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In the paper, packings built of identical cuboids with a square base
created by random sequential adsorption are studied. The result of the
study shows that the packings of the highest density are obtained for oblate
and prolate cuboids of the edge–edge length ratios of 0.7 and 1.4. For both
cases, the packing fraction is 0.400 ± 0.002, which is approximately 8%
higher than the value reported for cubes. Additionally, because the crucial
part of the packing generation algorithm is the cuboid–cuboid intersection
detection, several methods were tested. It appears that the fastest one is
based on the separating axis theorem.
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1. Introduction

Random sequential adsorption (RSA) [1, 2] is a protocol for generating
random packings of arbitrary objects. It is based on subsequent repetitions
of the following steps:

— A virtual, randomly oriented particle is placed inside a packing at
random position.

— The virtual particle is checked if it intersects with other particles that
were previously added to the packing.

— If there are no overlaps, the virtual particle is added to the packing.
Otherwise it is removed and abandoned.

Iterations end when there is no place for adding another particle to the
packing. Such packing is called saturated.
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Although RSA is most commonly used for modelling two-dimensional
monolayers created in irreversible adsorption experiments, it can be also
utilized to study various properties of random packings in other dimensions,
e.g. [3–6]. RSA of cubic particles became a subject of scientific investi-
gations after Palasti came to conclusion that θd = (θ1)

d [7], where θd is
the mean packing fraction of d-dimensional packing of oriented cubes, and
θ1 = 0.7476 . . . was calculated analytically by Renyi [8]. In the end, the con-
clusion turned out to be false [9]; but it remains quite a good approximation
of the real, saturated packing fraction [10].

Random packing of unoriented cubes was studied mainly in terms of
random close packings, where neighbouring particles are in touch with each
other. However, properties of such packings are very sensitive to the details
of experimental or numerical protocol used for packing generation [11, 12].
In 2010, Baker and Kudrolli examined packings obtained by throwing cubes
at random places, similarly as by RSA, but under the influence of gravity,
and obtained packing density about 0.57 [13]. Argawal et al. studied phase
diagram of a packing of cubes and found that orientationally oriented phase
appears when packing fraction exceeds 0.5 [14]. Recent study of RSA of
unoriented cubes reports that the mean packing fraction is 0.3686± 0.0015
and no global orientational order is observed [6].

This study is focused on RSA of cuboids with a square base. The main
goal is to establish how shape anisotropy influences the mean, saturated
packing fraction of cuboids. Available results for two-dimensional shapes
such as rectangles [15], dimers [16, 17], spherocyllinders and ellipses [18]
show that slight anisotropy of packed particles leads to denser packings.
The same effect is observed for random close packing of ellipsoids [19, 20].
Similar study of RSA packing built of uniaxial ellipsoids reports that packing
fraction maxima are equal to 0.406 and 0.411 and are obtained for axis ratio
of 0.7 and 1.5 [3].

The secondary goal of this study is to find the most effective method
for determining cuboid–cuboid intersection, which is crucial not only for
efficient packing generation, but also in collision detection [21, 22].

2. Model

The packing is built of identical cuboids of edges a2/3, a−1/3, a−1/3, where
a ∈ [0.3, 2.0]. Note that for such cuboids the edge–edge length ratio is a and
the volume Vc = 1. Cuboids are put inside a cube of volume V = 104

according to RSA algorithm. Position of a cuboid centre is given by a
random point selected uniformly inside the packing. The cuboid orientation
is determined using three independent random numbers (u1, u2, u3), which
are selected uniformly from [0, 1) interval. The cuboid is rotated around
x-axis by 2πu1 radians, then around y-axis by arcsin(2u2 − 1) radians, and
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then around z-axis by 2πu3 radians. The same method of choosing random
position and orientation for a three-dimensional object was used in the study
of RSA of cubes [6]. We assumed periodic boundary conditions for the whole
packing. Packing generation was stopped after n = 109 iterations which
corresponds to dimensionless time t = nVc/V = 105. For each value of
parameter a, 100 independent random packings were generated.

During packing generation, the mean packing fraction dependence on
the number of iterations was measured

θ(t) =
N(t)Vc
V

, (1)

where N(t) is the mean number of particles in a packing after the number
of iterations corresponding to the dimensionless time t.

3. Overlap detection

The crucial point of the RSA algorithm is testing whether there is an in-
tersection between a trial object and already existing particles in a packing.
In the case of packing built of cuboids, this test is the most time consum-
ing part of the RSA algorithm. There are many general intersection tests
for convex shapes, both numerical and analytical. One of the widely used
numerical tests is an overlap potential method [23], but it can be applied
only for particles with smooth surfaces. This section presents two popular
general-purpose overlap tests for any polyhedra and a custom test dedicated
for unoriented cuboids.

3.1. Separating axis theorem

Separating axis theorem (SAT) states that two convex shapes are dis-
junctive if and only if there exists a so-called separating plane, such that
both objects are on different sides of this plane (see Fig. 1). SAT can also

(a) (b)

Fig. 1. Illustration of separating axis theorem. Separating plane could be parallel
to one of cuboids’ faces (a) or spanned by cuboids’ edges (b).
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be used for concave shapes by splitting them into convex parts and testing
each pair of them. It is worth to mention that SAT can be generalized to
other dimensions. In two dimensions, a separating plane is a line, while for
higher dimension, it is a hyperplane. An axis perpendicular to separating
(hyper)plane is called separating axis (SA), hence the theorem name. The
projections of shapes onto SA are disjunctive if and only if the shapes are
disjunctive. SAT itself, unfortunately, does not point at any algorithm for
finding SA. However, in the case of convex polygon and polyhedron, the
following conditions apply [24]:

— Two convex polygons are disjunctive if and only if one of all axes
perpendicular to one of either shape’s edges is SA.

— Two convex polyhedra are disjunctive if and only if one of all axes
perpendicular to one of either shape’s faces, or perpendicular to two
edges, one from each shape, is SA.

Therefore, for cuboids, the intersection test based on SAT contains the fol-
lowing steps:

— Examine all axes of cuboids. If any of them is SA, cuboids are dis-
junctive.

— Examine all cross products of two cuboid faces axes; one from each
cuboid. If axis spanned by any of them is SA, cuboids are disjunctive.

— If none of examined axes is SA, cuboids overlap.
Here, the advantage was taken of the fact that a cuboid’s axes are parallel
to lines spanned by its edges. In the study, two variants of this overlap
criterion were examined. In the first one, referred as SAT test, cuboids were
simply projected on a potential SA and it is tested whether the projections
are disjunctive. In the second one, referred as optimized SAT test, all the
optimizations described in Ref. [24] were used.

3.2. Triangle–triangle intersection

Triangle–triangle (TT) intersection test is based on the fact that the sur-
face of any polyhedron can be decomposed into a set of triangles. Therefore,
intersection test can be performed as follows:

— Divide both cuboids into triangles.

— Examine all pairs of triangles, one from each cuboid, for overlapping. If
any of them overlap, so do cuboids. Otherwise, cuboids are disjunctive.

There are many fast TT intersection tests. Here, the one described in [25]
was used. The test works for both, convex and concave shapes, but it does
not detect if one object is fully inside the second one. However, it is not a
drawback in the case of identical particles.
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3.3. Custom test

The last test described here is valid only for cuboids and was used pre-
viously in the study of RSA of cubes [6]. Cuboids A and B are disjunctive
if and only if:

— Vertices of B lie outside A.

— Vertices of A lie outside B.

— Edges of B do not intersect with A’s faces.

— Edges of A do not intersect with B’s faces.

The first two conditions are necessary but insufficient to ensure the lack of
overlap. Figure 2 shows some possible configurations where these conditions
are fulfilled however cuboids intersect. Note, that for some specific edge–
edge lengths ratios, the last condition can be skipped, as it results from the
third one [6], but in general it is relevant (see Fig. 2 (c)).

(a) (b) (c)

Fig. 2. Intersecting cuboids that fulfil the first and second condition of the custom
test. Additionally, panel (c) shows example configuration where only one of the
two last conditions is violated.

For efficiency, it is worth to centre and align one of tested cuboids with
axes of the coordinate system.

3.4. Speed test

It is worth noting that some algorithms, such as TT test and custom
test, are more efficient when overlap probability is high, while other, like
SAT, run faster when most particles are disjunctive. Therefore, the choice
of the best algorithm may vary depending on packing density. At the initial
phase, when the packing is almost empty, intersection between an added
particle and its closest neighbour in the packing is rare. On the other hand,
when the packing is almost saturated, the probability of overlap is close to 1.
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Therefore, it is relevant to check how the efficiency of the studied algorithms
depends on overlap probability. To perform tests, centres of two cuboids were
selected randomly from the ball of a given radius and their orientations were
set as described in the Model section. Then overlap checks were performed.
This procedure was repeated 106 times for each studied intersection test.
The mean time of such 10 independent experiments for several different
cuboids is presented in Fig. 3.
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Fig. 3. Dependence of the mean time of 106 overlap tests on intersection probability
for the studied algorithms and for different values of parameter a.

The most efficient test for the whole range of intersection probability
is the optimised SAT. Its implementation is given in Appendix. In con-
trast with the non-optimised version, its speed only slightly decreases with
overlap probability. The custom test is slower than SAT tests for low proba-
bilities and its speed differs for different cuboids — for polyhedrons of higher
anisotropy, the first two conditions are often enough to detect an overlap.
For cubes and overlap probability greater than 0.8, it is faster than non-
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optimised SAT. Surprisingly, commonly used intersection criterion — the
TT test — is up to 2 orders of magnitude slower than other tests in spite of
using fast triangle–triangle intersection test.

4. Results

Example packings are shown in Fig. 4. As packing generation ends after
a fixed number of iterations, there is no guarantee that obtained packings
are saturated. Therefore, to estimate density of cuboids at saturation, the
knowledge of packing growth kinetics is necessary. It has been shown that for
spherically symmetric particles, near saturation, packing fraction depends
on dimensionless time according to the power-law [26, 27]

θ − θ(t) = At−
1
d , (2)

where θ is the saturated packing fraction and A is a positive constant. Pa-
rameter d is equal to the packing dimension. Relation (2) was confirmed
numerically for d ≤ 8 [5, 28, 29]. For anisotropic particles, the power-law, in
general, is still valid; however, exponent d is then interpreted as the number
of a particle’s degrees of freedom [30, 31]. For some specific systems, the

(a) (b) (c)

Fig. 4. Fragments of cuboids packings generated by RSA algorithm. Packing (a)
contains cuboids for a = 0.3, (b) a = 1.0, and (c) a = 2.0.

power-law is not valid [32–34]. In the case of cuboids with a square base,
the power law seems to be valid (see Fig. 5). Parameter d was estimated by
fitting a power law dN(t)/dt = At−1/d−1, which is a direct consequence of
(1) and (2), to simulation data obtained for t > 1000. Its error was calcu-
lated using exact differential method. Having determined d, y = t−1/d can
be substituted and relation (2) rewritten in the form of θ(y) = θ−Ay. Then,
linear fit to the simulation data (θ(y), y) allows to determine saturated pack-
ing fraction. The errors of determined packing fractions are mainly due to
inaccuracy of d and are equal, at average, to 0.0023. Analysis presented in
[35] and [36] suggests that the influence of limited number of RSA iterations
and finite size effects are at least one order of magnitude smaller.
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Fig. 5. Dependence of increments of the mean number of particles in a packing on
dimensionless time for several values of the parameter a. Inset shows dependence
of the exponent d on a.

The dependence of estimated value of saturated packing fraction on the
parameter a is shown in Fig. 6. For cubes, the most symmetric shape, a
local minimum is observed, which agrees with theoretical arguments [37].
Similarly as for two dimensional shapes [15, 17, 18] and ellipsoids [3], slight
anisotropy of packed shapes occurs in denser packings. To estimate maxima
positions we fitted 4th order polynomial to the simulation data using the
least square method. Maxima of these polynomials are: θ1max = 0.400 and
θ2max = 0.397 for a = 0.72 and 1.39, respectively. As discussed earlier, errors
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Fig. 6. The dependence of packing fraction on cuboid shape. Dots are simulation
data and solid lines are polynomial fits: θ = 0.23796 + 0.92205 a − 2.165 a2 +

2.4099 a3−1.0388 a4 and θ = −0.8536+2.9388 a−2.5582 a2+0.98047 a3−0.14053 a4
for a < 1 and a > 1, respectively. Dashed lines correspond to maximum width
determined by the error of θmax.
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of obtained saturated packing fractions equal 0.0023. The error of parameter
a value, for which the maximum is reached, corresponds to the maximum
width at the level defined by its error (see dashed lines in Fig. 6). In the
studied case, it gives intervals [0.63, 0.80] for θ1max and [1.26, 1.59] for θ2max.
Note that anisotropies giving the highest packing fractions are, in the range
of errors, the same as for ellipsoids [3].

5. Summary

The packing density of cuboids with a square base arranged by ran-
dom sequential adsorption is the highest for anisotropy within the range of
[0.63, 0.80] and [1.26, 1.59] and equals to 0.400 ± 0.002, which is approxi-
mately 8% higher as for cubes. Kinetics of packing growth obeys the power
law (2) for all studied cases. The fastest cuboid–cuboid intersection detec-
tion test among all studied algorithms is based on separation axis theorem
and is faster than other, discussed here, methods by an order of magnitude.

This work was supported by the grant No. 2016/23/B/ST3/01145 of the
National Science Centre, Poland (NCN). Numerical simulations were carried
out with the support of the Interdisciplinary Centre for Mathematical and
Computational Modelling (ICM) at the University of Warsaw under grant
No. G-27-8.

Appendix

The implementation of the optimised SAT cuboid–cuboid intersection
test in C++11 (colour on-line):

#include <cmath >
#include <array >

using std::abs;

class Vector
{
private:

std::array <double , 3> arr;

public:
Vector () = default;
Vector(const std::array <double , 3> &arr) : arr(arr) {}

Vector rotate(double angleX , double angleY , double angleZ) const;
Vector operator +( const Vector &other) const;
Vector operator -( const Vector &other) const;
double operator *( const Vector &other) const;

};
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/* Counter -clockwise rotation around x, y and z axis , in mentioned order */
Vector Vector :: rotate(double angleX , double angleY , double angleZ) const {

double sin_ax = sin(angleX );
double sin_ay = sin(angleY );
double sin_az = sin(angleZ );
double cos_ax = cos(angleX );
double cos_ay = cos(angleY );
double cos_az = cos(angleZ );

std::array <double , 3> vectorOut;
vectorOut [0] = arr [0] * (cos_ay * cos_az)

+ arr[1] * (sin_ax * sin_ay * cos_az - cos_ax * sin_az)
+ arr[2] * (cos_ax * sin_ay * cos_az + sin_ax * sin_az );

vectorOut [1] = arr [0] * (cos_ay * sin_az)
+ arr[1] * (sin_ax * sin_ay * sin_az + cos_ax * cos_az)
+ arr[2] * (cos_ax * sin_ay * sin_az - sin_ax * cos_az );

vectorOut [2] = arr [0] * (-sin_ay)
+ arr[1] * (sin_ax * cos_ay)
+ arr[2] * (cos_ax * cos_ay );

return Vector{vectorOut };
}

Vector Vector :: operator +( const Vector &other) const {
return Vector {{arr[0] + other.arr[0], arr[1] + other.arr[1], arr[2] + other.arr [2]}};

}

Vector Vector ::operator -( const Vector &other) const {
return Vector {{arr[0] - other.arr[0], arr[1] - other.arr[1], arr[2] - other.arr [2]}};

}

double Vector :: operator *( const Vector &other) const {
return arr[0] * other.arr[0] + arr [1] * other.arr[1] + arr [2] * other.arr [2];

}

struct Cuboid {
std::array <double , 3> halfSize;
Vector position;
Vector normalAxes [3];

Cuboid(Vector position , const std::array <double , 3> &halfSize ,
double angleX , double angleY , double angleZ );

};

Cuboid :: Cuboid(Vector position , const std::array <double , 3> &halfSize ,
double angleX , double angleY , double angleZ)

: halfSize(halfSize), position(position) {
normalAxes [0] = Vector {{1, 0, 0}}. rotate(angleX , angleY , angleZ );
normalAxes [1] = Vector {{0, 1, 0}}. rotate(angleX , angleY , angleZ );
normalAxes [2] = Vector {{0, 0, 1}}. rotate(angleX , angleY , angleZ );

}

/* Checks if a separating axis exists , returns true when it was not found ,
so cuboids do intersect */

bool overlap(Cuboid *cube1 , Cuboid *cube2) {
Vector T = cube2 ->position - cube1 ->position;

double WA = cube1 ->halfSize [0];
double HA = cube1 ->halfSize [1];
double DA = cube1 ->halfSize [2];
double WB = cube2 ->halfSize [0];
double HB = cube2 ->halfSize [1];
double DB = cube2 ->halfSize [2];

Vector Ax = cube1 ->normalAxes [0];
Vector Ay = cube1 ->normalAxes [1];
Vector Az = cube1 ->normalAxes [2];
Vector Bx = cube2 ->normalAxes [0];
Vector By = cube2 ->normalAxes [1];
Vector Bz = cube2 ->normalAxes [2];

double Rxx = Ax * Bx; double Rxy = Ax * By; double Rxz = Ax * Bz;
double Ryx = Ay * Bx; double Ryy = Ay * By; double Ryz = Ay * Bz;
double Rzx = Az * Bx; double Rzy = Az * By; double Rzz = Az * Bz;
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if (abs(T*Ax) > WA + abs(WB*Rxx) + abs(HB*Rxy) + abs(DB*Rxz))
return false;

else if (abs(T*Ay) > HA + abs(WB*Ryx) + abs(HB*Ryy) + abs(DB*Ryz))
return false;

else if (abs(T*Az) > DA + abs(WB*Rzx) + abs(HB*Rzy) + abs(DB*Rzz))
return false;

else if (abs(T*Bx) > abs(WA*Rxx) + abs(HA*Ryx) + abs(DA*Rzx) + WB)
return false;

else if (abs(T*By) > abs(WA*Rxy) + abs(HA*Ryy) + abs(DA*Rzy) + HB)
return false;

else if (abs(T*Bz) > abs(WA*Rxz) + abs(HA*Ryz) + abs(DA*Rzz) + DB)
return false;

else if (abs(T*Az*Ryx - T*Ay*Rzx) > abs(HA*Rzx) + abs(DA*Ryx) + abs(HB*Rxz) + abs(DB*Rxy))
return false;

else if (abs(T*Az*Ryy - T*Ay*Rzy) > abs(HA*Rzy) + abs(DA*Ryy) + abs(WB*Rxz) + abs(DB*Rxx))
return false;

else if (abs(T*Az*Ryz - T*Ay*Rzz) > abs(HA*Rzz) + abs(DA*Ryz) + abs(WB*Rxy) + abs(HB*Rxx))
return false;

else if (abs(T*Ax*Rzx - T*Az*Rxx) > abs(WA*Rzx) + abs(DA*Rxx) + abs(HB*Ryz) + abs(DB*Ryy))
return false;

else if (abs(T*Ax*Rzy - T*Az*Rxy) > abs(WA*Rzy) + abs(DA*Rxy) + abs(WB*Ryz) + abs(DB*Ryx))
return false;

else if (abs(T*Ax*Rzz - T*Az*Rxz) > abs(WA*Rzz) + abs(DA*Rxz) + abs(WB*Ryy) + abs(HB*Ryx))
return false;

else if (abs(T*Ay*Rxx - T*Ax*Ryx) > abs(WA*Ryx) + abs(HA*Rxx) + abs(HB*Rzz) + abs(DB*Rzy))
return false;

else if (abs(T*Ay*Rxy - T*Ax*Ryy) > abs(WA*Ryy) + abs(HA*Rxy) + abs(WB*Rzz) + abs(DB*Rzx))
return false;

else if (abs(T*Ay*Rxz - T*Ax*Ryz) > abs(WA*Ryz) + abs(HA*Rxz) + abs(WB*Rzy) + abs(HB*Rzx))
return false;

return true;
}
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