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Reparametrization invariance (RPI) relates different orders in the heavy-
quark expansion. We discuss the implications of RPI for total rates of
inclusive decays. The obtained results are manifestly RPI, allowing for a
re-summation of higher-order terms in the heavy-quark expansion, which
reduces the number of independent parameters.
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1. Introduction

The Heavy-Quark Expansion (HQE) has become an indispensable tool to
study inclusive decays [1], both for the extraction of the CKM parameters
from inclusive semileptonic processes as well as in the search for physics
beyond the Standard Model. The HQE has been studied extensively in
both the perturbative regime as well as in the non-perturbative regime to
achieve the highest possible accuracy on e.g. the CKM element Vcb [2].

In defining the HQE, a time-like vector v has to be introduced. The
choice for v is not unique and the final result should be v-independent. This
reparametrization invariance (RPI) has been studied in detail [3–8]. In fact,
it has been noted that RPI relates different orders in the HQE and that the
coefficients of operators of different order in the 1/m expansion are related
exactly by RPI [7, 8].

We recently extended these existing works [9], and showed that RPI
allows for a re-summation of towers of operators. The final result can be
written in terms of matrix elements of operators and states defined in full
QCD. Our manifest RPI formalism also reduces the number of independent
parameters, which in the standard formulation is only implicitly realized.
Here, we summarize this recent work [9].
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2. Reparametrization invariance of the Heavy-Quark Expansion

We start by setting up the Operator Product Expansion (OPE) with
fields and states defined in full QCD [10]. The decay rate of a heavy (ground-
state) B meson, mediated by an effective Hamiltonian density Heff is

Γ ∝
∑
X

(2π)4δ4(PB − PX)|〈X|Heff |B(v)〉|2

=

∫
d4x 〈B(v)|Heff(x)H†eff(0)|B(v)〉

= 2Im

∫
d4x 〈B(v)|T

{
Heff(x)H†eff(0)

}
|B(v)〉 , (1)

where we used the optical theorem to relate the matrix elements to the time-
ordered product. This matrix element still contains the heavy-quark mass,
which we make explicit by applying a field-redefinition

Q(x) = exp(−im(v · x))Qv(x) , (2)

which splits the heavy-quark momentum into pB = mbv + k, where the
residual momentum k ∼ iD Qv. Note that Qv(x) is still the field defined in
full QCD. The equations of motion give

Qv = /vQv +
i /D

mb
Qv ,

(ivD)Qv = − 1

2mb

(
i /D
) (
i /D
)
Qv = − 1

2mb
(iD)2Qv −

1

2mb
(σ ·G)Qv , (3)

where (σ ·G) ≡ (−iσµν)(iDµ)(iDν).
Applying this field-redefinition gives∫

d4x 〈B(v)|T
{
Heff(x)H†eff(0)

}
|B(v)〉

=

∫
d4x e−imbv·x〈B(v)|T

{
H̃eff(x)H̃†eff(0)

}
|B(v)〉 , (4)

where H̃eff is the effective Hamiltonian for the field Q̄v. The OPE, expressed
as a series in inverse powers of mb, takes the form of

R(S) =

∫
d4xe−im(S·x)T [O1(x)O2(0)] =

∑
n,i

C
(n)
i (S)O(n)

i , (5)

where S = v − q
mb

and q is the momentum transfer. The O1,2 are local

renormalized operators and O(n)
i are local operators ordered by increasing

dimension and C(n)
i the corresponding Wilson coefficients.
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The total rate is then obtained via the optical theorem by taking a
forward matrix element of R with the initial state |B(pB)〉

2mBΓ = 〈R〉 ≡ 〈B(pB)|R|B(pB)〉 . (6)

At tree level, the operators O(n)
i can be written in terms of the field Qv

and chains of covariant derivates

R(S) =

∞∑
n=0

∑
Γ

C(n,Γ )
µ1...µn(S)⊗ Q̄v(iDµ1 . . . iDµn)Qv , (7)

where the sum Γ runs over the 16 Dirac matrices and

C(n,Γ )
µ1...µn = 1

4Tr
[
C

(n)
µ1...µn

]
. (8)

Relation (7) is RPI as long as the full sum is taken into account. A repara-
metrization transformation δRP, corresponding to a infinitesimal change
vµ → vµ + δvµ, gives

δRPvµ = δvµ ,

δRPiDµ = −mbδvµ , (9)

with v · δv = 0. The reparametrization transformation thus relates subse-
quent orders in the 1/mb expansion. More explicitly, applying δRP to R(S),
gives

δRPR(S) = 0 =
∞∑
n=0

[
δRPC

(n)
µ1...µn

]
Q̄v(iD

µ1 . . . iDµn)Qv

+

∞∑
n=0

C(n)
µ1...µn

[
δRPQ̄v(iD

µ1 · · · iDµn)Qv
]

=

∞∑
n=0

[
δRPC

(n)
µ1···µn

]
Q̄v(iD

µ1 · · · iDµn)Qv

−mb

∞∑
n=0

C(n)
µ1...µn

[
δvµ1 Q̄v(iD

µ2) . . . (iDµn)Qv

. . .+ δvµn Q̄v(iD
µ1) · · · (iDµn−1)Qv

]
. (10)

This shows that R(S) can only be an RPI quantity if there is a cancellation
between different orders in the OPE. This is achieved only if the coefficients
satisfy

δRPC
(n)
µ1...µn(S) = mδvα

(
C(n+1)
αµ1...µn(S) + . . .+ C(n+1)

µ1...µnα(S)
)
. (11)

We will explicitly show how we use this remarkable relation, to re-sum the
different operators in the HQE.
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2.1. Scalar toy-model

To simplify the discussion, we first consider a toy-model with a scalar
quark field φv, which satisfies the equation of motion[

(iD)2 −m2
]
φv = 0 . (12)

We define this scalar quark to decay into a lighter scalar quark and a particle
without QCD interactions. We then redefine the scalar field using

φ(x) =
1√
2mb

exp [−imb(vx)]φv(x) , (13)

where we have introduced a normalization factor that makes the mass di-
mension of φv different from that of φ. Considering now the total decay
rate, we find

R = c(0)φ†vφv + c(1)
µ φ†v(iD

µ)φv + c(2)
µν φ

†
v(iD

µ)(iDν)φv

+c(3)
µαν φ

†
v(iD

µ)(iDα)(iDν)φv + . . . , (14)

where the coefficients c(n) depend only on v. These coefficients can be decom-
posed into linear combinations of all possible tensor structures containing
vµ and gµν (since v2 = 1). We write

c(0)(v) = a(0) , (15)
c(1)
µ (v) = a(1)vµ , (16)

c(2)
µν (v) = a(2)gµν + b(2)vµvν , (17)

c(3)
µαν(v) = x

(3)
1 vαgµν + x

(3)
2 vνgµα + x

(3)
3 vµgνα + x

(3)
4 vµvαvν . (18)

For the leading-order term, we find δRP c
(0) = 0, such that the decay rate

Γ =
1

2mB
〈R〉 = a(0) 1

2mB

〈
φ†vφv

〉
. (19)

This leading-order matrix element is normalized using the conserved vec-
tor current for scalar quarks as〈

φ†vφv

〉
≡ 2MBµ3 = 2MB

(
1− µ2

π

2m2
b

)
= 2mb

〈
φ†φ
〉
, (20)

which re-absorbes the well-known kinetic term µ2
π in µ3. We note that this

matrix element is equivalent to the full QCD operator (with the normaliza-
tion factor following from Eq. (13)).
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Applying the RPI equation (11) to the first-order term gives

δRPc
(1)
µ = a(1)δvµ = mb δv

α
(
c(2)
αµ + c(2)

µα

)
= 2mbδvµa

(2) , (21)

leading to a relation between a(1) and a(2). Combining these terms gives

a(1)φ†v

(
(ivD) +

1

2mb
(iD)2

)
φv = 0 , (22)

which vanishes by the equation of motion. In fact, this specific combination
is always RPI, as we shall demonstrate for the higher-order terms. Since
this term vanishes, there is no first-order (1/mb term), thus reproducing the
well-known result.

Similarly, for the second-order term, we obtain

δRPc
(2)
µν = b(2)(δvµvν + vµδvν) = mb δv

α
(
c(3)
µνα + c(3)

µαν + c(3)
αµν

)
= mb

(
x

(3)
1 + 2x

(3)
2

)
δvµvν +mb

(
x

(3)
1 + 2x

(3)
3

)
δvνvµ . (23)

Collecting the terms proporational to b(2) gives

b(2)φ†v

(
(ivD) +

1

2mb
(iD)2

)2

φv = 0 , (24)

which vanishes again by the equation of motion, thus leaving also no second-
order term. In fact, this observation allows us to generalize our formalism.
The genuine nth order terms can be obtained using

δvα
(
c̃(n)
µ1...µnα + . . . c̃(n)

αµ1...µn

)
= 0 , (25)

since coefficients that do not satisfy this relation will be related by RPI to
lower-order coefficients.

Continuing in a similar way with the higher-order terms, we find that
the only new third-order term is the Darwin term

φ†v [iDµ, [(ivD), iDµ]]φv . (26)

In fact, when considering the fourth-order (1/m4
b) terms, we find that

(ivD) in this operator gets completed to the RPI combination(
(ivD) +

1

2mb
(iD)2

)
. (27)
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So we redefine the Darwin term as

2MBρ
3
D =

〈
φ†v

[
iDµ,

[
(ivD) +

1

2mb
(iD)2, iDµ

]]
φv

〉
. (28)

At 1/m4
b , we find only two independent RPI parameters, which we define

as [9]

2MBr
4
G ≡

〈
φ†v [iDµ, iDν ] [iDµ, iDν ]φv

〉
∝
〈
~E2 − ~B2

〉
,

2MBr
4
E ≡

〈
φ†v [(ivD), iDµ, ] [(ivD), iDµ]φv

〉
∝
〈
~E2
〉
. (29)

We have chosen these parameters in such a way that they have a clear
physical interpretation in terms of the chromo-electric and magnetic fields.
We thus find only four independent parameters µ3, ρ

3
D and r4

G, r
4
E up to

1/m4
b in our scalar toy-model when considering total decay rates. This is a

reduction compared to the 6 parameters (µ2
π, ρ

3
D,m1,m2,m3,m4) previously

found [11]. The four independent parameters depend in a nontrivial way on
the mass mb and actually contain a re-summation of higher-order terms in
the HQE expansion dictated by RPI. The final parameters are RPI, which
can be made manifest by re-writing the matrix elements in terms of full
QCD states and propagators [9].

2.2. Total rate for real quarks

For real quarks the discussion is similar, except that the coefficients now
depend also on the Dirac structure. See [9] for a detailed description. For
real quarks, the normalization gets an additional term

〈B|b̄vbv|B〉 ≡ 2MBµ3 = 2MB

(
1−

µ̂2
π − µ̂2

G

2m2
b

)
, (30)

where
2MBµ

2
G ≡

1

2
〈B|b̄v [iDµ, iDν ] (−iσµν)bv|B〉 . (31)

Including the normalization µ3, µ2
G and ρ3

D, we find in total 8 indepen-
dent parameters up to 1/m4

b . At 1/m4
b , we define besides the r4

E and r4
G in

Eq. (29) [9]

2mBs
4
B =

〈
Q̄v [(iDµ) , (iDα)] [(iDµ) , (iDβ)]

(
−iσαβ

)
Qv

〉
∝
〈
~σ · ~B× ~B

〉
,

2mBs
4
E =

〈
Q̄v [(ivD) , (iDα)] [(ivD) , (iDβ)]

(
−iσαβ

)
Qv

〉
∝
〈
~σ · ~E× ~E

〉
,

2mBs
4
qB =

〈
Q̄v [iDµ , [iDµ , [iDα , iDβ]]]

(
−iσαβ

)
Qv ∝

〈
2 ~σ · ~B

〉〉
, (32)

where we also indicated their physical interpretation. Again, comparing with
[11] shows a reduction of independent parameters.
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2.3. Example: Tree level B → Xsγ

To demonstrate our method, we briefly discuss the power corrections to
B → Xsγ. Focussing on the tree-level contribution only and considering
only the contribution from

λ

2
s̄σµν(1− γ5)bFµν , (33)

we find for massless s quarks

T = −2λ2b̄v

[
σµαq

α

(
1

/S + i /D

)
σνβq

β 1

q2

]
bv , (34)

where S = p − q, and q is the photon momentum. Expanding the s quark
propagator, we find for the total rate [9]

Γ =
λ2m3

b

4π

[
µ3 −

2µ2
G

m2
b

−
10ρ3

D

3m3
b

− 1

3m4
b

(
4r4
G + 4r4

E +
s4
qB

4
− 2s4

E

)]
, (35)

which indeed has the expected reduced number of coefficients.

3. Conclusion

We recently studied reparametrization invariance of the heavy-quark ex-
pansion, using a manifestly RPI set-up [9]. This set-up allows us to re-sum
towers of operators and reduces the number of independent parameters for
the total rate. Our results are derived at tree level, but most of the relations
hold to all orders in αs. However, when considering radiative corrections,
the OPE in Eq. (7) should be extended to also include four-fermion oper-
ators such as (b̄q q̄b). In addition, radiative corrections to the color-octet
operators (those containing the chromo-electric field) will also introduce ad-
ditional color structures not present at tree level [13, 14]. Finally, the work
on the extension of this set-up to differential decay rates is in progress.
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