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We analyse the resolved power corrections to the inclusive decays B̄ →
Xs`

+`− and also B̄ → Xd`
+`−. As a distinctive feature, the resolved

contributions remain non-local when the hadronic mass cut is released.
Therefore, they reflect an irreducible uncertainty not dependent on the
hadronic mass cut. They factorize in hard functions describing physics
at the high scale mb, in so-called jet functions characterizing the physics
at the hadronic final state Xs which corresponds to an invariant mass of
the order of

√
mbΛQCD, and in soft functions, so-called shape functions,

parametrizing the hadronic physics at the scale ΛQCD. Knowing the explicit
form of the latter, one can derive general properties of such shape functions
which allow for precise estimates of the corresponding uncertainties.
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1. Introduction

We discuss so-called resolved power corrections to the inclusive decays
B̄ → Xs,d`

+`−. These decays are flavour changing neutral current processes
which are theoretically clean and highly sensitive to possible new degrees of
freedom (for reviews, see Refs. [1–3]), thus, they belong to the golden modes
of the forthcoming Belle II experiment at KEK [4]. Their theoretical preci-
sion has already reached a highly sophisticated level [5–7]. The large data
sets collected at the Belle II experiment call for even higher precision of the
theoretical predictions and, in particular, for the calculation of subleading
power corrections.
∗ Presented at the Cracow Epiphany Conference on Advances in Heavy Flavour Physics,
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The resolved photon contributions to the inclusive decay B̄ → Xs,d`
+`−,

considered here, contain subprocesses in which the virtual photon couples to
light partons instead of connecting directly to the effective weak-interaction
vertex [8, 9]. They can be estimated in a systematic way [10, 11].

Within the inclusive decay B̄ → Xs,d`
+`−, the hadronic (MX) and dilep-

ton invariant (q2) masses are independent kinematical quantities. An invari-
ant mass cut on the hadronic final-state system (MX . 2 GeV) is required
in order to suppress potential huge backgrounds. This cut poses no further
constraints in the high-dilepton mass region, in the low-dilepton mass region,
however, the cut on the hadronic mass leads to a specific kinematics in which
the standard OPE breaks down and one has to introduce non-perturbative
b-quark distributions, so-called shape functions. Given the specific kine-
matics of low-dilepton masses q2 and of small hadronic masses MX , one
has to deal with a multi-scale problem, MX .

√
MBΛQCD ∼ MB

√
λ

with λ := ΛQCD/MB, which can be solved by soft-collinear effective theory
(SCET).

A previous SCET analysis made use of the universality of the leading
shape function to demonstrate that the reduction resulting from theMX -cut
can be precisely calculated in all angular observables of the inclusive decay
B̄ → Xs`

+`−. The effects of subleading shape functions imply an additional
uncertainty of 5% [12, 13]. All these former analyses, however, rely on a
problematic assumption, namely that q2 represents a hard scale in the kine-
matical region of low q2 and of small MX . By contrast, our present SCET
analysis [10, 11] has explicitly demonstrated that the hadronic cut implies
the scaling of q2 being not hard but (anti-) hard-collinear in the low-q2 re-
gion and that the resolved contributions would not exist if q2 was hard: The
hard momentum of the leptons would also imply a hard momentum of the
intermediate parton. The latter would be integrated out at the hard scale
and the lepton pair would be directly connected to the effective electroweak
interaction vertex. Moreover, we have shown that the resolved contributions
— as a special feature — stay non-local when the hadronic mass cut is re-
leased. In this sense, they represent an irreducible uncertainty independent
of the hadronic mass cut.

In the following, we discuss the estimate of the effect of the subleading
shape functions. In Refs. [10, 11], we have calculated all resolved power
corrections to the inclusive decay B̄ → Xs`

+`− to first order in 1/mb. Here,
we also derive the corresponding contributions to the inclusive decay B̄ →
Xd`

+`−.
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2. Resolved contributions to the decays B̄ → Xs,d`
+`−

In Ref. [10], we have found three resolved operator combinations to the
order of 1/mb for the decay B̄ → Xs`

+`, namely from the interference terms
O7γ–O8g, O8g–O8g, and Oc1–O7γ . We have shown that the smooth limit
q2 → 0 reproduces the known results for the decay B̄ → Xsγ, first derived
in Ref. [14]. For more details, we refer the reader to Ref. [10].

For the O7γ–O8g part, we have found two contributions denoted by
(b) and (c):

dΓ
(b)
78 = − 1

mb
Re
[
Γ̂78

]
dΛαβ 16παs eqmb n · q

(
gαβ⊥ + iεαβ⊥

)
×Re

∫
dωδ(ω +mb − n · q)

∫
dω1

ω1 + n̄ · q + iε

dω2

ω2 − iε
×
[
ḡ78(ω, ω1, ω2, µ)− ḡcut

78 (ω, ω1, ω2, µ)
]
. (1)

Here, we have used the short-hand notation

Γ̂ij =
G2

Fαm
2
b

4π2
CiC

∗
j |λst |2 (2)

with λji = V ∗ibVij . For the case of B̄ → Xd`
+`−, the |λst |2 has to be replaced

by |λdt |2. The shape functions g78 are defined as follows:

ḡ78(ω, ω1, ω2, µ) =

∫
dr

2π
e−iω1r

∫
du

2π
eiω2u

∫
dt

2π
e−iωt

×

〈
B̄
∣∣ (h̄Sn) (tn)TA Γ̄n

(
S†ns

)
(un) (s̄Sn̄) (rn̄)Γn̄

(
S†n̄Sn

)
(0)TA

(
S†nh

)
(0)
∣∣B̄〉

2MB

×ḡcut
78 (ω, ω1, ω2, µ) =

∫
dr

2π
e−iω1r

∫
du

2π
eiω2u

∫
dt

2π
e−iωt

×

〈
B̄
∣∣ (h̄Sn) (tn)TA Γ̄n

(
S†ns

)
((t+ u)n) (s̄Sn̄) (rn̄)Γn̄

(
S†n̄Sn

)
(0)TA

(
S†nh

)
(0)
∣∣B̄〉

2MB
.

(3)

Sn and Sn̄ are soft Wilson lines connecting the soft fields in the matrix ele-
ment and thereby ensuring gauge invariance. For the case of B̄ → Xd`

+`−,
the s-quark fields have to be replaced by d-quark fields within in the shape
functions.

The integral measure is given in the first subleading order by

dΛαβ = dn · q dn̄ · q dz
α

128π3

(
1 + z2

) n · q
n̄ · q

g⊥,αβ (4)

with z = cos θ. θ is the angle between the `+ and B meson three momenta
in the di-lepton rest frame. There is no odd term in the variable z. Thus,
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there is no resolved contribution to the forward–backward asymmetry in this
order 1. The second contribution is given by

dΓ
(c)
78 =

1

mb
Re
[
Γ̂78

]
dΛαβ 4παsmb n · q

(
gαβ⊥ −iε

αβ
⊥

)
Re
∫

dωδ(ω+mb−n · q)

×
∫

dω1

ω1 − ω2 + n̄ · q + iε
dω2

[(
1

ω1 + n̄ · q + iε
+

1

ω2 − n̄ · q − iε

)
×g(1)

78 (ω, ω1, ω2, µ)−
(

1

ω1+n̄ · q+iε
− 1

ω2−n̄ · q−iε

)
g

(5)
78 (ω, ω1, ω2, µ)

]
. (6)

The shape functions are defined as follows:

g
(1)
78 (ω, ω1, ω2, µ) =

∫
dr

2π
e−iω1r

∫
du

2π
eiω2u

∫
dt

2π
e−iωt

×

〈
B̄
∣∣ (h̄Sn) (tn)

(
S†nSn̄

)
(0)TA /̄n(1+γ5)

(
S†n̄h

)
(0)T

∑
q eq (q̄Sn̄) (rn̄) /̄n TA

(
S†n̄q

)
(un̄)

∣∣B̄〉
2MB

,

g
(5)
78 (ω, ω1, ω2, µ) =

∫
dr

2π
e−iω1r

∫
du

2π
eiω2u

∫
dt

2π
e−iωt

×

〈
B̄
∣∣ (h̄Sn) (tn)

(
S†nSn̄

)
(0)TA /̄n(1+γ5)

(
S†n̄h

)
(0)T

∑
q eq (q̄Sn̄) (rn̄) /̄nγ5TA

(
S†n̄q

)
(un̄)

∣∣B̄〉
2MB

.

(7)

For the case of B̄ → Xd`
+`−, no modification is needed in these shape

functions. The difference to the radiative decay B̄ → Xs,dγ is introduced
through the non-vanishing n̄ · q that shifts the small component of the anti-
hard-collinear propagator, which corresponds to the anti-hard-collinear jet
function. With the same argument, we can already see that the direct con-
tributions will not be affected in such a way, since n̄ · q is suppressed relative
to the large component of any hard-collinear propagator.

For the double resolved O8g–O8g contribution involving twice the
QCD dipole operator, we have found in Ref. [10]

dΓ88 =
1

mb
Re
[
Γ̂88

]
dΛαβ 8παs e

2
sm

2
b

(
gαβ⊥ +iεαβ⊥

)
Re
∫

dωδ(ω+mb−n · q)

×
∫

dω1

ω1 + n̄ · q + iε

dω2

ω2 + n̄ · q − iε
ḡ88(ω, ω1, ω2, µ) . (8)

1 The triple differential rate in the form of

d2Γ

dq2dz
=

3

8

[(
1 + z2)HT

(
q2)+ 2

(
1 − z2)HL

(
q2)+ 2zHA

(
q2)] (5)

shows that there are three independent angular observables which have different
dependences on the Wilson coefficients [19]. The sum HT + HL corresponds to the
q2 spectrum, while HA to the forward–backward asymmetry. The special form of
integral measure given in Eq. (4) implies that we only have resolved contributions to
HT in the first order in 1/mb.



Subleading Shape Functions in B̄ → Xs,d`` 1145

Note that es = ed, so there is no modification necessary for the b→ d case.
The shape function ḡ88 is defined as follows (for the b → d case, only the
s-quark fields have to be replaced by d-quark fields again):

ḡ88(ω, ω1, ω2, µ) =

∫
dr

2π
e−iω1r

∫
du

2π
eiω2u

∫
dt

2π
e−iωt

×

〈
B̄
∣∣ (h̄Sn) (tn)TA

(
S†nSn̄

)
(tn) Γ̄n̄

(
S†n̄s

)
(tn+un̄) (s̄Sn̄) (rn̄)Γn̄

(
S†n̄Sn

)
(0)TA

(
S†nh

)
(0)
∣∣B̄〉

2MB
.

(9)

There is a subtlety regarding the convolution integral in Eq. (8). The calcu-
lation of the asymptotic behaviour of the soft function for ω1,2 � ΛQCD leads
to the finding that the convolution integrals are UV divergent. However, this
divergence is mirrored by an IR divergence in the direct contribution to O8g–
O8g, and scale and scheme independence of the sum of the two contributions
can be shown (for further details, see Ref. [10]).

For the Oc
1–O7γ contribution, we have explicitly derived in Ref. [10]

dΓ17 =
1

mb
Re
[
Γ̂17
−(λst )

∗λsc
|λst |2

]
dΛαβ ec (n · q)2 Re

∫
dωδ(ω +mb − n · q)

×
∫

dω1
1

ω1 + iε

1

ω1

[
(n̄ · q + ω1)

(
1− F

(
m2
c

n · q(n̄ · q + ω1)

))
−n̄ · q

(
1− F

(
m2
c

n · qn̄ · q

))
− n̄ · q

(
G

(
m2
c

n · q(n̄ · q + ω1)

)
−G

(
m2
c

n · qn̄ · q

))]∫
dt

2π
e−iωt

×
∫

dr

2π
e−iω1r

〈B| h̄(nt)/̄n
[
1+γ5

]
i
2

[
γµ⊥, γ

β
⊥

]
γα⊥n̄

κgGµκ(n̄r)h(0)|B〉

2MB
. (10)

The decomposition of the Lorentz structure leads to

dΓ17 =
1

mb
Re
[
Γ̂17
−(λst )

∗λsc
|λst |2

]
α

24π3
dn · qdn̄ · q (n · q)3

n̄ · q

×Re
∫

dωδ(ω +mb − n · q)
∫

dω1
1

ω1 + iε

× 1

ω1

[
(n̄ · q+ω1)

(
1−F

(
m2
c

n · q(n̄ · q+ω1)

))
−n̄ · q

(
1−F

(
m2
c

n · qn̄ · q

))
−n̄ · q

(
G

(
m2
c

n · q(n̄ · q + ω1)

)
−G

(
m2
c

n · qn̄ · q

))]
g17(ω, ω1, µ) , (11)
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with

g17(ω, ω1, µ) =

∫
dr

2π
e−iω1r

∫
dt

2π
e−iωt

×

〈
B̄
∣∣(h̄Sn)(tn) /̄n(1+γ5)

(
S†nSn̄

)
(0) iγ⊥α n̄β

(
S†n̄ gG

αβ
s Sn̄

)
(rn̄)

(
S†n̄h

)
(0)
∣∣B̄〉

2MB
.

The penguin functions F and G are defined as follows:

F (x) = 4x arctan2 1√
4x−1

, G(x) = 2
√

4x−1 arctan
1√

4x−1
−2 . (12)

In this contribution, the modifications for the b→ d case are more involved.
Within the Oc1–O7γ contribution, all CKM parameter combinations λsi have
to be replaced by λdi only, but there is an additional contribution from the
interference Ou1–O7γ which can be neglected due to the CKM suppression
in the b → s case. However, in both cases, in b → d and also in the b → s,
this contribution from the u-quark loop vanishes within the integrated rate
at the order of 1/mb anyway: Using the explicit formulae of the penguin
functions in Eqs. (12), the last two lines of Eq. (11) can be reduced in the
limit mc → mu = 0 to

× 1

ω1
[ ω1 ] g17(ω, ω1, µ) . (13)

Using the trace formalism of HQET, one shows (see Ref. [14] for details)
that

Λ̄∫
−∞

dω g17(ω, ω1, µ) =

Λ̄∫
−∞

dω (g17(ω,−ω1, µ))∗ . (14)

PT invariance implies that the shape function g17 is real, so that the inte-
gration of ω1 in Eq. (11) leads to the final result that the interference term
Ou1–O7γ vanishes within the integrated rate.

Finally, there is an important remark in order: As the different results
make clear, the operators defining the shape functions are non-local in both
light-cone directions. Therefore, the resolved contributions stay non-local
even when the hadronic mass cut is relaxed. In this case, n ·PX = MB−n ·q
is not necessarily small any more. We can, thus, expand the shape function
in powers of ΛQCD/(mb − n · q) by which we arrive at a series of matrix
elements that are local in the n-direction. However, the non-locality in the
n̄-direction is not removed. In this sense, the resolved contributions consti-
tute an irreducible uncertainty within the inclusive decay B̄ → Xs,d`

+`−.
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3. Numerical estimate of the subleading shape functions

For the input parameters used in the present analysis, we refer to Ref. [10].
We are interested in the relative magnitude of the resolved contributions
compared to the total decay rate, i.e. the leading direct contributions to the
decay rate which one also would take into account when the decay rate was
calculated within the OPE

F
(
q2

min, q
2
max,M

2
X,max

)
=
Γ qresolved

(
q2

min, q
2
max,M

2
X,max

)
Γ qOPE

(
q2

min, q
2
max,M

2
X,max

) , q = d, s ,

(15)
where the rate Γ qOPE is given by

Γ qOPE =
G2

Fαm
5
b

32π4
|V ∗tbVtq|2

1

3

α

π

∫
dn̄ · q
n̄ · q

(
1− n̄ · q

mb

)2

×

[
C2

7γ

(
1+

1

2

n̄ · q
mb

)
+
(
C2

9 +C2
10

)(1

8

n̄ · q
mb

+
1

4

(
n̄ · q
mb

)2
)

+ C7γC9
3

2

n̄ · q
mb

]

≡
G2

Fαm
5
b

32π4
|V ∗tbVtq|2

1

3

α

π
COPE . (16)

The last line defines the quantity COPE. The first term in the square brackets
is the leading power in the 1/mb expansion and corresponds to the direct
contribution due to the interference of O7γ with itself. The other terms are
formally suppressed in the shape function region in which we evaluate these
direct contributions. But the large magnitude of the Wilson coefficients
|C9/10| ∼ 13|C7γ | demands their inclusion into our uncertainty.

For the resolved contribution from the interference of Oc
1 with

O7γ , we have found in Ref. [10]

Fq17 =
1

m4
b

C1(µ)C7γ(µ)

COPE
ec Re

[
−(λqt )

∗λqc
|λqt |2

]
Re

q2max
MB∫

q2
min
MB

dn̄ · q
m3
b

n̄ · q

+∞∫
−∞

dω1

ω1 + iε

× 1

ω1

[
(n̄ · q + ω1)

(
1− F

(
m2
c

mb(n̄ · q + ω1)

))
− n̄ · q

(
1− F

(
m2
c

mbn̄ · q

))

−n̄ · q
(
G

(
m2
c

mb(n̄ · q + ω1)

)
−G

(
m2
c

mbn̄ · q

))] Λ̄∫
−∞

dω g17(ω, ω1, µ) (17)

with Λ̄ = MB − mb. Here, we have already used the fact that the soft
function only has support for ω ∼ ΛQCD.
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In the B̄ → Xs`
+`− case (q = s), we find for the CKM ratio

Re
[
−(λst )

∗λsc

/(
|λst |

2
)]

= 0.99 ,

while in the B̄ → Xd`
+`− (q = d), we get

Re

[
−
(
λdt

)∗
λdc

/(∣∣∣λdt ∣∣∣2)] = 1.19 .

Thus, the effect of this resolved contribution in the b → d case is just 20%
larger.

The integration of the soft function over ω eliminates the t integral in the
shape function and sets t = 0. Defining h(ω1, µ) :=

∫ Λ̄
−∞ dω g17(ω, ω1, µ), we

find

h17(ω1, µ) =

∫
dr

2π
e−iω1r

〈B|h̄(0)n̄/iγ⊥α n̄βgG
αβ(rn̄)h(0)|B〉

2MB
. (18)

Knowing the explicit form of the HQET matrix element, we can derive
general properties of the integrated shape function h17. As mentioned above,
one can derive from PT invariance that the function is real and even in
ω1. One can also explicitly derive the general normalization of this soft
function [14]

∞∫
−∞

dω1h17(ω1, µ) = 2λ2 . (19)

Finally, the soft function h17 should not have any significant structure (max-
ima or zeros) outside the hadronic range, and the values of h17 should be
within the hadronic range. In summary, we can write the relative contribu-
tion due to the interference of Oc1 with O7γ as

Fq17 =
1

mb

C1(µ)C7γ(µ)

COPE
ec Re

[
−(λqt )

∗λqc
|λqt |2

] +∞∫
−∞

dω1 J17

(
q2

min, q
2
max, ω1

)
h17(ω1, µ)

with J17

(
q2

min, q
2
max, ω1

)
= Re

1

ω1 + iε

q2max
MB∫

q2
min
MB

dn̄ · q
n̄ · q

1

ω1

×
[
(n̄ · q + ω1)

(
1− F

(
m2
c

mb(n̄ · q + ω1)

))
− n̄ · q

(
1− F

(
m2
c

mbn̄ · q

))
−n̄ · q

(
G

(
m2
c

mb(n̄ · q + ω1)

)
−G

(
m2
c

mbn̄ · q

))]
. (20)
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For the standard value of q2
min and q2

max, the function J17 is plotted in Fig. 1.
It is largest around ω1 = 0. As a first trial for a model function for h17, we
use a Gaussian

h17(ω1) =
2λ2√
2πσ

e−
ω2

1
2σ2 , (21)

with σ = 0.5 GeV as a typical hadronic scale. This model function has all
properties one derives from the explicit HQET matrix element. Calculating
the convolution integral, we find

Fs17Gaussian =
1

mb

C1(µ)C7γ(µ)

COPE
ec (−0.252 GeV) . (22)
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Fig. 1. J17 for q2min = 1 GeV2 and q2max = 6 GeV2 together with the model function
of Eq. (24).

Using a smaller σ = 0.1 GeV leads to −0.304 GeV. We can express our
numbers in percentages

Fs17exp ≈ +1.9% . (23)

Using a Gaussian for the soft function only yields negative numbers (positive
percentages) for the expression in the square brackets. Thus, this model
function does not yield to a conservative bound on the size of Fq17. The
usage of the same function as in Ref. [14]

h17(ω1) =
2λ2√
2πσ

ω2
1 − Λ2

σ2 − Λ2
e−

ω2
1

2σ2 , (24)
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also leads to positive numbers for this expression. If Λ and σ are chosen of
the order of ΛQCD, again, all general properties derived for h17 are fulfilled.
For a parameter choice of σ = 0.5 GeV and Λ = 0.425 GeV, one finds

Fs17 =
1

mb

C1(µ)C7γ(µ)

COPE
ec (+0.075 GeV) . (25)

For a different parameter choice, Λ = 0.575 GeV, on the other hand,

Fs17 =
1

mb

C1(µ)C7γ(µ)

COPE
ec (−0.532 GeV) (26)

which leads us to the conservative estimates for both inclusive modes

Fs17 ∈ [−0.5,+3.4]% , Fd17 ∈ [−0.6,+4.1]% . (27)

A reduction of the separation between Λ and σ could lead to larger values,
but the reduction would also lead to an increase of the values of the soft
function to outside the hadronic range.

The relation of our result to the Voloshin term can be easily estab-
lished: For the decay B̄ → Xsγ, one can expand our non-local contribution
to local operators if the charm quark is treated as heavy. In this expansion,
the first term is the dominating one [8, 15–17] which corresponds to the
so-called Voloshin term. This non-perturbative correction is suppressed by
λ2/m

2
c . But if one assumes the charm to scale as m2

c ∼ ΛQCDmb, which
appears to be a more reasonable assumption, one has to describe the charm
penguin contribution by the matrix element of a non-local operator [14].

This also holds true for the decay B̄ → Xs`
+`−. In Ref. [17], the local

Voloshin term was derived from a local expansion assuming ΛQCDmb/m
2
c to

be small. We rederive the leading term (according to our power counting)
of their result from our general result above if we observe the following
assumptions.

If one uses a Gaussian as a shape function and assumes this function
to be narrow enough, one can expand the part of the integrand in square
brackets in Eq. (17) around ω1 = 0 2

[. . . ] = ω2
1n̄ · q

[
1

2n̄·q2 − 2m2
c

n̄·q2
1

4m2
c−mbn̄·q

√
4m2

c−mbn̄·q
mbn̄·q arctan 1√

4m2
c−mbn̄·q
mbn̄·q

]

= −mbω
2
1

12m2
c
FV(r) , (28)

2 The variable (mbω1)/m2
c corresponds to the parameter t = k ·q/m2

c in Ref. [17] which
is used there as an expansion parameter. Note that we have already expanded in
n̄ · q/mb within the non-local contribution in order to single out the 1/mb term.
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where FV(r) is defined in Eq. (4) of [17] with r = q2/(4m2
c) (which is differ-

ent from the function F defined in Eq. (12)). This corresponds exactly to
the leading power in 1/mb of the Voloshin term for B̄ → Xs`

+`− given in
Ref. [17]. For FV(0) = 1, this results in the Voloshin term for B̄ → Xsγ.
Numerically, this approach is not advisable. Evaluating the leading 1/mb

Voloshin term yields

Fs
Voloshin,m−1

b

=
1

mb

C1(µ)C7γ(µ)

COPE
ec

q2max
MB∫

q2
min
MB

dn̄ · q
n̄ · q

(
−mb2λ2

12m2
c

)
FV

(
mbn̄ · q

4m2
c

)

=
1

mb

C1(µ)C7γ(µ)

COPE
ec (−0.306 GeV) . (29)

Compared to our final estimate, we find that the Voloshin term significantly
underestimates the possible charm contributions.

For comparison, we finally consider the higher orders in 1/mb of the
Voloshin term derived in Ref. [17]. They are given by

FsVoloshin =
1

mb

C1(µ)

COPE
ec

q2max
MB∫

q2
min
MB

dn̄ · q
n̄ · q

(
−mb2λ2

12m2
c

)
FBI

(
mbn̄ · q

4m2
c

)

×

[
C7γ(µ)

(
1 + 6

n̄ · q
mb
−
(
n̄ · q
mb

)2
)

+ C9(µ)

(
2
n̄ · q
mb

+

(
n̄ · q
mb

)2
)]

=
1

mb

C1(µ)C7γ(µ)

COPE
ec (+0.481 GeV) . (30)

We note that the higher order in n̄ ·q are numerically small but the first sub-
leading C9 is numerically significant taking into account |C9/10| ∼ 13|C7γ |.
We also find that these subleading contributions change the sign

Fs
Voloshin,m−1

b

≈ +1.9% , FsVoloshin ≈ −3.0% . (31)

Obviously, within the Voloshin term, there is a cancellation between the C7γ

and the subleading C9 contribution. However, in our analysis which uses
m2
c ∼ mbΛQCD, both terms are smeared out by different shape functions

and, thus, the corresponding uncertainties have to be added up. These
findings call for a calculation of the resolved contributions to the order of
1/m2

b to collect all numerically relevant contributions [18].
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The relative uncertainty due to the interference of O7γ and O8g

consists of two contributions F (b)
78 and F (c)

78 . From the explicit form of the
shape functions given in Eqs. (3) and (7), one can deduce (see Ref. [14])
that the soft functions ḡ78 and g

(1,5)
78 have support for −∞ < ω ≤ Λ̄ and

−∞ < ω1,2 <∞, and

Λ̄∫
−∞

dω
[
g

(1,5)
78 (ω, ω1, ω2, µ)

]∗
=

Λ̄∫
−∞

dω g
(1,5)
78 (ω, ω2, ω1, µ) . (32)

From PT invariance of the matrix element, one can draw the consequence
that all the shape functions are real implying that the functions

h
(1,5)
78 :=

Λ̄∫
−∞

dω g
(1,5)
78 (ω, ω1, ω2) (33)

are symmetric under the exchange of ω1 and ω2. Moreover, one also derives
from the explicit form of the shape functions that∫

dω ḡ78(ω, ω1, ω2) =

∫
dω ḡcut

78 (ω, ω1, ω2) . (34)

Thus, the contribution F (b)
78 vanishes. The other contribution is given by

F (c)
78 =

1

mb

C8g(µ)C7γ(µ)

COPE
4παs(µ) Re

q2max
MB∫

q2
min
MB

dn̄ · q
n̄ · q

∫
sdω1 dω2

1

ω1−ω2+n̄ · q+iε

×
[(

1

ω1 + n̄ · q + iε
+

1

ω2 − n̄ · q − iε

)
h

(1)
78 (ω1, ω2, µ)

−
(

1

ω1 + n̄ · q + iε
− 1

ω2 − n̄ · q − iε

)
h

(5)
78 (ω1, ω2, µ)

]
. (35)

In the vacuum insertion approximation, we find for both shape functions [14]

h
(1,5)
78 (ω1, ω2, µ) = −espec

F 2(µ)

8

(
1− 1

N2
c

)
φB+(−ω1, µ)φB+(−ω2, µ) , (36)

where F = fB
√
MB, espec is the charge of the B-meson spectator quark,

and φB+ is the light-cone distribution amplitude (LCDA). Since the LCDAs
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vanish for ωi → 0, the ωi integrals yield

− espec
F 2(µ)

8

(
1− 1

N2
c

)
(−2)P

∫
dω1

ω1 − n̄ · q
φB+(−ω1)

×P
∫

dω2

ω1 − ω2 − n̄ · q
φB+(−ω2) .

In order to estimate the magnitude of this contribution, we use the model
for the LCDAs given in Ref. [20]

φB+(ω) =
ω

ω0
e−ω/ω0 , (37)

where ω0 = 2
3 Λ̄. Then the principal value integrals of (37) can be computed

analytically and we find for the uncertainty

F (c)
78 =

1

mb

C8g(µ)C7γ(µ)

COPE
4παs(µ) espec

q2max
MB∫

q2
min
MB

dn̄ · q
n̄ · q

F 2(µ)

4

(
1− 1

N2
c

)
1

4ω3
0

×
[
−2ω0 − (2n̄ · q + ω0)e

n̄·q
ω0 Ei

(
− n̄ · q
ω0

)
+ ω0e

− n̄·q
ω0 Ei

(
n̄ · q
ω0

)]
, (38)

where the exponential integral is defined as

Ei(z) = −P
∞∫
−z

e−t

t
dt . (39)

Using our standard set of parameters (see Ref. [10]), we integrate (38) nu-
merically and find

F (c)
78 ∈

1

mb

C8g(µ)C7γ(µ)

COPE
4παs(µ) espec [0.058 GeV, 0.068 GeV] . (40)

We note that this estimate does not include any uncertainty due to the use
of the VIA in Eq. (36). We can again express our numbers in percentages

F (c)
78 ∈ [−0.2,−0.1]% . (41)

Within the interference of O8g with O8g, the shape function ḡ88

is more complicated than the ones in the previous cases, because not much
is known about it. But from the explicit form and PT invariance, one
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can conclude that ḡ88 is real. Moreover, one can also show in that the
convolution with the hard-collinear function is real (see Ref. [14]). With
h̄88 :=

∫
dωḡ88(ω, ω1, ω2, µ), we find for the convolution integral

F88 =
1

mb

C8g(µ)C8g(µ)

COPE
4παs(µ) e2

d,sRe

q2max
MB∫

q2
min
MB

dn̄ · q
n̄ · q

×
∫

dω1

ω1 + n̄ · q + iε

dω2

ω2 + n̄ · q − iε
2h̄88(ω1, ω2, µ) . (42)

We cannot arrive at any stricter estimation from the convolution, however,
we have been able to separate factors like e2

d,s etc. Thus, we estimate

Λ(µ) = Re

q2max
MB∫

q2
min
MB

dn̄ · q
n̄ · q

∫
dω1

ω1 + n̄ · q + iε

dω2

ω2 + n̄ · q − iε
2h̄88(ω1, ω2, µ) (43)

to be of O(ΛQCD). So we assume 0 GeV < Λ(µ) < 1 GeV. Compared to the
estimates found in Eqs. (25) and (40), this leads to a rather conservative
estimate of the convolution integral

F88 ∈ [0, 0.5]% . (44)

Our final estimates of the resolved contributions to the leading
order,

Fs17 ∈ [−0.5,+3.4]% , Fd17 ∈ [−0.6,+4.1]% ,

Fd,s78 ∈ [−0.2,−0.1]% , Fd,s88 ∈ [0, 0.5]%

can now be summed up using the scanning method. Our final results are

Fd1/mb ∈ [−0.8,+4.5] , Fs1/mb ∈ [−0.7,+3.8] . (45)

As discussed, this estimate of the resolved contributions represents an ir-
reducible theoretical uncertainty of the total rate of the inclusive decays
B̄ → Xd`

+`− and B̄ → Xd`
+`−.
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