complex membrane systems in which we do not know mechanisms
of processes occurring within the membrane, since in such a situation the
theoretical derivation of the boundary conditions seems to be impossible.
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1. Introduction

There are many systems in which substance is transported diffusively
through a membrane. Such systems can be observed in life sciences as well
as in engineering and they are widely discussed in the literature. We only
mention here [1–5] and references cited therein.

The system under considerations consists of two parts divided by a thin
membrane localized at x = 0. All functions describing the process on the
left-hand side of the membrane (x < 0) we denote with subscript 1 and
on the right-hand side of the membrane (x > 0) — with subscript 2. We
assume that normal diffusion occurs in both parts of the system with dif-
fusion coefficients D1 in part 1 and D2 in part 2. A real system is usually
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three-dimensional but we suppose that the considered system is homoge-
neous in the plane perpendicular to the x-axis and it can be treated as one-
dimensional. Therefore, process of a substance transport can be described
by the normal diffusion equations

∂C1(x, t)

∂t
= D1

∂2C1(x, t)

∂x2
, (1)

∂C2(x, t)

∂t
= D2

∂2C2(x, t)

∂x2
, (2)

where C1,2(x, t) denotes a concentration profile in part 1 and in part 2,
respectively. In order to solve these equations, we need two boundary condi-
tions at the membrane. The general form of the boundary conditions remains
unknown, although there were many attempts to derive boundary conditions
at the membrane, see, for example [6–11] and the references cited therein. It
should be mentioned here that one of the boundary conditions in a membrane
system is usually assumed in the form that requires a continuity of a flux at
the membrane J2(0+, t) = J1(0

−, t), where J1,2(x, t) = −D1,2∂C1,2(x, t)/∂x,
whereas the second boundary condition is most often chosen by an assump-
tion. For example, in the case of a fully absorbing membrane, there is
C(0, t) = 0 and for a fully reflecting wall, we have J(0, t) = 0 [6, 7]. For a par-
tially permeable membrane, we can choose the second boundary condition
as C1(0

−, t)/C2(0
+, t) = κ, where κ controls a membrane permeability [8],

or in the form of J(0, t) = κ [C1(0
−, t)− C2(0

+, t)] [9]. We would like to
point out that even in the case of the above-mentioned boundary conditions
occurring in relatively simple systems, there are ambiguous and nonequiva-
lent. In more complicated systems such as, for instance, in a system with a
membrane in which an absorption may occur, much more complex boundary
conditions are expected. These boundary conditions are usually difficult to
determine and they can take unexpected and astonishing forms. An exam-
ple is the boundary condition in which the membrane permeability changes
over time that reads C1(0

−, t) = λ(t)C2(0
+, t), where λ(t) = a+ b exp(wt),

with a, b and w being constant [10] or the boundary condition in the form
of function quickly changing over time [12].

In this paper, we present the method of boundary conditions determi-
nation at a thin membrane for diffusion from experimental data. Further
considerations we perform within the Laplace transform domain (L{f(t)} ≡
f̂(s) =

∫∞
0 e−stf(t)dt), since it significantly simplify calculations. We con-

sider the boundary conditions in general forms which read

Ĵ2
(
0+, s

)
= Ψ̂(s)Ĵ1(0

−, s) , (3)

Ĉ2

(
0+, s

)
= Φ̂(s)Ĉ1(0

−, s) , (4)
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where Ψ̂(s) and Φ̂(s) are functions that could be determined as follows.
Firstly, we choose some functions containing Ψ̂(s) and Φ̂(s) that can easily
be determined from experimental data. Then, we find theoretical formu-
lae for them. Afterwords, we suggest that the same functions should be
numerically determined from experimental data. Finally, the comparison
of the theoretical version with the numerical version should allow the de-
termination of Ψ̂(s) and Φ̂(s) and, consequently, the boundary conditions
(3) and (4).

2. The method

Normal diffusion equations (1) and (2) within the Lapalace transform
domain take the forms

Ĉ1(x, s)− sC1(x, 0) = D1
∂2Ĉ1(x, s)

∂x2
, (5)

Ĉ2(x, s)− sC2(x, 0) = D2
∂2Ĉ2(x, t)

∂x2
, (6)

where C1,2(x, 0) denotes the initial concentration in part 1 and 2, respec-
tively. We assume that the boundary conditions at the membrane have the
forms (3) and (4). We also suppose that particles move independently and
do not clog the membrane, therefore, the boundary conditions do not depend
on an initial concentration. Thus, we choose the initial condition in a form
that is convenient for experimental measurements which are often conducted
by means of the laser interferometric method [13]. Namely, we assume that
at the initial moment, only part 1 is filled with a diffusing substance, hence

C1(x, 0) = C0 , C2(x, 0) = 0 . (7)

The Laplace transforms of solutions to Eqs. (5) and (6) with the bound-
ary conditions (3) and (4), and with the initial condition (7) are

Ĉ1(x, s) =
C0

s

[
1−

√
D2Φ̂(s)√

D1Ψ̂(s) +
√
D2Φ̂(s)

e

√
s

D1
x

]
, (8)

Ĉ2(x, s) =
C0

s

√
D1Ψ̂(s)Φ̂(s)√

D1Ψ̂(s) +
√
D2Φ̂(s)

e
−
√

s
D2

x
. (9)

The unknown functions Ψ̂(s) and Φ̂(s) could be determined by comparison
of our theoretical considerations with experimental data. This comparison
would be much easier if we choose the following functions. Namely, on the
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left-hand side of the membrane (x < 0), it is the time evolution of an amount
of substance which leaves part 1

W1(t) =

0∫
−∞

[C0 − C1(x, t)] dx , (10)

whereas on the right-hand side of the membrane (x > 0), this function is
the time evolution of an amount of substance which crosses the membrane

W2(t) =

∞∫
0

C2(x, t)dx . (11)

The Laplace transform of (10) reads

Ŵ1(s) =
C0

s3/2

√
D1D2Φ̂(s)√

D1Ψ̂(s) +
√
D2Φ̂(s)

, (12)

whereas the Laplace transform of (11) is

Ŵ2(s) =
C0

s3/2

√
D1D2Φ̂(s)Ψ̂(s)√

D1Ψ̂(s) +
√
D2Φ̂(s)

. (13)

On the other hand, functions Ŵ1(s) and Ŵ2(s) could be obtained from
experimental data by numerical calculating the Laplace transforms of W1(t)
andW2(t) which, in turn, could be calculated from experimentally measured
concentration profiles. Numerical calculations could be performed by means
of, for example, the Gauss–Laguerre quadrature and the spline interpolation
method [14]. A comparison of Ŵ1(s) and Ŵ2(s) obtained theoretically and
numerically from experimental data would allow one to determine Ψ̂(s) and
Φ̂(s), and thereby to establish both boundary conditions at the membrane
for diffusion.

A particular example of the application of the procedure presented above
is the case considered in the paper [11] in which we have presented the
derivation of the second boundary condition from experimental data for the
membrane system in which D1 = D2. The first boundary condition was
assumed in the form of (3) but for Ψ̂(s) = 1, whereas the second boundary
condition was supposed as (4). The initial condition was chosen as (7). Using
the procedure specified earlier, we obtained the following function Φ̂(s):

Φ̂(s) =
1

α+ β
√
s
, (14)
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where α and β control the membrane permeability and the second boundary
condition which took the form of

αC2(0
+, t) + β

∂1/2

∂t1/2
C2

(
0+, t

)
= C1(0

−, t) , (15)

where d1/2f(t)/dt1/2 = (1/
√
π )(d/dt)

∫ t
0 dt

′f(t′)/(t − t′)1/2 denotes the
Riemann–Liouville fractional derivative of the order of 1/2. The presence of
a fractional derivative in the boundary condition is astonishing and shows
that particles transfer through a thin membrane is a “long-memory process”
even in the case of normal diffusion process.

3. Final remarks

We have presented the method of deriving two boundary conditions at a
thin membrane for diffusion based on experimental data. We have proposed
these boundary conditions in the general forms (3) and (4) but let us take
note that many boundary conditions, some of which we have mentioned
above, given in the terms of the Laplace transform can be expressed by
Eqs. (3) and (4). It should also be noticed that if Ψ̂(s) 6= 1 in (3) that
means that the flux is not continuous at the membrane. In such a case,
the form of the first boundary condition can be utterly astonishing. For
example, a disturbance of the flux continuity may lead to surprising effects,
such as the dependence of the flux on time.

Many other unexpected or unusual effects resulting from, e.g., the lack
of knowledge about processes occurring within a thin membrane, can affect
the form of the boundary conditions and lead to a situation in which their
theoretical forms remain unknown. However, our method can give an answer
to the question about the boundary conditions in all cases when we have
experimental data. This method can be particularly useful when it is not
known what processes take place within the membrane but it is possible to
conduct an experiment.

This paper was partially supported by the National Science Centre,
Poland (NCN) under grant No. 2014/13/D/ST2/03608.
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