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The rare decay B → K∗`+`− is an important mode for indirect search
of new physics due to the measurement of large number of observables in
experiments. Using the most general parametric form of the amplitude in
the Standard Model (SM), we probe the physics beyond Standard Model
in a theoretically clean approach. The model-independent framework has
been implemented in the maximum q2 limit to highlight strong evidence
of right-handed currents, which are absent in the SM. The conclusions de-
rived are free from hadronic corrections. Next, we explain, in terms of a
simple and compelling new physics scenario with only two new parame-
ters, the discrepancies between the SM expectations and the data for the
neutral-current observables RK(∗) , as well as the charged-current observ-
ables R(D(∗)) while being consistent with all other data.
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1. Introduction

It is a historical fact that several discoveries in particle physics were pre-
ceded by indirect evidence through quantum loop contributions. It is for this
reason that significant attention is devoted in studying loop processes. The
muon magnetic moment is one of the best examples of such a process where
precision calculations have been done in order to search for new physics (NP)
by comparing the theoretical expectation with experimental observation. It
is a testimony to such searches for NP beyond the Standard Model (SM)
that both theoretical estimates and experimental observation have reached
a precision, where the hadronic effects even for the lepton magnetic mo-
ment dominate the discrepancy between theory and observation. Indirect
∗ Invited talk presented by R. Sinha at the Cracow Epiphany Conference on Advances
in Heavy Flavour Physics, Kraków, Poland, January 9–12, 2018.
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searches for NP often involve precision measurement of a single quantity
that is compared to a theoretical estimate that also needs to be very accu-
rately calculated. Unfortunately, hadronic estimates involve calculation of
long-distance QCD effects which cannot easily be done accurately, limiting
the scope of such searches. There exist, however, certain decay modes which
involve the measurement of several observables that can be related to each
other with minimal assumptions and completely calculable QCD contribu-
tions within the SM. A well-known example [1–5] of such a process is the
semileptonic penguin decay B → K∗`+`−, where ` is either the electron or
the muon. In Sec. 2, we briefly discuss the results obtained in our recent
studies on this mode and refer the reader to Refs. [3, 5] for a detailed de-
scription. In Sec. 3, we have identified the minimal modification to the SM
in terms of an effective theory that can explain [6] the anomalies in both
the charged- and the neutral-current decays of bottom-mesons, a task that
has been challenging on account of the seemingly contradictory requirements
that the data demands.

2. The rare decay B → K∗`+`−

In this section, first, we briefly discuss the theoretical framework adopted
to comprehensively consider almost all possible contributions within the SM
for the decay B → K∗`+`− and then use the model-independent framework
to look for a possible NP scenario i.e., right-handed (RH) currents. The
most general SM decay amplitude for B → K∗`+`− reads

A(B(p)→ K∗(k)`+`−) =
GFα√

2π
VtbV

∗
ts

[{
C9

〈
K∗|s̄γµPLb|B̄

〉
−2C7

q2

〈
K∗|s̄iσµνqν(mbPR +msPL)b|B̄

〉
−16π2

q2

∑
i={1−6,8}

CiHµi
}

×¯̀γµ`+ C10

〈
K∗|s̄γµPLb|B̄

〉
¯̀γµγ5`

]
, (1)

where, p = q+ k and q is the dilepton invariant momentum and C7, C9 and
C10 are the Wilson coefficients. The non-local hadron matrix element Hµi is
given by [7, 8]

Hµi = 〈K∗(k)| i
∫

d4x eiq·xT{jµem(x),Oi(0)}
〈
B̄(p)

∣∣ (2)

which encodes the nonfactorizable contributions arising from charm loop
effect. The amplitude written in Eq. (1) is complete and contains all pos-
sible effects in SM. Assuring Lorentz and gauge invariance, the hadronic
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matrix elements
〈
K∗|s̄γµPLb|B̄(p)

〉
,
〈
K∗|s̄iσµνqνPR,Lb|B̄(p)

〉
and Hµi can

be parametrized in most general form using some “unknown” form factors
X0,1,2,3, Y1,2,3 and Z1,2,3, respectively. These from factors are functions of
q2 and no estimations are used for them throughout the work.

The factorizable and non-factorizable corrections [9] up to all order can
be absorbed into the redefinition of Wilson coefficients C9 and C7 as1

C9 → C̃
(j)
9 = C9 + ∆C

(fac)
9

(
q2
)

+ ∆C
(j),(non-fac)
9

(
q2
)︸ ︷︷ ︸

∼
∑

i Ci Zi
j/Xj

, (3)

2(mb +ms)

q2
C7 Yj → Ỹj =

2(mb +ms)

q2
C7 Yj + . . . , (4)

where j = 1, 2, 3 and ∆C
(fac)
9 (q2), ∆C

(non-fac)
9 (q2) are the factorizable and

soft gluon non-factorizable contributions respectively and are proportional
to the ratio Zij/Xj . Note that due to the introduction of new form factors

Zj , an explicit j dependence is induced in the Wilson coefficients C̃(j)
9 .

We start with the observables as defined in Ref. [3] to be the well-known
longitudinal helicity fraction FL and three observables F⊥, A5, AFB which
are related to the CP averaged observables S3, S5, ALHCb

FB measured by
LHCb [10] as follows:

F⊥ =
1− FL + 2S3

2
, A5 =

3

4
S5 , AFB = −ALHCb

FB . (5)

The observables are functions of transversity amplitudes and in the massless
lepton limit, the decay is described by six transversity amplitudes which can
be written in the most general form as [3]

AL,R
λ =

(
C̃λ9 ∓ C10

)
Fλ − G̃λ . (6)

This parametric form of the SM amplitude includes all short-distance and
long-distance effects, factorizable and non-factorizable contributions and res-
onance contributions up to O(GF). Fλ and G̃λ are combinations of the form
factors X0,1,2,3 and Y1,2,3. The RH current operators O′9 and O′10, with
respective couplings C ′9 and C ′10, modify the amplitudes as follows:

AL,R
⊥ =

((
C̃⊥9 + C ′9

)
∓
(
C10 + C ′10

))
F⊥ − G̃⊥ ,

AL,R
‖,0 =

((
C̃
‖,0
9 − C ′9

)
∓
(
C10 − C ′10

))
F‖,0 − G̃‖,0 . (7)

1 Corrections at q2 = 0 are absorbed into C7 to match it with the coefficient of elec-
tromagnetic dipole operator O7 in B → K∗γ decay and remaining contributions into
the coefficient C9.
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With the introduction of notation: rλ = Re(G̃λ)/Fλ−Re(C̃λ9 ), ξ = C ′10/C10,
and ξ′ = C ′9/C10, we construct the following variables:

R⊥ =

(
r⊥
C10
− ξ′

)/
(1 + ξ) , R‖,0 =

(
r‖,0

C10
+ ξ′

)/
(1− ξ) . (8)

At low recoil energy of K∗ meson, only three independent form factors
describe the whole B → K∗`+`− decay and there exists a relation among the
form factors at leading order in 1/mB expansion given by [8, 11], G̃‖/F‖ =

G̃⊥/F⊥ = G̃0/F0 = −κ 2mbmBC7/q
2, where κ ≈ 1. Hence, at the maximum

point in q2 i.e., the kinematic endpoint q2
max, one defines r such that r0 =

r‖ = r⊥ ≡ r. Therefore, Eq. (8) implies that in the presence of RH currents,
one should expect R0 = R‖ 6= R⊥ at q2 = q2

max without any approximation.
Interestingly, this relation is unaltered by non-factorizable and resonance
contributions [12] at this kinematic endpoint. To test the relation among
Rλs in light of LHCb data, first defining δ ≡ q2

max − q2, we expand the
observables FL, F⊥, AFB and A5 around q2

max as follows:

FL = 1
3 + F

(1)
L δ + F

(2)
L δ2 + F

(3)
L δ3 , F⊥ = F

(1)
⊥ δ + F

(2)
⊥ δ2 + F

(3)
⊥ δ3 ,

AFB = A
(1)
FBδ

1
2 +A

(2)
FBδ

3
2 +A

(3)
FBδ

5
2 , A5 = A

(1)
5 δ

1
2 +A

(2)
5 δ

3
2 +A

(3)
5 δ

5
2 .

(9)

The zeroth order coefficients of the observable expansions are assumed from
the constraints arising from Lorentz invariance and decay kinematics derived
in Ref. [12], whereas all the higher order coefficients are extracted by fitting
the polynomials with 14 bin LHCb data as shown in Fig. 1.

The limiting analytic expressions for Rλ at q2 = q2
max are

R⊥
(
q2

max

)
=

ω2 − ω1

ω2
√
ω1 − 1

, R‖
(
q2

max

)
=

√
ω1 − 1

ω2 − 1
= R0

(
q2

max

)
, (10)

where ω1 =
3F

(1)
⊥

2A
(1) 2
FB

and ω2 =
4
(

2A
(2)
5 −A

(2)
FB

)
3A

(1)
FB

(
3F

(1)
L + F

(1)
⊥

) . (11)
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Fig. 1. (Color online) An analytic fit to 14-bin LHCb data using the Taylor expan-
sion at q2max for the observables FL, F⊥, AFB and A5 are shown as the solid/brown
curves. The ±1σ error bands are indicated by the light gray/brown shaded re-
gions, derived including correlation among all observables. The points with the
black error bars are LHCb 14-bin measurements [10].

It can be seen that ω1, ω2 contain coefficients which are extracted com-
pletely from data and their estimates using LHCb measurements are: ω1 =
1.10± 0.30 (1.03± 0.34) and ω2 = −4.19± 10.48 (−4.04± 10.12), where the
first values are determined using A(1)

FB and the values in the round brackets
use 2A

(1)
5 . The variables Rλs can be estimated using data only and the al-

lowed region is shown in gray bands in Fig. 2. A significant deviation is seen
from a slope of 45o line (black/red line) which denotes R⊥ = R‖ = R0 and
thus hints toward the presence of RH currents without using any estimate
of hadronic contributions.

To quantify the RH couplings, we use Eq. (8) and the results are shown
in Fig. 3. The left panel uses the SM estimate of parameter r/C10 [11] and
the SM prediction for C ′10/C10 and C ′9/C10 (the origin) is at more than 5σ
confidence level. We have performed another analysis where the input r/C10

is considered as nuisance parameter and the result is shown in the right most
panel of Fig. 3. It can be seen that the uncertainties in fitted parameters
C ′10/C10 and C ′9/C10 have increased due to the variation of r/C10 and the
SM prediction still remains on a 3σ level contour providing evidence of RH
currents.
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Fig. 2. (Color online) Allowed regions in R⊥–R‖,0 plane are shown in light and dark
gray bands at 1σ and 5σ confidence level, respectively. The black/red straight line
corresponds to the case R⊥ = R‖,0 i.e. the absence of RH couplings. The SM
prediction denoting by the black star corresponds to R⊥ = R0 = R‖ = 0.84.

r/C10 = 0.84
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Fig. 3. (Color online) (Left panel) In C ′10/C10–C ′9/C10 plane, the light gray/yellow,
gray/orange and dark gray/red regions correspond to 1σ, 3σ and 5σ significance
level, respectively, where SM input for r/C10 [11] is used. The best fit values of
C ′10/C10 and C ′9/C10, with ±1σ errors are −0.63± 0.43 and −0.92± 0.10, respec-
tively. (Right panel) The same color code as the left panel figure. The input r/C10

is varied as a nuisance parameter and hence the obtained uncertainties in C ′10/C10

and C ′9/C10 are increased. The SM predictions for both the plots are indicated by
the stars. Strong evidence of RH current is pronounced from the plots.



Searching New Physics with Beauty Mesons 1377

2.1. Some sanity checks
2.1.1. Resonance effects

Resonances can alter the results that are obtained using a polynomial
fit to the observables in Eq. (9), where it is assumed that resonances are
absent. To study the systematics due to resonances, we assume observ-
ables calculated using theoretical estimates of form factors (LCSR [13] for
q2 ≤ 15 GeV2 and Lattice QCD [14] for q2 ≥ 15 GeV2 region) and Wilson
coefficients. Following the parametrization from Ref. [15], we include the
J/ψ (1S), ψ(2S), ψ(3770), ψ(4040), ψ(4160) and ψ(4415) resonances in our
study. The procedure uses the function g(mc, q

2), in Wilson coefficient Ceff
9 ,

which includes the cross-section ratio Rcc̄had(q2) = Rcc̄cont(q
2)+Rcc̄res(q

2), where
the resonance effects are incorporated as

Rcc̄res

(
q2
)

= Nr

∑
V=J/ψ ,ψ′...

9 q2

α

BR(V → `+`−)Γ VtotΓ
V
had(

q2−m2
V

)2
+m2

V Γ
V 2
tot

eiδV . (12)

Here, Γ Vtot is the total width of the vector meson V , δV is an arbitrary relative
strong phase associated with each of the resonances andNr is a normalization
factor that fixes the size of the resonance contributions compared to the
non-resonant background. A random simulation has been done by varying
each resonance phases δV and a sample of plots for different observables
are given in link [16] as movies. It can be seen from the plots that when
resonances are included, AFB and A5 always decrease in magnitude for the
15 GeV2 ≤ q2 ≤ 19 GeV2 region. Hence, if the effect of resonances could
somehow be removed from the data, the values of AFB and A5 would be
larger in magnitude which, in turn, will decrease the value of observable ω1

compared to the values obtained from fits to experimental data in which
resonances are automatically present. As the current obtained values of ω1

from data are already close to unity, any further reduction will force ω1 into
the un-physical domain and increase the significance of deviation from the
SM.

2.1.2. Polynomial fit convergence

In this section, we study the systematics of the fits to coefficients A(1)
FB,

A
(2)
FB, F

(1)
L , A(1)

5 , A(2)
5 and F (1)

⊥ , which appear in the expressions of ω1 and
ω2 given in Eq. (11). By varying the order of the polynomial fitted from 2
to 4, and also the number of bins from the last 4 to 14 bins, each extracted
coefficients is shown in Fig. 4. We find that all the fitted coefficients show a
good degree of convergence even when larger number of bins are added. The
values obtained for the coefficients are consistent within ±1σ regions apart



1378 R. Mandal, R. Sinha

from some small mismatches in F (1)
⊥ and A(1)

5 . We choose as a benchmark the
third order polynomial fit to all 14 bins and to validate this choice, we also
perform an identical fit for observables generated using form factor values
[13, 14] and the results are shown in Fig. 5. The fits to SM observables are
satisfactory for the entire q2 region.
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Fig. 4. (Color online) Systematic study of the coefficients of observables with the
variation of polynomial order and the number of bins used for the fit. The color
code for the different orders of the fitted polynomial is depicted in the panel. The
x-axis denotes the number of bins used for the fit from last 4 to 14 bins. Coefficient
values show good convergence within the ±1σ error bars except for few bins in the
F

(1)
⊥ and A(1)

5 distributions. The 4-bin order 4 polynomial fit shows disagreement
which is expected.
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Fig. 5. (Color online) Fits with third order polynomials to the theoretical SM
observables, generated using LCSR form factors for q2 ≤ 15 GeV2 [13] and Lat-
tice QCD form factors for q2 ≥ 15 GeV2 [14]. The gray/blue error bars are bin
integrated SM estimates and the solid black/blue curve with the shaded region
represents the best fit polynomial with ±1σ errors. The fits nicely explain the SM
observables including the zero-crossing of asymmetries AFB and A5.

3. Lepton flavor non-universality

The intriguing discrepancies between the SM expectations and the data
for the neutral-current observables RK and RK∗ , as well as the charged-
current observables R(D) and R(D∗) have drawn great attentions. With
the ratios of partial widths, these observables are particularly clean probes
of physics beyond the SM. The ratios for charged-current are defined as

R
(
D(∗)

)
≡

BR
(
B → D(∗)τν

)
BR

(
B → D(∗)`ν

) , ` ∈ {e, µ} (13)

and analogous ratios for the neutral-current sector

RK(∗) ≡
BR

(
B → K(∗)µµ

)
BR

(
B → K(∗)ee

) . (14)

The measurements for R(D) and R(D∗) [17] show ∼ 2.3σ and ∼ 3.4σ
discrepancy respectively. The data on RK [18] and RK∗ [19], on the other
hand, lie systematically below the SM expectations with significance of∼ 2σ.
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In this section, we show that an simultaneous explanation can be achieved
in an effective theory with only two unknown parameters. We propose a
model involving two four-fermi operators in terms of the second and third
generation (weak-eigenstate) fields [6]

HNP = A1

(
Q̄2LγµL3L

) (
L̄3Lγ

µQ3L

)
+A2

(
Q̄2LγµQ3L

)
(τ̄Rγ

µτR) , (15)

where we demand A2 = A1. This operator contributes to R(D(∗)), however,
the contribution to RK(∗) can be generated by the simplest of field rotations
for the left-handed leptons from the unprimed (flavor) to the primed (mass)
basis, namely,

τ = cos θ τ ′ + sin θ µ′ , ντ = cos θ ν ′τ + sin θ ν ′µ . (16)

A chi-square fit to observables R(D), R(D∗), RK , Rlow
K∗ , R

cntr
K∗ , dBR(Bs →

φµµ)/dm2
µµ (in the bin m2

µµ ∈ [1 : 6] GeV2) with best fit points A1(=

A2) = −2.92TeV−2, sin θ = ±0.022 provides a reasonable explanation to
all observables except for Rlow

K∗ , while being consistent with all data. We
illustrate, in Fig. 6, that allowing a 20% breaking of the relation as given
by A2 = 4A1/5, the fit can be improved remarkably. The χ2/d.o.f. is equal
to 2 in the region allowed by B+ → K+µ−τ+ upper limit. The origin of
this split between the Ai can be attributed as the difference to the quantum
numbers of the leptonic fields under an as yet unidentified gauge symmetry,
with the attendant anomaly cancellation being effected by either invoking
heavier fermionic fields or through other means.
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Fig. 6. The fit for A2 = 4A1/5, with the bands around the best-fit points corre-
sponding to 95% and 99% C.L. Also shown are the 1σ bands from RK(∗) and R(D),
and the 95% upper limits from Bs → ττ and B+ → K+µ−τ+.
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4. Summary

— A formalism has been developed to incorporate almost all possible
effects within the SM. The approach we have adopted in our work
differs from other approaches [20] in literature as we have no or minimal
dependency on hadronic uncertainties.

— A strong evidence of RH currents is found where the conclusions are
derived at endpoint limit.

— The detailed study of resonance effects strengthen the conclusion de-
rived here.

— A systematic study, by varying the polynomial order (Eq. (9)) and
the number of bins used to fit the polynomials, shows a very good
convergence for fit coefficients.

— The finite width effect of K∗ meson has also been considered where
the position of the kinematic endpoint q2

max is varied over a range
considering width of K∗ ∼ 50MeV. Using a weighted average over the
Breit–Wigner shape for K∗ meson, the ω1 and ω2 values are found well
within the ±1σ uncertainties of the results obtained without the width
effect.

— In the later part of this article, in terms of effective operators we show
a possible explanation to all the lepton non-universal anomalies seen
in B decays.

— The model has only two new parameters and predicts some interesting
signatures both in the context of B decays, especially in Bs → ττ ,
B → K(∗)µτ modes, as well as in high-energy collisions.

— We conclude that it is a very interesting era for B physics and there is
need for more data from experiments to confirm/falsify the presence
of the NP scenarios presented here.

We would like to thank D. Choudhury, A. Karan, A. Kundu and
A.K. Nayak for collaboration on different parts of the work presented in
the paper.
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