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Despite simplicity, the synchronous cellular automaton [D.A. Young,
Math. Biosci.72, 51 (1984)] enables reconstructing basic features of pat-
terns of skin. Our extended model allows studying the formatting of pat-
terns and their temporal evolution also on the favourable and hostile en-
vironments. As a result, the impact of different types of an environment
is accounted for the dynamics of patterns formation. The process is based
on two diffusible morphogens, the short-range activator and the long-range
inhibitor, produced by differentiated cells (DCs) represented as black pix-
els. For a neutral environment, the extended model reduces to the original
one. However, even the reduced model is statistically sensitive to a type
of the initial distribution of DCs. To compare the impact of the uniform
random distribution of DCs (R-system) and the non-uniform distribution
in the form of random Gaussian-clusters (G-system), we chose inhibitor as
the control parameter. To our surprise, in the neutral environment, for the
chosen inhibitor-value that ensures stable final patterns, the average size of
final G-populations is lower than in the R-case. In turn, when we consider
the favourable environment, the relatively bigger shift toward higher final
concentrations of DCs appears in the G. Thus, in the suitably favourable
environment, this order can be reversed. Furthermore, the different critical
values of the control parameter for the R and the G suggest some dissimilar-
ities in temporal evolution of both systems. In particular, within the proper
ranges of the critical values, their oscillatory behaviours are different. The
respective temporal evolutions are illustrated by a few examples.
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1. Introduction

A large variety of spatial patterning can be observed in nature. Full un-
derstanding of the dynamics of spatio-temporal patterns is still an interesting
theoretical problem. For the pattern formation, which is temporally station-
ary, reaction–diffusion processes are basic mechanisms in the famous Turing
model [1]. He showed that under certain conditions, a pair of reacting and
diffusing chemicals called morphogens could produce steady state hetero-
geneous spatial patterns of chemical concentration. Since Turing’s seminal
paper, numerous non-linear models based on his original idea have been ex-
plored. For example, the book by Meinhardt [2] is devoted to applications of
the reaction–diffusion model. The fact that the reaction–diffusion model is
just a disguised implementation of local autocatalysis with lateral inhibition
was first noticed by Gierer and Meinhardt [3]. An elementary mathematical
introduction to this field is given in the textbook by Edelstein-Keshet [4]. It
gives a broad collection of models for development and pattern formation in
spatially-distributed biological systems. At more advanced level, the well-
known Murray’s book [5] provides comprehensive coverage of the diverse
mechanisms involved in biological pattern formation. It is worth mention-
ing also the Bar-Yam’s book [6] describing a dynamics of complex systems,
and the second one by Ilachinski [7] dealing with a discrete universe from the
cellular automata viewpoint. These books provide a valuable introduction
into the domain of various methods of patterns formation.

Many models of pattern formation employ the general phenomenon of lo-
cal instabilities coupled with lateral inhibition. We point out just two of the
related brief reviews. The qualitative similarities amongst the models based
on local activation with lateral inhibition such as neural, diffusion-reaction,
mechanical and chemotactic ones are discussed by Oster [8]. The last topic
involving cell-chemotaxis (the same cells that secrete a chemoattractant are
free to move in response to the chemical gradients they set up) was reviewed
by Maini [9]. One more point is worth to mention here. The applicability of
Turing approach is not limited to the surface of zero curvature. The problem
of pattern formation for Turing systems on a spherical surface has also been
addressed, e.g. in Refs. [10, 11].

Among other models for the formation of patterns, the cellular automata
(CA) approach is particularly suitable for computer simulations. Using sim-
ple rules, such models allow creating complex spatial patterns indeed. These
kind CA models are catching the attention of physicists because of a possible
complex dynamics of temporal evolution, not for biological details of real-
istic patterns formation. To this group belongs spatially discrete model of
growing of vertebrate skin patterns proposed by Young [12]. Although dif-
fusion is not explicitly represented, the mechanism for formation of patterns
is that of lateral inhibition: local activation and long-range inhibition [4];
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cf. Fig. 1 in the next section. Despite its simple logical structure, the model
can reproduce basic features of vertebrate skin patterns: spots, stripes or
mixed forms. When reduced to a morphogenetic field, the model concept
described in the next section provides an algorithm involving on–off deter-
ministic switching of cell differentiation on a substrate that is called here a
neutral environment.

The basic question that we consider here is to reveal what dynamic
changes in the evolution of this model may occur as a result of environmen-
tal alterations measured by a single parameter. A particular focus is given
to the question: is the final number of differentiated cells (DCs) sensitive
to the type of their initial random spatial distribution? This allows obtain-
ing complementary information in connection with Young’s suggestion [12]:
“I find that five iterations suffice for convergence to a stable pattern, and
that the general form of the final pattern is not sensitive to the initial DC
distribution.” Our findings indicate that the average size of final DC pop-
ulation is clearly sensitive to the type of an initial configuration of DCs.
In addition, the characteristic standard deviations of the distributions of
final DC-population sizes for the different types of the environmental condi-
tions can be observed. Moreover, we needed a higher number of iterations
to terminate the evolution of subsequent patterns and to obtain a stable
final configuration. Interestingly, adopting the Ising model terminology of
spin variables in the context of pattern formation, Young’s model can be
interpreted as describing magnetic system with interactions that are locally
ferromagnetic and long-range antiferromagnetic [6]. Thus, as a model of
broad applicability in statistical physics, Young’s cellular automaton with
further potential modifications opens up many possibilities for the applied
research at relatively low cost.

2. Young’s model and its extension

The model was developed not for an exact description of reality [12],
but rather, by doing some approximations, it provides a simplified descrip-
tion of the complex pattern formation process. According to specific rules
described below, an initially uniform random distribution (R) of a given
number ninit(DCs) of differentiated cells (the DCs are represented as black
pixels) in a matrix of undifferentiated cells (the UCs as white pixels) can
evolve into a white–black skin pattern. The initial arrangement of DCs on
the early embryonic skin is considered as a result of possible slow random
process of differentiation in the UC cell population. One can envisage that if
the process is specifically biased, then also non-uniform distribution of ran-
dom Gaussian-clusters (G) built of black pixels can be taken into account
as an initial configuration.
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Within Young’s approach, only DC cells produce at constant rate two
diffusible morphogens of different kinds with a given field values, w1 and w2.
The activator w1 > 0 (the inhibitor w2 < 0) has the shorter (longer) range
and stimulates the differentiation process (the dedifferentiation one). In
turn, the UC cells are passive in this model since they produce no active sub-
stances. Using the so-called morphogenetic summary field, Young simplifies
the activator–inhibitor diffusion theory proposed originally by Swindale [13].

To perform cellular automaton simulations, we employ a typical square
grid L × L with periodic boundary conditions in both directions. The sum
of morphogens, which influences every cell at discrete (x, y) position from all
neighbouring DCs decides what fate is of the cell. The original mechanism
of patterns formation includes short-range activation w1 for ri ≤ R1 (in the
I region) and long-range inhibition w2 for R1 < ri ≤ R2 (in the II region); cf.
Fig. 1. The ri means the radial distance of the ith DC from the (x, y)-cell.
For the model parameters w1, w2, R1 and R2, the rule of time-evolution of
every cell, see (2), depends on the summary field W (x, y; t) calculated at
time t as follows

W (x, y; t) =
∑
ri∈I

w1 +
∑
ri∈II

w2 , (1)

where i relates to all neighbouring DCs at positions ri in the regions I and II.

Fig. 1. A discrete activation–inhibition field following Young’s model [12].

Before going further, we recall the conceptually simple extension of the
above model. The function W (x, y; t) is directly linked to the effective con-
centration of the two morphogens at that point and moment t. However,
the on–off switching of cell differentiations can be also affected by already
present chemical or physical properties of the substrate. The substrate mate-
rial can be equally called “environment”. So far, the basic model parameters,
w1, w2, R1 and R2 relate to a morphogenetic field given by (1), which is ap-
proximated by two linear regions I and II as described in Ref. [12]. The
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last ε-parameter has been already introduced, although in a different con-
text [14]. It extends the capability of the model making it sensitive to the
three general types of the environmental conditions: the favourable (ε < 0),
the neutral (ε = 0) and the hostile (ε > 0). Now, for each (x, y; t)-cell, the
following situations are possible at time t+ 1:

(a) If W (x, y; t) < ε then DC (UC) becomes (remains) a UC at time t+1 ,

(b) If W (x, y; t) = ε then the cell does not change state at time t+1 ,

(c) If W (x, y; t) > ε then UC (DC) becomes (remains) a DC at time t+1 .

(2)

If ε > 0, then the actualW (x, y; t)must be a little stronger to change UC
into a DC in comparison to the original model [12]. It makes such changes
more difficult supporting the lowering of the size of final DC-population. The
opposite situation appears for ε < 0. In the case of a neutral environment
with ε = 0, its effective influence is negligible by definition, and Young’s
model is recovered.

Once the results of changing states for each grid cell are saved as a sepa-
rate subsequent pattern, we consider this moment as the first iteration step
j = 1. It can be equally named as the step t = 1 of temporal evolution.
Thus, the total length of evolution can be measured in iteration steps. Then,
the resulting black–white pattern with a current DC-population of size n(j)
becomes the new starting configuration. So, within this approach, the up-
date of cells is of synchronous type because, effectively, all the cells can be
treated as those updated simultaneously. Denoting the number of “positive”
UC → DC and “negative” DC → UC changes in the jth iteration by n+(j)
and n−(j), the iteration process is repeated until n+(j) = n−(j) = 0. This
means that an evolving system reaches a stable configuration that is a final
pattern and no longer changes. The related final population size nf (DC)
can be reached either monotonically or, by damped oscillations of a current
number of DCs.

However, a kind of unexpected behaviour in temporal evolution can occur
with never-ending oscillations of pattern’s population sizes. For example, the
sustained oscillations between populations of different sizes as well as the
locally degenerated configurations (local spatial “frustration”) with on–off
switching black ↔ white but with a conserved total number of DCs. The
latter very rare cases are not characteristic for the ranges of the model
parameters considered in this work and they were omitted. On the other
hand, making use of an asynchronous updating of a system, what increases
essentially the computation cost, probably such an oscillatory behaviour
could be eliminated [6]. This point deserves further studies.
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3. Illustrative examples

As the basic control parameter we choose the w2, which measures the
strength of net inhibition effect in II region, while the ε will be used as the
auxiliary parameter that describes the environmental features needed in the
modelling. By the w∗2(R) and the w∗2(G) we denote the respective “criti-
cal” values of the control parameter. For a single run with a given random
seed, they indicate the beginning of the so-called oscillatory behaviour of the
population size n(w2; R) or n(w2; G) calculated as a function of the control
parameter. In turn, when the averaged oscillatory behaviour is analysed in
each of the systems for 100-run trials, the exact critical values cannot be ob-
tained. Instead, on the corresponding figures only the related approximated
values are presented.

The other model parameters are kept fixed in this work, namely a square
grid of linear size L = 83 (in pixels), R1 = 1.5, R2 = 6, w1 = 1 and
the initial number ninit = 455 of DCs. For the G-systems, a non-uniform
initial distribution in form of 65 random Gaussian-clusters with the centres
randomly drawn and composed of 7 DCs, the black pixels in each of the
clusters are distributed with a standard deviation σx = σy = 1.5.

When we illustrate dependent on an environment histograms of the final
population sizes, the fixed value of w2 = −0.08 is used. Otherwise, the w2

works as the control parameter.

3.1. Creating test patterns

For control purposes, we present first the simplest test-patterns evolving
from a single DC cell centrally positioned (x = 42, y = 42) on a square grid.
The following snapshots taken after 25, 45 and the final step are depicted
in Figs. 2 (a) and (b) with the ε = 0 and ε = 0.04, respectively. Both
characteristic final patterns show a high symmetry. They can be used to
verify the correctness of a CA algorithm.

As expected, in a slightly hostile environment, the final population size
nf is lower than that for the neutral case, which is a typical behaviour. Ob-
viously, the differences in the corresponding patterns become more distinct
at the later stages of temporal evolution.

3.2. Simple examples of stable final patterns for the R- and G-systems

Let us now consider the changes of a current population size n(j) with
the fixed value |w2| = 0.08 < |w∗2|, which ensures a stable final configuration.
The following values of environmental parameter are selected, ε = −0.5, 0
and 1. In Ref. [12], a remark about the general form of final patterns is
made. The author is probably right in the point that for the different initial
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(a)

j = 25 j = 45 j = 115 (final step)

(b)

j = 25 j = 45 j = 71 (final step)

Fig. 2. Test patterns evolving from the simplest initial configuration consisting of
a single DC cell (black pixel) centrally positioned on a square grid of linear size
L = 83 for R1 = 1.5, R2 = 6, w1 = 1. (a) The neutral environment with ε = 0;
(b) The slightly hostile one with ε = 0.04.

random configurations in a neutral environmental conditions (ε = 0), the
parameters responsible for the formation only spots never produce solely
stripes and reversely. However, for the systems with a different type of an
initial distribution as the R-system in Fig. 3 and G one in Fig. 4, a subtle
difference can appear, e.g. in Fig. 3 (b) left compared with Fig. 4 (b) left.
This is related to the spatial inhomogeneity degree as it will be explained
in Subsection 3.4. On the other hand, sometimes also a mixed patterning
appears; cf. Fig. 3 (b) right with Fig. 4 (b) right.

Now, we shall illustrate how various environmental conditions influence
the formation of pattern for a given type of a system. We expect that
the associated various non-zero values of the parameter ε may change some
structural features of the final pattern.

Indeed, the change from a stripe in Fig. 3 (a), right to a mixed spot-stripe
pattern in Fig. 3 (b), right can be observed for ε = −0.5 and ε = 1, respec-
tively. Similar behaviour can be observed in Figs. 4 (a), right and (b), right.
With appropriately hostile the ε-values, one can observe nearly a complete
disappearance of DC-population. On the other hand, for favourable enough
environment, the final population can be over-crowded which relates to an
almost black pattern.
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(a)

R-system ε = −0.5

(b)

ε = 0 ε = 1

Fig. 3. Patterns produced for w2 = −0.08 but with using the uniform random
R-configuration of ninit = 455 DCs (volume concentration ϕinit ≈ 0.066). The
initial DC number is the same for the next examples until its change is declared.
(a) left: The initial R-system. (a) right: The final pattern for a favourable environ-
ment. (b) left: The final pattern for a neutral one. (b) right: The final pattern for
a hostile one.

Within the range of parameters corresponding to Figs. 3 and 4, the
current numbers n(j) evolve in a standard way as Fig. 5 shows. This kind
of temporal evolution is a typical one for the original model. The evolution
of both R- (the open circles) and G-system (the filled circles) terminates
finally with a population size nf(R) and nf(G) that strongly depends on
the ε value. As expected, the lowest nf corresponds to the most hostile
environment, that is to ε = 1 in both cases.

In the next section, we will exhibit also the statistically significant con-
nection between the average size of a final population and the type of an
initial random configuration of DCs what complements the earlier mentioned
Young’s remark [12].
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(a)

G-system ε = −0.5

(b)

ε = 0 ε = 1

Fig. 4. The same as Fig. 3 but for the non-uniform initial distribution in the form
of random Gaussian-clusters (the G-system). The initial G-configuration includes
65 clusters with the centres randomly selected. Each of the clusters is composed of
7 DCs. The black pixels in the Gaussian-clusters are distributed with a standard
deviation σx = σy = 1.5.

Fig. 5. A current number n(j) of DCs as a function of iteration step for the patterns
in Fig. 3, which relate to the initial R-configuration (the open circles). Correspond-
ingly, for the patterns in Fig. 4 that relate to the initial G-configuration (the filled
circles). Note the close to monotonic changes of n(j) at the final stages of temporal
evolution.
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3.3. Histograms of sizes of final populations for the G- and R-systems

We have already mentioned that for every type of an initial random
distribution of DCs, the size of final population nf should be statistically
sensitive to uncontrollable details of a spatial configuration. Indeed, for
10 000-run trials of G- and R-system the appropriate histograms of nf can
be well-fitted by a Gaussian-type function

F (nf) ∝ exp

[
−(nf − ñf)2

2σ2

]
. (3)

Moreover, in Fig. 6, we observe that the most probable final population size,
denoted here as ñf , explicitly depends on a type of the initial distribution.
For instance, when ε = 0, the best fit is ñf(G) = 3610÷3611 with a standard
deviation σ(G) ∼= 35.3 and, correspondingly, ñf(R) = 3682 ÷ 3683 with
σ(R) ∼= 27.6. In turn, if ε = −0.48, we notice the opposite behaviour. Now,
ñf(G) = 4389÷4390 with σ(G) ∼= 62.5 and, correspondingly, ñf(R) = 4320÷
4321 with σ(R) ∼= 36.2. For the middle pair of G- and R-histograms that
relate to ε = −0.24, we obtain the best fit for ñf(G) = ñf(R) = 3917÷ 3918
with different standard deviations, σ(G) ∼= 78.3 and σ(R) ∼= 28.2.

Fig. 6. The histograms of 10 000-run trials for w2 = −0.08 and chosen values of
ε = 0,−0.24,= −0.48. The filled and the open circles stand for the initial G- and
R-configurations, respectively. We depict also the corresponding Gaussian-type
fitting functions (the white lines for the G and the black lines for the R, cf. (3)).
Note the relatively bigger shift of the most probable final population size ñf(G)

compared to ñf(R).
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These observations show that some features of the G-systems leading to a
smaller ñf , can be over-come in a favourable enough environment. The rela-
tively bigger shifts of the G-histograms (the filled circles) compared with the
R-case (the open circles) toward higher final concentrations of DCs clearly
support this conclusion.

3.4. A possible correlation between the degrees of spatial disorder
detected in the initial and final configurations

In general, the most probable size of final population for a G-system
can be smaller, equal or greater than the counterpart for an R-system. For
example, in our case, the inequality ñf(G) < ñf(R) for ε = 0 is replaced
by the reverse one ñf(G) > ñf(R) for ε = −0.48. This suggests that there
is a kind of coupling existing between the intensity of environmental alter-
ations and the most probable final population size ñf . Moreover, it should
be different for each of the types of initial distributions considered in this
work. Our previous simulations suggest that this effect is slightly stronger in
G-systems.

The type of an environment also influences the length of temporal evo-
lution. The G-systems evolve usually longer in time because of their greater
initial spatial disorder in comparison to R-systems. The quantitative eval-
uation of the spatial inhomogeneity degree can be obtained using a sim-
ple entropic measure for finite sized objects (see [15] for binary patterns
and [16] for grey-scale ones), its q-extensions á la Tsallis [17] is given in
Refs. [18, 19]. The modified entropic measure can be also widely applied
to statistical reconstructions of complex grey-scale patterns [20] and proto-
typical three-dimensional microstructures [21] with the usage of the decom-
posable multiphase entropic descriptor [22]. The previous developments and
latest applications can be found in [23, 24] and citations therein.

In a few words, the entropic descriptor S∆ = (Smax−S)/χ for finite-sized
objects (FSOs) quantifies the averaged per cell pattern’s spatial inhomogene-
ity (a measure of configurational non-uniformity) by taking into account the
average departure of a system’s configurational entropy S = kB lnΩ from its
maximum possible value Smax = kB lnΩmax, where the Boltzmann constant
will be set to kB = 1 for convenience. For a given L× L binary image with
0 < n < L2 of the black pixels distributed in square and non-overlapping
lattice χ-cells of size k × k, the corresponding formulas can be written as
follows [15]:

Ω(k) =

χ∏
i=1

(
k2

ni

)
, (4)
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Ωmax(k) =

(
k2

n0

)χ−r0( k2

n0 + 1

)r0
, (5)

and

S∆(k) =
r0
χ

ln
k2 − n0
n0 + 1

+
1

χ

χ∑
i=1

ln

(
ni!
(
k2 − ni

)
n0! (k2 − n0)

)
, (6)

where χ = (L/k)2, n1 + n2 + . . . + nχ = n, ni ≤ k2, r0 = n mod χ,
r0 ∈ 0, 1, . . . , χ− 1 and n0 = (n− r0)/χ, n0 ∈ 0, 1, . . . , k2 − 1.

In order to calculate the value of the measure at every length scale k,
the following property is employed. If the final pattern of size mL × mL,
where m is a natural number, is formed by periodical repetition of an initial
arrangement of size L × L, then the value of the entropic descriptor at a
given length scale k (commensurate with the side length L) is unchanged
under the replacement L × L ↔ mL ×mL since it also causes n ↔ m2n,
χ ↔ m2χ, r0 ↔ m2r0 keeping the black phase ϕ-concentration, n0 and the
corresponding ni the same.

Fig. 7. The average entropic measure 〈S∆〉 (cf. Eq. (4) in Ref. [15]) versus the
length scale k in pixels for the sets of initial patterns (see the inset) and the final
ones; for the G-system (the solid lines) and for the R-system (the dashed lines).
The patterns correspond to the most probable final population sizes with ε = −0.48
and to most frequent length of temporal evolution, j(G) = 22 and j(R) = 11.
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Now, to overcome the problem of incommensurate length scale, it is
enough to find a whole number m′ such that m′L mod k = 0 and replace the
initial arrangement of size L×L by the periodically created one of sizem′L×
m′L. Then we can define S∆(k;L×L, n, χ) ≡ S∆(k;m′L×m′L,m′ 2n,m′ 2χ);
see the useful properties of the measure indicated in point (6) of [15].

The following evolution rule for every length scale k is found: the higher
average spatial disorder of an initial population distribution, the higher is an
average spatial inhomogeneity of the final pattern, cf. Fig. 7. This observa-
tion seems to be independent of the values of environmental parameter and
true for any pair of the G- and R-systems fulfilling the assumptions about
equal initial sizes and comparable final ones. Therefore, we believe that it
could be a characteristic feature of the model itself.

3.5. The range of parameters encompassing also the oscillatory behaviour

We would like to present also examples with the oscillatory behaviour
during a temporal evolution using the fixed value ε = −0.70 this time.
Let us first consider a case of temporal evolution of the G-system with
|w2| < |w∗2|, where w∗2 denotes the critical value of the control parameter.
Then damped periodic oscillations of the current population size n(j; G)
lead to its well-defined final value. Such a case is shown in Fig. 8 (thick
line) for w2 = −0.2249 with nf = 1642 DCs; see the corresponding final
pattern in the middle position. However, if w2 = −0.2250, then the temporal
evolution shows a totally different dynamics in comparison to the previous
one. Now, for j > 44, the sustained oscillations of n(j; G) appear. In this
case, the two different population sizes are allowable by a system: the upper
n(j; G) = 1826 DCs, while the bottom one equals 1520 DCs (the filled circles
in Fig. 8). It suggests that for given parameters, there is a critical value of
the control parameter within the range: −0.2250 < w∗2(G) < −0.2249. The
similar behaviour but with the much distinct limit patterns shown at the
top and bottom position in Fig. 8 can be found for w2 = −0.33.

We have also investigated the oscillatory behaviour of G-system for other
values of w2 ∈ [−1, 0] with the step 0.0002. In Fig. 9, we show the values
of allowable population sizes n(w2) as a function of the control parameter.
(It should be noted here that for the stable evolution, the population size
n(w2) means the final size nf ; otherwise, the n(w2) denotes the upper or
the bottom limit population size, which allow estimating the current range
of the related oscilations). In the inset, we clearly observe the beginning of
the oscillatory behaviour. The area between the upper and bottom branches
has been filled out for a better visualization. The question also arises, is the
diagram form of the oscillatory behaviour characteristic one (on average at
least) for a given type of initial random configuration of DCs or not?
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Fig. 8. Evolutionary behaviour of oscillating current population size n(j; G) for
the fixed ε = −0.7 and the chosen values of w2 = −0.2249 (the thick line), see the
corresponding final pattern (the middle position), w2 = −0.2250 (the filled circles),
now the system behaviour is changed to sustained oscillations (for j > 44) with a
constant amplitude, and w2 = −0.33 (the open circles), see the limit patterns (the
top and the bottom positions).

Fig. 9. The corresponding diagram of a single run with the step 0.0002 of w2; in
the inset, the enlarged filled area corresponds to the vicinity of the critical value
w∗

2(G) indicated by a white arrow.
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Before we give below an answer, let us first consider a similar example
for R-system. The obtained curves for w2 = −0.40 (thick line), −0.47 (filled
circles) and −0.57 (open circles) are presented in Fig. 10. Now, each of the
corresponding temporal evolution process terminates much faster. Also the
sustained oscillations of n(j; R) begin earlier than for n(j; G). According
to the inset, we are close to the beginning of the oscillatory behaviour in
the R-system. We expect that w∗2(R) < −0.40. Indeed, in Fig. 11, one can
observe a diagram of the oscillatory behaviour of different shape from that
for the G-system. The absolute value |w∗2(R)| > |w∗2(G)| means a higher
sensitivity of the G-system in comparison to the R-system in respect to the
oscillatory dynamics.

Fig. 10. The same as Fig. 8 but for n(j;R) and different values of w2 = −0.40 (the
thick line), w2 = −0.47 (the filled circles), and w2 = −0.57 (the open circles).

The average population sizes 〈n(w2; G)〉 and 〈n(w2; R)〉 over 100 statis-
tically independent samples as a function of the control parameter w2 with
the step 0.01 clearly support this observation, see the solid lines in Fig. 12
and in the inset, respectively. Also, the averaged G-diagram is more com-
pact than the R-diagram but the characteristic shapes of the both diagrams
are conserved for the chosen favourable value of the environmental param-
eter ε = −0.7. Additionally, for a comparison purpose, the case of neutral
environment with the ε = 0 is presented (dashed lines).
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Fig. 11. The same as Fig. 9 but now in the inset we show the vicinity of w∗
2(R).

Notice the different shape of the present diagram of the oscillatory behaviour in
comparison with the G-system.

Fig. 12. The averaged oscillatory behaviour in the G-system for 100-run trials with
the step 0.01 for w2, a fixed favourable value ε = −0.7 (the solid lines) and for a
comparison purpose, a fixed neutral value ε = 0 (the dashed lines). In the inset, the
corresponding results are depicted for the R-system. The rescaled similar diagrams,
not shown here, are practically independent of a linear size of the system.
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To complete the description of the environmental impact, in Figs. 13 (a)
and (b), the averages 〈n(w2; G)〉 and 〈n(w2; R)〉 are shown for the selected
ε-values. It should be stressed that in the more favourable environmen-
tal conditions, the diagrams structure of the oscillatory behaviour in both
systems becomes slightly more complex after passing through the related
critical values.

(a) (b)
Fig. 13. Similarly as in Fig. 12, but the averaged oscillatory behaviour is de-
picted in a series of the diagrams for the chosen favourable values ε = −0.5,−0.6,
−0.7,−0.8,−0.9 and −1, exclusively. (a) For the G-system. (b) For the R-system.

However, the general characteristic features of the diagrams shape in the
G- and R-systems for different values of the ε-parameter are still preserved.
On the other hand, when the G- and R-shapes are compared for the same
ε-value, the diagrams are essentially different in a form.

Finally, a few remarks are in order. Using, for example, the specified set
of model parameters: R1 = 2, R2 = 3, w1 = 1, w2 = −1 and ninit = 245 of
DCs on a square grid of linear size L = 83, an exotic final pattern contain-
ing chessboard parts can be generated out in both the R- and G-systems.
The similar type of the symmetrical pattern was a result of the modelling
within Monte Carlo approach of the gradual evolution of a variable number
of species [25]. Interestingly, according to this model only the better-adapted
species show a better ability to organize themselves into symmetrical pat-
terns.

It is worth to notice in this point that in lattice-gas cellular automata
such patterns as chessboards are shown to disappear where randomness (a
kind of asynchrony) in the updating is added [26]. However, this gives rise
to the question, what amount of “asynchrony” is sufficient to destroy such a
symmetrical pattern. In the CA model updating context, the authors of [27]
emphasize that: “Probably neither a completely synchronous nor a random
asynchronous update is realistic for natural systems”.
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At last, we should also point out a recently proposed new version of the
Turing model [28]. This alternative model is represented by the shape of
an activation–inhibition kernel and is named the kernel-based Turing model
(KT model). All of it opens a wide field for research topics.

4. Concluding remarks

In this work, the preliminary results for an extended activator–inhibitor
cellular automaton for the formation of patterns are presented. Our ex-
tended model allows studying the formatting of patterns and their temporal
evolution also in the favourable and hostile environments. Particularly, its
sensitivity to various initial conditions has been studied. Two different types
of initial random configurations were taken into account: the uniform ran-
dom distribution of differentiated cells (the R-system) and the non-uniform
distribution in form of random Gaussian-clusters (the G-system). The most
probable size of final stable population depends on the type of the initial
configurations as well as the environmental conditions. The participation of
a favourable environment is more clearly seen for the G-system. In addition,
the G-system as being initially more disordered compared to the R-system
usually evolves to a more spatially inhomogeneous final pattern. We show
that each of the systems is subject to different dynamics. The results of the
analysis shed also a light on some features in the evolving model such as
the appearing of the oscillatory behaviour of the population size. Probably,
this phenomenon has a connection with the impact of the favourable envi-
ronment, which in a simple way was incorporated into our model. The more
general conclusions could be obtained by consideration additional types of
initial spatial distributions, possible various anisotropies in an environment
as well as the asynchronous updating of a system. These suggestions can be
interesting topics of a future study with regard to the current model.
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