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Bounds on new physics from B̄ → Xs γ depend on precise calculations
of the Standard Model contributions. The expected experimental accuracy
at Belle II implies that both the non-perturbative and perturbative effects
need to be evaluated more precisely. Here, the status and progress of such
calculations is summarized.
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1. Introduction

Weak radiative decays of the B mesons are known as sensitive probes of
physics beyond the Standard Model (SM). The inclusive B̄ → Xs γ decay
rate for Eγ > E0 is well-approximated by the corresponding perturbative
decay rate of the b quark

Γ
(
B̄ → Xs γ

)
= Γ (b→ Xp

s γ) +

(
non-perturbative
contributions

)
, (1)

provided E0 is large (E0 ∼ mb/2) but not too close to the endpoint (mb −
2E0 � Λ ∼ ΛQCD). For E0 = 1.6 GeV ' mb/3, the non-perturbative effects
are estimated [1, 2] at the (3± 5)% level1.

Once particles much heavier than the b quark have been decoupled, the
weak interaction Lagrangian Lweak ∼

∑
CiQi that is relevant for B̄ → Xs γ

contains eight operators Qi [3]. Their field content is displayed2 in Fig. 1.
∗ Presented at the Cracow Epiphany Conference on Advances in Heavy Flavour Physics,
Kraków, Poland, January 9–12, 2018.

1 This is the effect of N(E0) as compared to P (E0)
SM in Eq. (D.4) of Ref. [3], where

the overall normalization factors come from semileptonic decay measurements.
2 More operators appear in generic beyond-SM calculations, as well as in the SM one
at subleading orders in αem, Vub/Vcb or m2

s/m
2
b .

(1291)
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The corresponding Wilson coefficients Ci at the renormalization scale µb ∼
mb have been determined up to O(α2

s ) corrections, which required evaluating
four-loop anomalous dimension matrices [4].

bL sL

cL cL

b sR L

γ

b sR L

g

bL sL

q q

Q1,2 Q7 Q8 Q3,4,5,6

current–current photonic dipole gluonic dipole penguin

Fig. 1. Field content of the relevant operators.

2. Non-perturbative effects in B̄ → Xsγ

To discuss non-perturbative effects in the decay rate, it is convenient to
begin with the leading contribution that is proportional to |C7|2. We write

Γ
(
B̄ → Xsγ

)
Eγ>E0

= |C7(µb)|2 Γ77(E0) + (other) . (2)

The derivative of Γ77 with respect to the photon energy can be related via the
optical theorem to the forward B̄γ → B̄γ scattering amplitude A generated
by Q7 alone (see the left plot of Fig. 2)

dΓ77
dEγ

∼ ImA . (3)

To evaluate Γ77(E0), we need to integrate ImA from E0 to Emax ' mB/2.
We can do it by considering Eγ as complex, and realizing that ImA is pro-
portional to the discontinuity of A at the branch cut indicated by the thick
(blue) line on the real axis in the right plot of Fig. 2. Instead of inte-
grating along this line, we can use the circular contour shown in the plot. If
mb−2E0 � Λ, the intermediate hadronic stateXs is far off shell on the whole
circle, and an operator product expansion can be applied. In consequence,
Γ77(E0) can be expressed in terms of matrix elements of local operators
between B̄ meson states at rest, with perturbatively calculable coefficients.
The leading contribution reproduces the perturbative result [5–7], while the
non-perturbative corrections form a series in powers of Λ/mb, Λ/(mb−2E0)
and αs that begins with

µ2π
m2
b

,
µ2G
m2
b

,
ρ3D
m3
b

,
ρ3LS
m3
b

,
αsµ

2
π

(mb − 2E0)2
,

αsµ
2
G

mb(mb − 2E0)
,

(4)
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where µπ, µG, ρD, ρLS = O(Λ) are extracted from the semileptonic B̄ →
Xceν̄ spectra and the B − B? mass difference (see Ref. [8] for the most
recent fits). Perturbative coefficients at the quantities listed in Eq. (4) were
evaluated in Refs. [7, 9–11]. With these inputs, Γ77(E0) is a precisely known
contribution to the decay rate.

Fig. 2. Left: The amplitude A in Eq. (3). Right: Contour integrals of A (see the
text).

The main non-perturbative uncertainty arises from the so-called resolved
photon contributions where the b-quark annihilation vertex and the photon
emission vertex are not necessarily close to each other in space (as com-
pared to O(1/Λ)). Such contributions arise, for instance, in the Q1,2–Q7

interference. If the charm quark mass squared was larger than O(mbΛ),
we could express the corresponding relative contribution to the CP- and
isospin-averaged B̄ → Xsγ branching ratio Bsγ as [1, 12–15]

∆Bsγ
Bsγ

= −6C2(µb)− C1(µb)

18C7(µb)

[
µ2G
m2
c

+
∑
n

bnO
(
Λ2

m2
c

(
mbΛ

m2
c

)n)]
, (5)

where µ2G ' 0.31 GeV2 [8], and the coefficients bn decrease fast with n. How-
ever, as pointed out in Ref. [2], one cannot trust expansion (5) so long as
m2
c is not really much larger than O(mbΛ), i.e. the B-meson wave func-

tion contains a significant fraction of gluons with momenta of the order of
m2
c/mb. Instead, the considered contribution was treated in Ref. [2] as a
O(Λ/mb) one, and estimated using models of the so-called soft functions,
within the formalism of Soft Collinear Effective Theory. The same method
was applied to the Q7–Q8 and Q8–Q8 interferences that contain O(Λ/mb)
effects from resolved photons, too. Dominant contributions to the estimated
non-perturbative uncertainty in Bsγ were found this way. Relatively strong
experimental constraints on moments of the considered soft functions still
allow them to have sizeable tails towards larger gluon momenta, provided
one’s attention is not restricted to functions of a definite sign.
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It is worth noting that non-perturbative effects in the Q8–Q8 interfer-
ence contain contributions that are not suppressed by Λ/mb [16, 17]. Their
presence is signalled by collinear divergences (regularized by ms 6= 0) in the
corresponding perturbative expressions. Similar effects are observed in ma-
trix elements of the penguin operators [18, 19]. In such cases, an appropriate
approach amounts to employing experimentally determined fragmentation
functions to estimate photon emission probabilities from jets correspond-
ing to particular partons. Fortunately, such effects are absent in the major
contributions to Bsγ that either involve the photonic dipole operator or are
due to the Q1,2–Q1,2 interferences. In consequence, the collinear effects have
only a small contribution to the overall non-perturbative uncertainty in Bsγ .

Relative contributions to Bsγ from various interference terms are plot-
ted in Fig. 3 as functions of µb. They are normalized in such a way that
they sum to unity for each µb. They have been evaluated as in the phe-
nomenological analysis of Refs. [3, 20], including estimated central values
for non-perturbative effects. One can see that the Q7–Q7 and Q1,2–Q7 in-
terference terms are by far the dominant. On the other hand, those where
the collinear effects are present never exceed 1% of the total rate. It is due
to several reasons, including sizes of the Wilson coefficients, αs(µb), phase-
space suppression for E0 ∼ mb/3, as well as factors like Q2

d = 1/9 (the
square of the down quark electric charge).
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Fig. 3. Relative contributions to Bsγ from various interference terms as functions
of µb. The symbols CC and P stand for the current–current and penguin operators,
respectively. The dashed (red) and dotted (blue) curves describe the P–P and P–
CC interferences, respectively.

As far as the dependence of Bsγ on the scale µb is concerned, it is much
weaker than for the individual contributions here — see Fig. 6 of Ref. [3].
Once all the perturbative contributions are evaluated up to O(α2

s ) and added
together, such a dependence in Γ (b→ Xp

s γ) becomes a higher-order (O(α3
s ))

effect.
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3. Calculations of perturbative contributions

As suggested in Ref. [21], it is convenient to fix the overall normalization
in the theoretical prediction for Bsγ with the help of quantities extracted
from the semileptonic decay measurements, namely the inclusive branch-
ing ratio B(B̄ → Xc`ν̄), and the so-called semileptonic phase-space factor
C = |Vub/Vcb|2 B(B̄ → Xc`ν̄)/B(B̄ → Xu`ν̄). In such a case, the relevant
perturbative quantity to be considered is

Γ [b→ Xsγ]Eγ>E0

Γ [b→ Xueν̄]
=

∣∣∣∣V ∗
tsVtb
Vub

∣∣∣∣2 6αem

π

∑
i,j

Ci(µb)Cj(µb)Kij . (6)

Both Kij and Ci(µb) are evaluated order-by-order in α̃s ≡ αs(µb)
4π

Ci(µb) = C
(0)
i + α̃sC

(1)
i + α̃2

s C
(2)
i + . . . , (7)

Kij = K
(0)
ij + α̃sK

(1)
ij + α̃2

s K
(2)
ij + . . . (8)

All the explicitly displayed terms in the above expansions are now known
in a complete manner, except for several Next-to-Next-to-Leading Order
(NNLO) quantities K(2)

ij . Among the incompletely known NNLO correc-

tions, the most important ones are K(2)
27 and K

(2)
17 . Their dependence on

z = m2
c(µc)
m2
b

and δ = 1− 2E0
mb

can be expressed as follows:

K
(2)
27 (z, δ) = A2 + F2(z, δ)− 27

2 fq(z, δ) + fb(z) + gc(z, δ) + . . . , (9)

K
(2)
17 (z, δ) = −1

6K
(2)
27 (z, δ) +A1 + F1(z, δ) + . . . , (10)

where ellipses stand for terms proportional to ln(µb/mb), ln2(µb/mb),
ln(µc/mc), or vanishing in the limit mb → mpole

b . The functions fb, gc
and fq originate, respectively, from diagrams with closed loops of the bot-
tom, charm and light (u, d, s) quarks on the gluon lines [22–24]. The masses
of the light quarks have been neglected, and the coefficient at fq has been
adjusted in such a manner that the terms accounted for in the Brodsky–
Lepage–Mackenzie (BLM) approximation [25] do not affect Ai + Fi(z, δ).

The functions Fi(z, δ) stand for those NNLO contributions toK(2)
i7 whose

dependence on z and δ remains unknown. The additive constants Ai are
fixed by imposing Fi(0, 1) = 0. In Ref. [3], an explicit calculation of the
considered corrections was performed at z = 0 and δ = 1. It gave A1 '
22.605 and A2 ' 75.603. Next, the functions Fi(z, δ) were estimated using
an interpolation of Fi(z, 1) in z between Fi(0, 1) = 0 and the asymptotic
large-z expressions determined in Ref. [26]. The interpolated functions were
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assumed to be linear combinations of fq(z, 1), K(1)
27 (z, 1), z d

dzK
(1)
27 (z, 1) and

a constant term. The boundary conditions at z = 0 and at large z were
sufficient to determine such linear combinations in a unique manner. Our
choice of the four functions for the interpolation was motivated by the fact
that all the effects due to renormalization in the considered corrections are
proportional to these very functions.

The interpolated correction turns out to affect Bsγ by around 5%, with
an uncertainty estimated at the ±3% level. This uncertainty is added in
quadrature to the remaining ones that stem from non-perturbative effects
(±5%), order-α3

s corrections (±3%), and parametric uncertainties (±2%).
With such estimates, the SM prediction for Bsγ at E0 = 1.6GeV amounts
to BSMsγ = (3.36 ± 0.23) × 10−4 [3, 20]. It agrees very well with the current
experimental average Bexpsγ = (3.32 ± 0.15) × 10−4 [27] that is based on
measurements of CLEO [28], Belle [29, 30] and BaBar [31–33]. The present
(±4.5%) experimental uncertainty is going to be reduced to O(3%) level
with the full Belle II dataset [34].

Further improvements in the accuracy of determining the perturbative
contribution to Bsγ require an actual evaluation of Fi(z, 1) for the physical
value of z. Next, one should extend the calculation to δ 6= 1 by consid-
ering the photon energy spectrum away from the endpoint, as in the first
calculations of K(2)

77 [35, 36].
Following the approach of the z = 0 calculation in Ref. [3], Fi(z, 1) can be

determined from four-loop propagator diagrams with unitarity cuts. Exam-
ples of such diagrams are shown in Fig. 4. The corresponding counterterm
contributions have been already evaluated in Ref. [37]. As far as the bare
contributions are concerned, one begins with generation of diagrams and
expressing the considered Q7–Q1,2 interference in terms of 585 309 scalar
integrals in 437 families. All these integrals are linear combinations of a few
hundreds of Master Integrals (MIs), with coefficients being rational functions
of z. Finding the MIs and the corresponding coefficients requires generating
and solving large numbers of linear equations that stem from Integration By
Parts (IBP). So far, the program FIRE [38] has been used for this purpose,
with symmetries supplied by LiteRed [39, 40]. For the most complicated
families, O(1 TB) of RAM and weeks of CPU are necessary at the moment,
which calls for further optimization of the algorithms.

Q2 Q7
b bs

c

Q2 Q7
b bs

c

Q2 Q7
b bs

c

Fig. 4. Sample diagrams for Fi(z, 1) with unitarity cuts indicated by the dashed
lines.
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Once the IBP reduction is over (hopefully soon), a closed set of Differ-
ential Equations (DEs) can be derived for each family of the MIs. Such
equations take the form of

d

dz
In(z, ε) =

∑
k

wnk(z, ε) Ik(z, ε) , (11)

where In stand for the MIs, while wnk(z, ε) are certain rational functions
obtained from the IBP reduction. Boundary conditions for the DEs at large z
are, in principle, much easier to calculate than the MIs themselves. However,
their calculation must be fully automatic, due to the large numbers of the
MIs involved. Next, the DEs can be solved numerically along ellipses in the
complex z plane. Such an approach has been already successfully applied
for the counterterm contributions in Ref. [37].

The ultimate goal of such calculations is suppressing the purely per-
turbative uncertainties roughly twice with respect to the current estimates.
This should give sufficient motivation for reconsidering the non-perturbative
resolved photon contributions, in which case the current state of art is still
given by the 2010 analysis of Ref. [2].

4. Bounds on the 2HDM parameters

As mentioned in the previous section, the current SM prediction for Bsγ
is in a very good agreement with the experimental average. This fact leads to
strong constraints on many interesting extensions of the SM. Here, we shortly
discuss constraints on the Two-Higgs-Doublet Model (2HDM), following the
analysis of Ref. [41]. In that paper, the quantity Rγ = (Bsγ + Bdγ) /Bc`ν was
used instead of Bsγ , which slightly improves the sensitivity. Plots of Rγ as
functions of the charged Higgs boson massMH± in two most popular versions
of the 2HDM, the so-called Model I and Model II, are shown in Fig. 5. At
largeMH± , they tend to the SM prediction RSM

γ = (3.31±0.22)×10−3. One
can see that the plotted 2HDM predictions begin to significantly differ from
the experimental results (dotted lines) for MH± as heavy as 500–700GeV.
The two plots shown in Fig. 5 correspond to particular values of tanβ, the
ratio of vacuum expectation values of the two scalar doublets. In the case
of Model I, the plot corresponds to tanβ = 1, while tanβ = 50 has been
used for Model II. In the latter model, Rγ is a sum of two positive terms,
one of which is independent of tanβ, and the other one is proportional to
cot2 β (becoming negligible for tanβ = 50). In consequence, Rγ gives us an
absolute (tanβ-independent) bound on MH± in Model II. The actual value
of this bound depends on details of its derivation, as elaborated in Ref. [41].
A conservative approach leads to MH± > 580GeV at 95%C.L.
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As far as Model I is concerned, we have Rγ ∼ cot2 β. In consequence,
relevant bounds on MH± are obtained for tanβ ∼< 2 only. For tanβ = 1,
one finds MH± > 445GeV at 95%C.L.
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Fig. 5. Rγ at E0 = 1.6GeV as a function of MH± in Model I with tanβ = 1 (left)
and in Model II with tanβ = 50 (right). Middle lines show the central values, while
the upper and lower ones are shifted by ±1σ. Solid and dashed curves correspond
to the 2HDM and SM predictions, respectively. Dotted lines show the experimental
average Rexp

γ = (3.22± 0.15)× 10−3.

5. Summary

Uncertainties in the SM prediction for Bsγ originate from perturbative
and non-perturbative effects. Improvements in accuracy are necessary in
both cases to match the current and future experimental precision. In the
perturbative case, the main issue is replacing estimates of the NNLO cor-
rections that are based on interpolation in mc by actual calculations at the
physical value of mc. In the non-perturbative case, the resolved photon
contributions generate the main uncertainty. One might wonder whether
methods applied for estimating charm quark loop effects in the exclusive
B → K∗`+`− decays could be useful for B̄ → Xsγ.

As far as constraints on beyond-SM physics are concerned, the most
pronounced bounds from Bsγ are obtained for 2HDM II, in which case the
charged Higgs boson mass below 580GeV is excluded at 95%C.L.
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