
Vol. 49 (2018) ACTA PHYSICA POLONICA B No 5

A TRIBUTE TO MARIAN SMOLUCHOWSKI’S LEGACY
ON SOFT GRAINS ASSEMBLY AND HYDROGEL

FORMATION∗

Adam Gadomski, Natalia Kruszewska, Piotr Bełdowski

Group of Modeling of Physicochemical Processes
Institute of Mathematics and Physics, UTP University of Science and Technology

Kaliskiego 7, 85-796 Bydgoszcz, Poland

Bogdan Lent

Faculty of Management, UTP University of Science and Technology
Kaliskiego 7, 85-796 Bydgoszcz, Poland

Marcel Ausloos

GRAPES — Group of Researchers for Applications of Physics
in Economy and Sociology

rue de la Belle Jardiniére 483, 4031 Liége, Federation Wallonie-Bruxelles, Belgium
and

School of Business, University of Leicester, Leicester LE1 7RH, United Kingdom

(Received April 23, 2018)

The paper compares the statistical description of physical-metallurgical
processes and ceramic-polycrystalline evolutions, termed the normal grain
growth (NGG), as adopted to soft- and chemically-reactive grains, with
a Smoluchowski’s population-constant kernel cluster–cluster aggregation
(CCA) model, concerning irreversible chemical reaction kinetics. The for-
mer aiming at comprehending, in a semi-quantitative way, the volume-
conservative (pressure-drifted) grain-growth process which we propose to
adopt for hydrogel systems at quite a low temperature (near a gel point).
It has been noticed that by identifying the mean cluster size 〈k〉 from the
Smoluchowski CCA description with the mean cluster radius’ size RD, from
the NGG approach of proximate grains, one is able to embark on equiv-
alence of both frameworks, but only under certain conditions. For great
enough, close-packed clusters, the equivalence can be obtained by rearrang-
ing the time domain with rescaled time variable, where the scaling function
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originates from the dispersive (long-tail, or fractal) kinetics, with a single
exponent equal to d + 1 (in d-dimensional (Euclidean) space). This can
be of interest for experimenters, working in the field of thermoresponsive
gels formation, where crystalline structural predispositions overwhelm. The
interest can likely be extended to some dispersive-viscoelastic, typically
neurophysical, and in particular cognition involving systems.

DOI:10.5506/APhysPolB.49.993

1. Introduction

In 1916, Marian Smoluchowski proposed a case of (populationally fixed)
constant-kernel cluster–cluster aggregation (CCA), for which it is manage-
able to find analytically, by employing scaling arguments, a solution in terms
of the cluster size (k) distribution function, n(k) [1, 2]. By applying this scal-
ing function it is then possible to get, within the long time limit, the results
for the mean cluster size 〈k〉 and the total number of the clusters Nc, both
scalable in terms of time with a single exponent, denoted by γ [2]. The
clustering arguments, first introduced by Smoluchowski [1], are easily ap-
plicable to a statistical description of physical-metallurgical processes and
ceramic-polycrystalline evolutions, termed the normal grain growth (NGG),
in which bigger clusters grow at the expense of their smaller neighboring
counterparts due to preferentially capillary conditions [3]. The NGG, and
their dynamics, can be expressed in d-dimensional (Euclidean) space. In this
study, it is proposed that upon identifying 〈k〉 from the Smoluchowski CCA
description with the mean cluster radius’ size RD, from the NGG approach
of proximate soft-and-reactive grains, one is able to embark on their equiv-
alence. However, a few assumptions are necessary. The most important is
appearing fully feasible when rearranging the time domain by substituting t
in a way such that a new rescaled time variable τ(t) is given by a definite
integral in [0, t] upon dτ(t) = dt/f(t), with an adjustable (albeit auxiliary)
function f , coming out from the dispersive or long-tail, or fractal kinetics’
arguments, which are endemic in condensed media [4]. The arguments may,
at least qualitatively, concern biomembranes dynamics. They can also con-
tribute to nucleation-growth processes in soft-matter conditions [5, 6] as well
as to hydrogels with prevailing microcrystalline inclusions [7].

Hydrogels are example of microgels defined as viscoelastic systems clas-
sified to be certain intermediates between polymer chains, viz. coils, and the
so-called macrogels, such as gelatine or yoghurt [8, 9]. They are often chem-
ically prepared to be designated as two-component systems. They consist
of mixed solute and solvent phases in which solvent molecules interact with
solute particles composed of polymer chains, and their aggregates, prone
to behave in a network-like manner, but with a prevailing number of mi-
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crocrystalline domains included inside their structure [7, 8]. By virtue of
their complicated intimate interaction map they suffer difficulties in view
of reaching a thermodynamic equilibrium. Their viscoelastic properties un-
dergo some structural-geometric changes in the course of temperature and
time. Those changes, such as microgel volume’s expansion, emerge as a re-
sult of their sensitivity to temperature conditions. The conditions, in turn,
are able to alter, in the course of time, the quality of the solvent mak-
ing it either good or poor in terms of its affinity to solute molecules [10].
The good solvent conditions cause the polymer chains to expand in space
due to solvent molecules absorption, technically called occlusion. If the sol-
vent molecules, met mostly in either inappropriate (harsh) or typically low
temperature conditions, act as badly as possible while interacting with a
polymer chain, making it shrunken or obstructed in its capability of gain-
ing more space around, then an opposite physicochemical scenario prevails.
The former is termed a coil effect whereas the latter is known as a globule
counter-effect. The temperature, being a control parameter, establishes then
a passage between coil and globule by decisively altering the solvent condi-
tions, a physicochemical scenario so well-described by the Flory–Stockmayer
theory, and well-envisaged by the pivotal role played by the Flory–Huggins
solute-solvent interaction energy parameter [11, 12].

Therefore, the NGG theory of close-packed entropic systems can describe
hydrogel formation only in a low temperature regime (and close to the gel
point), where hydrogel grains are soft, connected with one another by means
of weak bonds. After some critical temperature, the structure starts to be
loosely-packed and the system cannot be described in terms of mean-field
approach.

The article is organized in the following way. By employing a cluster–
cluster analogy of colloid type [6, 13], in Sec. 2, we try to unravel a sol-like
(typically, non-isothermal) model system, apparently under low temperature
circumstances, thus, grasped in a low energy well. Such a system is virtually
able to conserve its total volume (or, sometimes, area [10]), and may remain
nearly inactive as far as its overall spatial expansion is concerned. In Sec. 3,
a Smoluchowski’s populationally (up to i + j = k-value as compared with
constant-volume modified NGG approach) constant-kernel CCA approach
has been presented and compared with close-packed NGG theory. All as-
sumptions have been introduced which are necessary to state the assertion
about their equivalence. Section 4 provides conclusions. It also gives us
an outlook of the approach applied, emphasizing the fact that the analogy
addressed suits truly well, at least in a qualitative manner, the nonergodic
viscoelastic framework staying behind. It applies in particular to the ones
of bioreactive gels and/or living-matter involving contexts where microgels
with swollen microcrystalline domains exist.
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2. Sol-like model system at a low thermal energy well

The NGG model is a simple theoretical construct [6, 13]. It assumes that
the role of clusters is played by hydrogel’s polymers that absorbed a suitable
fraction of the solvent molecules. The polymer chains of hydrodynamic ra-
dius Rh, occluded by the molecules, constitute solvent-involving domains of
the effective domain-occupation volume v such that at a time t both quan-
tities are t-dependent. At a given temperature T and in d = 3 dimensional
(Euclidean) space, they are obedient to a simple geometric proportionality
relation

v(t) ∼ Rh
3(t) (1)

that tacitly postpones the form factor of, e.g. the hydrated polymer domain,
provided that we confine ourselves to hydrogels [8].

Let us assume that we have to do with a semi-concentrated polymer so-
lution in which the solute and solvent coexist at a relatively low T such that
the solvent, viz. water, is unable to cause the polymer globules to become
coils. It is because it is not capable of penetrating the polymer’s interior in
order to swell the chain or to help the polymer expand into the neighboring
territory. But under such circumstances, the poorly swollen polymers are
able to (a) diffuse under dynamic structural confinement, both, in terms
of their mass-center motions and rotational movements; (b) interact with
each other yielding dimers, oligomers, and some aggregates, finally. Due
to low T and quite high concentration conditions, their motions are fairly
restricted. It can be foreseen that they will then form a more or less cellular
microstructure with well-separated but poorly hydrated polymer domains.
The microstructure would to a first approximation be reminiscent of a sol
phase since the domains are rather immobilized and less reactive, accord-
ing to their reactive encounters that are anticipated to be too small. The
exchange of matter between neighboring domains occurs due to local pres-
sure differences, sometimes accompanied by the corresponding structural
rearrangements of diffusive nature [6].

Such domains resemble tightly built clusters or even ‘soft’ grains/assem-
blies that might have appreciably well-defined surface-tension factor. This
information can be addressed to the system (stochastic) dynamics in terms
of the current J(v, t) along the “reaction coordinate” (v) which, after adopt-
ing its form from a Smoluchowski-type model of CCA and its isothermal
evolution [6, 13], can be proposed as

J(v, t) = − ∂

∂v

(
D(v)φ(v, t)

)
, (2)

where φ(v, t) is the probability density of finding a domain of volume v at
time t. The quantity dn = φ(v, t)dv represents the relative number of poly-
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mer domains or “grains” having the volumes kept in the interval [v, v + dv].
The v-dependent (or, state-dependent) diffusion function, D(v), indicates
quantitatively a colloid-type cluster formation [13], thus, for Euclidean space
dimension d = 3, it is provided by

D(v) = D0v
2/3 , (3)

where D0 — a proper dimension keeping constant. Note that, because of
Eq. (1), v2/3 ∝ Rh

2, which means, that D from Eq. (3) is designed as being
proportional to the domain surface, sD, i.e. sD ∝ Rh

2 applies.
To reveal what a content of physical message is included in Eq. (2), let us

proceed with the differentiation over v at the right-hand side of the Eq. (2).
After so performing, it is expressed by

J(v, t) = −D′(v)φ(v, t)−D(v)
∂

∂v
φ(v, t) , (4)

in which D′(v) = (2D0/3)v−1/3. Notice, however, that 2v−1/3 ∼ 2/Rh, and
the prefactor D0/3 keeps again track of proper physical units. The quantity
κD = 2/Rh stands for twice the mean curvature of the sol particle viz. the
shrunken polymer domain of globular propensity. Each one of such domains
conforms to some pressure difference ∆πD between the external and internal
parts of the domain, following the Kelvin–Laplace law, namely

∆πD = σκD , (5)

providing the surface tension of the domain circumference obeyed: σ ∝ D0.
Of course, σ = σ(T ) ought to be taken for granted. The pressure ∆πD, being
comparably to v, a stochastic variable, changes over time within the sol-like
but semi-concentrated (i.e. well-packed or relatively dense [6]) matrix during
its evolution. Moreover, and still within our approximate reasoning offered
(see, Eq. (1) and discussion below Eq. (4)), the instantaneous pressure is
naturally involved via the Kelvin–Laplace law of micro-capillarity1 in the
current J(v, t)

J(v, t) = −∆πDφ(v, t)−D(v)
∂

∂v
φ(v, t) , (6)

when one accepted that σ = D0/3 applies. An explanation of it can also be
found elsewhere [14].

The structural current is then taken to obey the continuity equation
which is the evolution equation for the probability density φ(v, t). The
continuity equation reads ∂

∂tφ(v, t) + ∂
∂vJ(v, t) = 0.

1 The linear size of polymer-solvent domains of volume v should remain comparable
with 100 nm [8], thus, belonging to the submicron scale.
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It should be completed by the so-called normal boundary conditions of
absorbing type φ(v = 0, t) = φ(v = ∞, t) = 0, meaning that no grains’
magnitude prevails during the system’s evolution [13]. The initial condition
has to be selected as well. The simplest selection can be a delta Dirac
distibution [6, 14].

The approach offers three important measures of the pressure-drifted
diffusion dynamics of the well-packed sol-like and weakly reactive system.
Two of them, n(t) — the average number of the domains, as well as V (t),
designating the total system volume, can be read out from

mi(t) =

∞∫
0

viφ(v, t)dv , (7)

where n(t) = m0(t) and V (t) = m1(t); i = 0, 1, 2, . . . The solution φ(v, t),
following the variable-separation method, has already been provided else-
where [13]. Third quantity of greatest concern is the average radius of the
dehydrated globular domain, R ≡ RD(t), which is to be estimated based on
a global versus local volume geometrical relation

V (t) ' n(t)RD
3(t) . (8)

Bear in mind that RD3(t) corresponds to the average volume of a single do-
main, and the averaging is performed as an integration v, where v ∈ [0,∞],
cf. Eq. (7). Averaging over 〈RD3(t)〉 in the spirit of Eq. (7) is supposed to be
performed in a nearly fluctuationless regime (about mean-field approach),
implying that 〈RD3(t)〉 = 〈RD(t)〉3 [6, 15]. It is, however, very consistent
with CCA Smoluchowski approach presented in Sec. 3 (cf. Eq. (13)), pro-
vided that

∑
−→

∫
.

It is interesting to notice that the three key dynamic quantities do obey
scaling laws at their asymptotic regimes for which t � t0 (t0, an initial
instant). First, the number of domains, n(t), conforms to a scaling law of

n(t) ∼ t−3/4 . (9)

Second, the volume V (t) is expected to obey a constancy condition [16], thus
it quasi-scales trivially with t0, i.e.

V (t) = V (t0)→ const. (10)

Third, the average radius, RD(t) scales as

RD(t) ∼ t1/4 . (11)
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Note that in a d-dimensional space the scaling goes as RD(t) ∼ t1/(d+1).
Realize that Eq. (8) is consistent with the scaling laws provided, cf. [6, 13].
Thus, according to Eq. (10), the sol system is envisaged as a conservative
and non-expanding because its total volume is a conserved quantity upon
such low-energy thermal conditions or because of being trapped in a low-
energy well. It resembles some stagnant and weakly reactive cellular network
in which, however, the network eyes (domains) are nearly disjoint objects
due to some non-negligible ∆πD’s distributed uniformly over the system
under study the values of which become constant. It is profitable to look at
the distribution of ∆πD’s over the total volume V . Since ∆πD ≡ ∆πD(t)
can be taken from the Kelvin–Laplace law, Eq. (5), and because κD =
2v−1/3, one is able to provide an equivalent of Eq. (5) to be rewritten as
∆πD(v) = 2σv−1/3. From it one infers that v = (2σ/∆πD(v))3. One might
then evaluate, based on Eq. (7) and Eq. (10), a ensemble-averaged specific
quantity 〈2σ/∆πD(v)〉3 = m1(t) = V (t) = V (t0). To be precise, the average,
owing to the statistical uniformity of the system, reads 〈2σ/∆πD(v)〉3 ≡
(2σ)3〈∆πD(v)〉−3 = V (t0) = const. Because the domain’s surface tension σ
is assumed to be independent of t during the evolution (the domain shells
are characterized by mainly T -dependent surface tensions), one is able to
address in full the constancy of 〈∆πD(v)〉 by providing the following:

〈∆πD(v)〉 =
2σ

[V (t0)]
1/3

= const. (12)

Thus, the overall 〈∆πD(v)〉 takes on a well-appreciated constant value. One
may also anticipate that an internal mechanical stress assigned to the poly-
meric system at the late-stage limit [17] will distribute uniformly in a very
similar way that ∆πD’s do. Thus, for an ideal (equilibrium) cellular network
in a 2D space, envisaged by a honeycomb microstructure, the mechanical
stress would distribute over the triple junctions crossing points nearly at the
angle of 2π/3. In certain bubbles-containing (or, soap froths) quite analo-
gous systems, however, the very circumstance could be different [18].

3. Argumentation for rescaling the time variable

After presenting the standard approach to grain- or soft domain-growth
of aggregates (NGG), let us here — provided that both approaches have
much in common — compare it to Smoluchowski’s CCA framework with a
kernel which is dependent only on time [1]. A graphical sketch of a main
concept, standing behind stating the equality of both frameworks (CCA and
NGG), is presented in Fig. 1.
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Fig. 1. Main concepts coming out from both: Smoluchowski’s CCA and soft-and-
reactive NGG, frameworks. In the former, aggregates consisted of i units merging
with aggregates of j units and this way k-units aggregates are formed [1, 2]. In
NGG (grains in very close vicinity), characteristic of metallurgical grain growth,
smaller grains are captured by greater ones — this way grains become bigger and
their centers of mass are shifted [6, 15].

Smoluchowski, in his CCA approach, claimed that for the irreversible
chemical reaction, [i] + [j] −→ [i+ j], with kinetic constant (kernel) Kij of
the reaction, a rescaled-time τ evolution equation of concentration, ck, of k
aggregates (k = i+ j), can be given by

dck
dτ

=
1

2

∑
i+j=k

Kijcicj −
∑
i

Kikcick , (13)

where ci and cj are concentrations of the ingredients [1, 2]. One-half on
the r.h.s. of Eq. (13) means that binary (merging) interactions cannot be
counted twice. The equation can be written in terms of the number of clus-
ters of k particles nk = ckV , where V is the total volume of the solution.
Smoluchowski proposed a solution of the equation, in the case of a popu-
lationally constant kernel (Kij = κ = const(i, j)). It takes a scaling form
of

nk = N

(
κN2 τ

)k−1(
1 + κN2 τ

)k+1
, (14)

where N is the total number of particles (see, Sec. 6.2 in [2] for details on
the method of solving Eq. (13)). The total number of clusters reads
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Nc =
N

1 + N
2 κτ

. (15)

Notice that constancy of κ means independence of i and j but not of time
κ = κ(τ) => κ = κcf(τ), where κc is a real constant and f is an aging
viz. prolonged reactivity expressing (dispersion) function. After assuming a
large time regime, the size distribution function from Eq. (14) can be written
in a following scaling form with a Boltzmann-type broken valued argument
in an adjustable function F :

nk = k−µF

(
k

τγ

)
, (16)

with µ = 2 and γ = 1. From the formalism presented above, one can obtain
time scaling rules on mean cluster size 〈k〉 and number of clusters Nc [2]

〈k(τ)〉 ∝ τγ (17)

and

Nc(τ) ∝ τ−γ . (18)

Our statement of equivalence of Smoluchowski’s CCA description with
the standard growth of grains rely upon identifying 〈k〉 from Smoluchowski’s
description with the mean cluster radius’ size RD (see, Eq. (11) in Sec. 2),
and by taking the condition of k � 0. Notice that the sum from Eq. (13),
due to the condition of k � 0, can be replaced by the corresponding integral,
which lies within the spirit of the comparison between the two approaches,
cf. Eq. (7) accompanied by Eq. (8) in which forms the integral expressions
are involved. The crucial assumption, however, that assures the equivalence
claimed (〈k〉 −→ RD), appears to be fully feasible when rearranging the
time domain [15] by substituting t in such a way

τ = τ(t) =

t∫
0

f−1(t′)dt′ , (19)

with an adjustable function f , coming out from the dispersive (fractal long-
tail) kinetics arguments [4]. This aging function, f , should be modeled in
a scalable form as: f(τ) = const.

γGG
τγGG−1, where γGG = d + 1. The scaling

exponent, presented in the statistical moments, γ = 1/(d + 1), since the
asymptotic scaling rule for Nc goes via a simple logarithmic depiction as:
lnNc ∼ −γ ln τ (cf. Eqs. (11), (17), (18)).



1002 A. Gadomski et al.

The kernel function κ can be time-dependent because of some additional
energy provided, in a controlled way, in the system by very carefully increas-
ing T gradually in time, say, from some T to a T + 〈∆T 〉, wherein 〈∆T 〉 > 0
very slightly is an averaged temperature step associated with temperature’s
increase [20]. In NGG approach, 〈∆πD〉 depends on temperature because it
is proportional to surface tension σ which is fairly dependent on tempera-
ture. Thus, if T is a function of time, then 〈∆πD(t)〉 too. Both approaches
(CCA and NGG), however, lost their “compatibility” at some critical point
Tc where close-packed regime in grain growth is relieved by loosely-packed
one, what is characteristic of sol–gel phase change. It is due to the fluc-
tuations of RD (cf. explanation under Eq. (11)). Thus, soft-and-reactive
NGG fairly close-packed description can most likely be adopted for certain
hydrogel systems [7].

4. Conclusions

In this study, a kinetic-thermodynamic depiction of a model hydrogel
formation, with soft-and-reactive crystalline inclusions, has been unveiled
in terms of a statistical-thermodynamical concept [6, 13–15]. To achieve
this goal, a Smoluchowski-type CCA approach to the drifting and diffusive
nature of the system has been adopted for modeling semi-quantitatively an
expansion of proximate grains in time. The modeling has been performed
with the aim of uncovering some basic trends of the hydrogel formation,
which can be found also in [7, 8].

The conditions of dispersive kinetics are to be seen as indispensable upon
identifying the basic domain-growth soft material systems (such as those of
Langmuir–Blodgett type) with the classic Smoluchowski’s CCA with time-
dependent kernel, being in the same time independent of the number of
molecular constituents of the clusters upon clusters’ absorption–desorption
conditions applied. The equality of NGG and CCA approaches can be stated
with following assumptions: (i) the mean cluster size 〈k〉 from CCA (within
the long time limit) is identified with the average radius RD from NGG,
which appears to be true when rearranging the time domain with rescaled
time variable τ(t), given by a definite integral in [0, t] upon dτ(t) = dt/f(t),
with an adjustable function f , coming out from the dispersive kinetics’ ar-
guments [4]; (ii) k should be great enough to allow the sum from Eq. (13)
to be replaced by the corresponding integral, which lies within the spirit
of the comparison between the two approaches, cf. Eq. (7) accompanied by
Eq. (8) in which forms the integral expressions are involved; (iii) the time
scaling exponent, presented in the statistical moments in both frameworks,
γ = 1/(d+1) — it is only true for proximate grains (close-packed structures)
where fluctuations of RD are close to zero (about mean-field approach). The
exponent γ = 1/4 (for d = 3 dimensional space) involved in the scaling rela-
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tion (Eq. (11)) keeps the signature of (d+1)-involving random close packing,
a measure characteristic of a d-dimensional geometrical-physical space upon
confinement [19].

A certain novelty coming out from our statistical moments involving
approach, see Eq. (7), appears to be a quite precise estimation of the average
Laplace’s pressure, 〈∆πD〉, which turns out to be a constant value (Eq. (12))
for the volume-conservative sol-like phase upon approaching gelation critical
point [8]. However, it becomes t-dependent when one provides additional
energy into system causing increasing of the temperature T (t).

Such a volume-conservative description of grain growth can be applica-
ble to hydogels with prevailing microcrystalline inclusions [7] also with very
sensitive pH versus temperature (implicitly, time-temperature sensitive; cf.
Fig. 3b in [21]) nanocomposite’s expressions. Also, thermoresponsive gels
with overwhelming crystalline structural predispositions (such as in [22]),
commencing from the molecular level first, have to be invoked as a work-
ing example here. However, usage of the description is limited to the low-
temperature regime, close to gel point.

To summarize, the main and very novel finding of this study is to con-
vince the reader on reconciling that the k-fixed “constant” kernel celebrated
approach by Smoluchowski [1, 2] can be recast from the dispersive viz.
soft-and-reactive NGG (but processing time rescaled) material formation
[4–6, 15], provided that both approaches work within the realm of almost
volume’s fluctuationless (stationary) regimen.

It is also worth mentioning that at least in two areas of the approach
employed, a dynamic and network-involving scenarios of microgel type (with
swollen microcrystalline domains) emerge inevitably. First, in the biophys-
ical area of ultralow friction and facilitated lubrication of articular carti-
lage(s), see [23], wherein the hyaluronic-acid, network-like constructs re-
spond synergistically to the external load’s action. Second, when within a
cell the (anomalously bioreactive) metabolic pathway spreads out over its
complex viscoelastic interior in intimately networking, and fairly dynami-
cally organized manners, see [24].

The presented model — upon identifying that the crystalline material
insertions grow or rather swell uniformly — can qualitatively mimic malig-
nancies and their tumor-like growth in a virtually active matter, provided
that we are able to override the fixed-population and volume constancy lim-
its characteristic of both (comparative) approaches under study. In [25], it
has been suggested that one has to embark on a fluctuational and viscoelastic
clustering effect encountered in an ‘active brainy’ viz. nearly constant-volume
matter. For example, it is believed to change the emotions of an individual,
and alter decision-making conditions, provided that structure-property and
functional material unification is occurring. However, any discussion of time
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domain, especially the one due to mental hesitation involvement, becomes
elusive and prone to interpretation, cf. [26]. Especially, the decision making
in leader-type biased personality is comprehended as some cognition com-
plex task, to be meaningfully simplified in physical, i.e. dispersive clustering
involving, neurophysical terms [4, 25, 26].

A support of the present study by BS 39/2014 (UTP Bydgoszcz) is to be
emphasized. A.G. benefited much from preliminary discussions with Prof.
T. Wysocki (Nebraska Lincoln). Technical assistance of Mrs. H. Przewoźniak
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