Vol. 49 (2018) ACTA PHYSICA POLONICA B No 6

RooMCMarkovChain A METROPOLIS-HASTINGS
ALGORITHM FOR THE ROOT FRAMEWORK*

OLIVER DAHME

University of Zurich, Zurich, Switzerland
oliver.dahme@Quzh.ch

(Received April 20, 2018)

This paper reports work done during an internship at the LHCDb ex-
periment at CERN. The task was to implement a Metropolis algorithm
as a minimizer for negative log likelihood (nnl) fits into the ROOT Data
analysis framework. The Metropolis algorithm is based on a MCMC which
w.r.t. previously broadly used algorithm called Minuit can easily be scaled
to multidimensional parameter space. Moreover, such kind of algorithms
can easily be parallelized.

DOI:10.5506 / APhysPolB.49.1097

1. Monte Carlo Markov Chain (MCMC)

1.1. Introduction

A Markov Chain is a sequence of random events X1, Xo,..., where the
conditional distribution of X, ; depends only on X,,. The space where
the X; take values is called the state space of the Markov chain, written
Z1,...,%Tyn. If the conditional distribution is independent of n, the Markov
Chain has stationary transition probabilities. The joint distribution of a
Markov chain is determined by:

— The marginal distribution of X called the initial distribution;
— The conditional distribution of X, called the transition distribution.

If the state space is finite, then the initial distribution can be associated
with a vector A = (A1, ..., \,) defined by the following probability Pr:

PI‘(XZ‘ = :ZJZ) =)\i . (1)

* Presented at the Cracow Epiphany Conference on Advances in Heavy Flavour Physics,
Krakoéw, Poland, January 9-12, 2018.

(1097)

1098 O. DAHME

The transition probabilities can be written in terms of P matrices, whose
elements p;; are defined by

Pr(Xnq1 = x| Xn = 2;) = pij (2)

that only holds if the state space is finite. Most Markov chains of interest
in MCMC have an uncountable state space. The initial distribution then
becomes an unconditional distribution and the transition probability distri-
bution a conditional probability distribution.

1.2. Theory
Suppose one wishes to calculate the expectation value
n=E(g(X)), 3)

where g is a real-valued function on the state space. Often there is no exact
method that can compute the expectation value. Suppose it is possible

to simulate X7, Xo,... independent identically distributed having the same
distribution as X. Let us define an estimator

. 1

fin =~ 2i9(Xi) - (4)

Introducing the notation Y; = ¢(X;), the Y; are independent identically
distributed with mean p and variance

o = var(g(X)). (5)
The fi, is the sample mean of the Y; and according to the Central Limit
Theorem
. o?
n
. 1 N
o7 = Ezinzl(g(Xi) — fin)? . (7)
1.5. Implementation
1.3.1. Basic

The most basic implementation of a Markov Chain Monte Carlo program
follows the basic idea:

Algorithm 1 basic MCMC pseudo code
Initialize x
loop
Generate random change to x
Output z

RooMCMarkovChain a Metropolis—Hastings Algorithm for the Root ... 1099

It is important that x is the entire state of the program. If for example
the movement of a particle is simulated, one could apply random changes
to the velocity vector at each time step, but if sometimes the changes are
not random, the process is not a Markov any more and all the mathematical
formalism described in Sec. 1 does not hold any more. The state where
random changes are applied to z is called an update mechanism. This report
focuses on update mechanisms that preserve a specified distribution. That
means the distribution before the update is the same after the update. From
that, one can construct the Markov chains to sample that distribution. An
update mechanism is called elementary, when the mechanism is not made up
of parts. Since there is not much structure in Algorithm 1, most simulation
can be fit into this format.

1.3.2. Metropolis—Hastings

Suppose that the specified distribution has unnormalized density k. This
means that h is a positive constant multiplied by a probability density.
Therefore, h is a non-negative function that integrates (for continuous states)
or sums (for discrete states) to a value that is finite and non-zero. The
Metropolis—Hastings update does the following:

— The current state x is proposed to move to y with a conditional prob-
ability density given x denoted as q(z,) ;

— Calculate the Hastings ratio

h(y) q(y,)

) = F) gy

— Accept the proposed, move to y with the probability
a(z,y) = min(1,7(z,y)). (9)

The Hastings ratio (Eq. (8)) is undefined if h(z) = 0, thus one has to ensure
that h(z) > 0 in the initial state. If h(y) = 0, there is no problem since
r(x,y) also becomes zero and the probability to accept y just becomes zero.
Note that the proposed y must satisfy ¢(z,y) > 0 because g(z,-) is the
conditional density of y given x. Hence h(xz) > 0, the denominator of the
Hastings ratio is always non-zero and well-defined. The numerator does not
have to be non-zero, because if h(y) = 0, then y is an impossible value of
the desired distribution, and if ¢(y,x) = 0, then x is an impossible proposal
when y is the current state.

1100 O. DAHME

At this point, it is important to stress out that these properties are very
fortunate since the Metropolis—Hastings update automatically does the right
thing, almost surely rejecting such proposals. Therefore, it is not necessary
to ensure that the proposals have to be possible values of the desired distri-
bution. The only thing necessary is to assure that the unnormalized density
function h works with every proposal and gives h(y) = 0 if y is an impossible
proposal.

2. RooMCMarkovChain

This section focuses on the technical part of the implementation of the
RooMCMarkovChain class into the ROOT data analysis framework. RooMC-
MarkovChain is variation of the RooMinuit class, which is part of the Roofit
environment. It is made transparent to the user, in other words, the user can
use the RooMCMarkovChain class as he did the RooMinuit class. The task of
both is to fit a probability density function (pdf) to data. That is achieved by
minimizing the negative log-likelihood function. RooMCMarkovChain uses a
Metropolis—Hastings algorithm. As explained in Sec. 1.3.2, the Metropolis—
Hastings is a Monte Carlo updater. In the following, it will be explained how
RooMinuit uses this principle to minimize a negative log-likelihood function.

In the RooMCMarkovChain class, an event is a point on the nll. In the
next step, a point in the vicinity of the current point is chosen as a proposal.
The Hastings ratio (Eq. (8)) is the probability for this proposed point to
be part of the Markov Chain or not. Here, the Hastings ratio is directly
proportional to the difference between the nnl values of the current and the
proposed point, while there is a higher probability for negative differences
than for positive ones. It follows that the chain will end up in a minimum.
After finding the minimum, it starts oscillating around it, that provides a
good scan of the vicinity around the minimum. This scan is used to calculate
an estimate on the errors of the parameters of interest. The exact description
of the algorithm used can be found in [1].

The following subsections are meant as a code documentation, therefore,
all the functions of the RooMCMarkovChain class are well-described and an
example of their output is given. All examples are taken from a fit to 1000
simulated data points of a double “gaus” with this pdf

1 _ (z—p1)? 1 _ (z—po)?

e 20‘% + e 20‘% , 10
\/27r0% / \/27703 ()

where py =4, 01 =1, us = —2, 09 = 1.5 and the fraction f = 0.5.

pdf(z) =

RooMCMarkovChain a Metropolis—Hastings Algorithm for the Root ... 1101

< 100 =
? - —— Data
§ 80_— - === True pdf
w -
- = RooMCMarkovChain
60— = Minuit
40—
20—
0 "]) RIS S I V- !
=20 -15 -10 -5 0 5 10 15 2
value

Fig.1. (Color online) Fit of a double Gauss: The first Gauss has a mean of 4
and a sigma of 1, the second Gauss has a mean of —2 and a sigma of 1.5. The
dotted/green line represents the true pdf. The solid/blue line has been fitted by
the RooMCMarkovChain class, while the dashed/red line has been fitted by Minuit.
For some unknown reason, Minuit sometimes fails to fit even such a simple pdf.

2.1. meme

The RooMCMarkovChain::mcmc(int npoints, int cutoff, string errorstrat-
egy) function does the main work of the class. It performs the MCMC to
find the minimum. On the way, it saves all the accepted points. The value
“npoints” is an integer, which declares the total number of accepted points
the chain will have at the end. The value “cutoff” is an integer, which de-
clares after how many points the cutoff is performed. Cutoff means that
the points at the beginning of the chain until the cutoff are not included
into the error calculation. That reduces the variance on the fitting param-
eters significantly. Moreover, one can choose between two errorstrategies:
“gaus” assumes symmetric errors, while “interval” assumes non-Gaussian er-
rors. The results of the fit are displayed in the terminal as shown in Fig. 2.

RooFit v3.60 -- Developed by Wouter Verkerke and David Kirkby
Copyright (C) 2808-2013 NIKHEF, University of California & Stanford University
ALl rights reserved, please read http://roofit.sourceforge.net/license.txt
Starting Monte Carlo Markov Chain Fit with 12000 points and cutoff after 7000 points
% 33% 3% 5% 36% 37% 360 39% 40 ATs 2% 43% AT A5% 6% AT AT 9% 50% 515 52% 5% 54 55% 5

62% 63% 64% 65% 66% 67% 68% 69% 70% 71% 72% 73% 74% 75% 76% 77% 78% 79% 80% B1% 82% 83% 84% 85
91% 92% 93% 94% 95% 96% 97% 98% 99% 100%

NO. NAME VALUE ERROR

1 frac 5.14084e-01 1.47307e-02

2 meanl 3.98243e+00 5.07205e-02

3 mean2 -1.99256e+00 7.51154e-02

4 sigmal 9.98988e-01 3.87089%e-02

5 sigma2 1.44724e+00 5.86681e-02
CORRELATION COEFFICIENTS

NO. 1 2 3 4 5

1 1.000 -0.872 -0.043 0.095 -0.060

2 -0.672 1.000 ©.131 -0.151 ©.136
3 -0.043 ©.131 1.000 -0.135 ©.194
4 0.895 -6.151 -0.135 1.000 -0.171
5 -0.060 ©.136 0.194 -0.171 1.000

Fig. 2. Terminal output of the mcmc function with errorstrategy set to “gaus”.

1102 O. DAHME

2.2. getProfile

The RooMCMarkovChain::getProfile(string name, bool cutoff) func-
tion returns a profile of the nll for a certain parameter, which can be called
by name. It does so by creating a TGraph and plots all the nll values of
the walk in respect to the parameter. Moreover, it is possible to include or
exclude the cutoff points. An example is given in Fig. 3

3800

nll value

3600
3400
3200
3000
2800
2600

2400
2200

N S S H U S B R|
-20 -15 -10 -5 0 5 10

mean2

Fig. 3. Profile of the nll for the mean of the second Gaussian including the cutoff
points. As one can see, the walk starts at —17 then finds a local minimum at the
nll value of 2600, and then jumps out of it to find the global minimum at the true
value of 4 for the mean of the second Gaussian.

2.8. getWalkDis

The RooMCMarkovChain::get WalkDis(string name, bool cutoff) func-
tion returns a TMultigraph pointer of the walk distribution of a parameter,
which is called by name. It does so by creating two TGraphs: one with the
points which had been cutoff and one with the included points. Besides, it
adds a dotted line where the cutoff has been set. An example is given in
Fig. 4.

Walk Distribution of mean2

mean2

b

[T T T[T T[T T[T TTT

o

5000 1000015000 20000 ‘éséoi)ﬂu‘mgerégggg
Fig.4. (Color online) Walk Distribution of the mean of the second Gauss of a
double Gauss fit. The true value is 4, while the starting point is —17. In light
gray/red are the points which have been cut off and in dark gray/blue the rest

points which are used for the error calculation, (see Sec. 2.4).

RooMCMarkovChain a Metropolis—Hastings Algorithm for the Root ... 1103

2.4. getWalkDisHis

The RooMCMarkovChain::get WalkDisHis(string name, int nbinsx, bool
cutoff) returns a TH1F pointer with a histogram of the walk for a certain
parameter, called by name. The number of bins for the histogram can be set
by nbinsx. Cutoff points can be included or not. It does so by just adding
all the points of the walk to a histogram. The main purpose is to look at
the distribution of the points. This function is also used to calculate the
symmetric errors of the parameter. An example is given in Fig. 5.

450
400
350
300
250
200
150
100
50
0

AL LARRN A LR L R L R

Fig.5. Histogram of the walk for the mean of the second Gauss. As one can see,

the true value 4 is in the error range around the mean of the histogram, since the
values have a Gaussian distribution.

2.5. getCornerPlot

The RooMCMarkovChain::getCornerPlot(string namel, string name2,
int nbinsx, int nbinsy, bool cutoff) function returns a TH2D pointer with a
2D histogram of two parameters, called by namel and name2. The number
of bins for the namel parameter are set by nbinsx and for name2 by nbinsy.
It does so just by adding all the points of the two parameters in a TH2D
histogram. As always, the cutoff can be turned on or off. This plot could,
for example, be used to look for correlations. An example is given in Fig. 6.

4.15 p— 5 25

mean2

4.

i

4.0

o

AR RRAANARANRARR RRRRNRRRRRRRAN|

4

3.95

3.9

3.85

Fig.6. Scatterplot of the two means of the double Gauss fit.

1104 O. DAHME

2.6. saveCornerPlotAs

The RooMCMarkovChain::saveCornerPlot As(string picname) is the
most complex function of the RooMCMarkovChain class. It creates a his-
togram of every parameter with getWalkDisHis and a corner plot with every
pair of parameters. It can be used to see any correlations between the pa-
rameters. The histograms can be used to see graphically if a parameter has
an asymmertric error or if it has a Gaussian distribution. Picname defines
the name of the output file. An example is given in Fig. 7.

g T Erg T g

Fig. 7. Scatter plots between all the parameters of the double Gauss fit and the
walk distributions of every parameter.

REFERENCES

[1] M. Vihola, Stat. Comput. 27, 997 (2012).
[2] http://www.physik.uzh.ch/~odahme/example_RooMCMarkovChain/

http://dx.doi.org/10.1007/s11222-011-9269-5
http://www.physik.uzh.ch/~odahme/example_RooMCMarkovChain/

	1 Monte Carlo Markov Chain (MCMC)
	1.1 Introduction
	1.2 Theory
	1.3 Implementation
	1.3.1 Basic
	1.3.2 Metropolis–Hastings

	2 RooMCMarkovChain
	2.1 mcmc
	2.2 getProfile
	2.3 getWalkDis
	2.4 getWalkDisHis
	2.5 getCornerPlot
	2.6 saveCornerPlotAs

