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In this paper, we study the relativistic, steady state, optically thin,
advection-dominated accretion disks around the rotating black holes. We
study axisymmetric and vertically averaged disks. For shear stress vis-
cosity, the exact relations of the four-velocity with no approximation are
derived. We effort to derive the general and analytic relation for density,
relativistic enthalpy, temperature, pressure and inertial energy. We use the
radial model for the radial component of four-velocity. In the radial model,
the figures of density etc. are plotted. The influences of shear and bulk
coefficients and spin of the black hole etc. are studied.
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1. Introduction

The relativistic accretion disks around the black holes were studied by
many authors. Viscosity is important for energy distribution, so many au-
thors used the different way to study viscosity and its influences. Abramow-
icz et al. [1] used the non-relativistic α model viscosity in the study of accre-
tion disks in the Kerr metric. Gammie and Popham [2] used non-relativistic
and relativistic casual viscosity to study the thin ADAF disks in the Kerr
metric. Takahashi [3] studied the transonic accretion disks around the ro-
tating black holes by using relativistic and non-relativistic causal viscosity
in the relativistic accretion disks in the Kerr–Schild coordinate. Moeen [4]
studied the relativistic accretion disks in the Schwarzschild metric with the
radial model for four-velocity and calculated the components of shear stress
tensor and some important variables of disks. Moeen [5] calculated all com-
ponents of shear, bulk, and shear stress tensor in the equatorial plane for
relativistic accretion disks in the Kerr metric.
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We concentrate on the optically thin, advection-dominated accretion
flows around the rotating black holes. In these disks, most of the heat gen-
erated by relativistic viscosity is advected to the black hole, so this disk is of
low luminosity. In the relativistic accretion disks, viscosity has the impor-
tant role in generating and distributing energy. In the relativistic viscosity,
two important components are the rt and rφ components which were calcu-
lated with different methods. In this paper, we use the relations of Moeen
[5] and derive a simplified and global relation for these components which
includes relativistic bulk and shear viscosity. We also use the relativistic
equation of state to calculate some basic variables such as density, relativis-
tic enthalpy, temperature, pressure and inertial energy analytically. In the
previous paper, we see the radial form for radial components of four-velocity,
so the radial model of Moeen [4] is used and then the relationship of density,
relativistic enthalpy, temperature, pressure and inertial energy and also the
influences of relativistic viscosity are seen. Space-time and references frame
are discussed in Sec. 2. Basic equations of the relativistic disks are given in
Sec. 3. Relativistic relations of shear stress viscosity, shear and bulk viscos-
ity are studied in Sec. 4. In Sec. 5, the rt and rφ components of viscosity
are calculated. Density, relativistic enthalpy temperature, pressure, inertial
energy and sound velocity are derived in Secs. 6 and 7. Sample solution is
presented in Sec. 8. Summary and conclusions are given in Sec. 9.

2. Space-time and reference frames

We study the relativistic, steady state, axisymmetric accretion disks
around the rotating black holes with the zero magnetic field. Spherical
coordinate system (t, r, θ, φ) is used. All calculations are done in the Boyer–
Lindquist coordinates (BLF), so the components of the Kerr metric gµν , and
its inverse, gµν in the BLF are:

gtt = −
(
1− 2mr

Σ

)
, grr =

Σ

∆
, gθθ = Σ ,

gφφ =
A sin2 θ

Σ
, gtφ = −2mar sin2 θ

Σ
, (1)

gtt = −
(

A

∆Σ

)
, grr =

∆

Σ
, gθθ =

1

Σ
,

gφφ =
1

∆ sin2 θ

(
1− 2mr

Σ

)
, gtφ = −2mar

Σ∆
, (2)

where m = GM/c2 is the geometric mass, M is the black hole mass, G is
the gravitational constant and c is the speed of light, Σ = r2 + a2 cos2 θ,
∆ = r2 − 2Mr + a2 and A = Σ∆+ 2mr(r2 + a2). The angular momentum
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of the black hole, J , is
a = Jc/GM2 , (3)

where −1 < a < 1. For basic scaling in this paper, we set G =M = c = 1.

3. Basic equation

We use the basic equations of relativistic accretion disks around the
rotating black holes that respect mass conservation, radial momentum con-
servation and angular momentum conservation [6]:

−4πHθρu
rr2 = 1 , (4)

Ṁηuφ − 4πHθr
2trφ = Ṁj , (5)

4πHθr
2 ((P + ρ+ u)utu

r + trt ) = Ė . (6)

In those equations, ρ is the density, Hθ is the half thickness, Ṁ is the accre-
tion rate, η = ρ+P+u

ρ is the relativistic enthalpy, Ṁj is the total inward flux
of the angular momentum, Ė is the actual rate of change of the black hole
mass, P is the pressure and u is the internal energy. Similar to Gammie and
Popham [2], we assume Ė ≈ Ṁ = 1. uµ = (ut, ur, uθ, uφ) are components
of four-velocity, uµ = (ut, ur, uθ, uφ) are components of contravariant four-
velocity, (in this paper, we ignore uθ (uθ = 0)), aµ is four acceleration of the
fluid, tµν are components of shear stress viscosity which will be studied.

4. Shear and bulk viscosity and shear stress viscosity

4.1. Bulk and shear tensor

The relativistic bulk tensor (bµν) in the relativistic Navier–Stokes flow
is [7]

bµν = Θhµν , (7)
where hµν = gµν + uµuν is the projection tensor and the expansion of the
fluid world line (Θ = uγ;γ) in this paper is [4]

Θ = uγ;γ =
∂uγ

∂xγ
+ Γ νγνu

γ =
∂uγ

∂xγ
+

2

r
ur = ur,r +

2ur

r
. (8)

The shear rate, σαβ , is [3]

σαβ = 1
2

(
uα;γh

γ
β + uβ;γh

γ
α

)
− 1

3Θhµν

= 1
2 (uµ;ν + uν;µ + aµuν + aνuµ)− 1

3Θhµν , (9)

where aµ = uµ;γu
γ is the contravariant of the four acceleration. Therefore,

the relativistic shear tensor (σµν) of the fluid is

σµν = gµαgνβ(σαβ) =
1
2

(
uµ;γh

γν + uν;γh
γµ
)
− 1

3Θh
µν . (10)
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4.2. Shear stress viscosity

In the relativistic Navier–Stokes equations, the shear stress viscosity is
written as [7]

tµν = −2λσµν − ζΘhµν , (11)

where λ is the coefficient of the dynamical viscosity, ζ is the coefficient of
the bulk viscosity.

5. The rt and rφ components of viscosity

5.1. Simplified relations of rt and rφ components of shear tensor
All components of shear and bulk tensor in the equatorial plan are cal-

culated in [5], but in most papers, two components of shear tensor rt and rφ
are used more often. We use the relation of these two components of Moeen
[5] and we convert them to the facile relations.

The rt and rφ components of shear tensor are [5]:

σtr = σrt = 1
2

[ (
ut,r + Γ trtu

t + Γ trφu
φ
)
hrr + Γ ttru

rhrt + Γ tφru
rhrφ

+
(
ur,r + Γ rrru

r
)
hrt +

(
Γ rttu

t + Γ rtφu
φ
)
htt +

(
Γ rφtu

t + Γ rφφu
φ
)
htφ
]

−1
3

(
ur,r +

2ur

r

)
hrt ,

σrφ = σφr = 1
2

[ (
ur,r + Γ rrru

r
)
hrφ +

(
Γ rttu

t + Γ rtφu
φ
)
htφ

+
(
Γ rφtu

t + Γ rφφu
φ
)
hφφ + (uφ,r + Γ φrtu

t + Γ φrφu
φ)hrr

+Γ φtru
rhrt + Γ φφru

rhrφ
]
− 1

3

(
ur,r +

2ur

r

)
hrφ , (12)

where Γαβγ are the Christoffel symbols (see Appendix A) and in the equatorial
plan (θ = π

2 ), u
µ = (ut, ur, 0, uφ) are the components of the four-velocity.

After some calculations, the rt and rφ components of shear tensor in the
Kerr metric are:

σtr = σrt =
1

6r4∆

[
9(ur)2utr4 + 6(ur)2utr2a2 + 3r2∆2ut,r + 3r4∆ut,r(u

r)2

−18r4auφ(ur)2 − 6a3uφ(ur)2r2 + 3
(
ut
)3
∆2 − 6auφ

(
ut
)2
∆2 +∆(ur)2utr3

+∆uturr4ur,r − 3
(
uφ
)2
r3ut∆2 + 3

(
uφ
)2
a2ut∆2 − 3ut(ur)2r5

−2∆ut(ur)2r7
]
, (13)

σrφ = σφr =
1

6r4∆

[
3
(
ut
)2
uφ∆2 − 6a

(
uφ
)2
ut∆2 +∆(ur)2uφr3

+∆uruφr4ur,r − 3
(
uφ
)3
r3∆2 + 3

(
uφ
)3
a2∆2 + 6a(ur)2utr2
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+3uφ,rr
2∆2 + 3uφ,rr

4∆(ur)2 + 3uφr5(ur)2 − 6uφa2(ur)2r2

−9(ur)2uφr4 − 2∆uφ(ur)2r7
]
. (14)

5.2. The rt and rφ components of shear stress viscosity

In the Kerr metric, the rt and rφ components of bulk tensor are [5]:

btr = brt =

(
ur,r +

2ur

r

)
hrt =

(
ur,r +

2ur

r

)(
urut

)
,

brφ = bφr =

(
ur,r +

2ur

r

)
hrφ =

(
ur,r +

2ur

r

)(
uruφ

)
. (15)

With Eqs. (11), (13), (14) and (15), the rt and rφ components of shear stress
viscosity are:

ttr = trt = − 1

3r4∆

[
9λ(ur)2utr4 + 6λ(ur)2utr2a2 + 3λ∆2r2ut,r

+3λr4∆ut,r(u
r)2 − 18λr4auφ(ur)2 − 6λa3uφ(ur)2r2 + 3λ

(
ut
)3
∆2

−6λauφ
(
ut
)2
∆2 + λ∆(ur)2utr3 + λ∆uturr4ur,r − 3λ

(
uφ
)2
r3ut∆2

+3λ
(
uφ
)2
a2ut∆2 − 3λut(ur)2r5 − 2λ∆ut(ur)2r7 + 3ζut(ur)2r3∆

+3ζuturr4∆ur,r + 3ζut(ur)2r7∆
]
, (16)

trφ = tφr = − 1

3r4∆

[
3λ
(
ut
)2
uφ∆2 − 6λa

(
uφ
)2
ut∆2 + λ∆(ur)2uφr3

+λ∆uruφr4ur,r − 3λ
(
uφ
)3
r3∆2 + 3λ

(
uφ
)3
a2∆2 + 6λa(ur)2utr2

+3λuφ,rr
2∆2 + 3λuφ,rr

4∆(ur)2 + 3λuφr5(ur)2 − 6λuφa2(ur)2r2

−9λ(ur)2uφr4 − 2λ∆uφ(ur)2r7 − 3ζ(ur)2uφr4 + 3ζ(ur)2uφr3∆

+3ζuruφr4∆ur,r + 3ζ(ur)2uφr7
]
. (17)

By similar calculation, the trt and trφ components in the Kerr metric are:

ttr = trt = −
1

3r3∆2

[
3λ∆2ut,rr

3 − 6λ∆r3ut − 6λ∆a2rut − 6λ∆rauφ

+3λ∆3rut,ru
2
rr + 3λr5u3t + 6λr3a2u3t − 12λa2r2u3t − 24λr2au2tuφ

+3λra4u3t + 18λr3au2tuφ + 6λra3uφu
2
t − 3λ∆3utu

2
r + λ∆3ruturur,r

−3λr4utu2φ + 12λr3utu
2
φ − 12λr2utu

2
φ + 3λra2utu

2
φ + λ∆2rutu

2
r

−λ∆2r2utu
2
r − 6ζ∆2rutu

2
r + 3ζ∆3ruturur,r + 6ζ∆2r2utu

2
r

]
, (18)
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trφ = tφr = −
1

3r3∆2

[
− 6λ∆r4uφ − λ∆2r2uφu

2
r + λ∆2ru2ruφ

+3λ∆3ruφ,ru
2
r + 3λ∆2r3uφ,r − 3λ∆3u2ruφ + 3λra2u3φ + 3λr5u2tuφ

+3λra4u2tuφ + 18λ∆ar3ut + 6λ∆ra3ut + 6λ∆ra2uφ + 12λ∆r3uφ

−3λr4u3φ + 12λr3u3φ − 12λr2u3φ + 6λu2tuφr
3a2 − 12λu2tuφr

2a2

−18λutu2φr3a+ 6λutu
2
φra

3 − 24λutu
2
φr

2a+ 6ζ∆2r2u2ruφ

−6ζ∆2ru2ruφ + 3ζ∆3rurur,ruφ

]
. (19)

6. Density and relativistic enthalpy

In [6], density and relativistic enthalpy are derived as

ρ =
utt

r
φ − uφtrt

ur(jut + uφ)
, (20)

η = − 1

ut
− trt
ρurut

, (21)

where trφ and trt are

trφ = grrtrφ , trt = grrtrt . (22)

We put Eqs. (18), (19) and (22) into Eq. (20), so the density is derived as

ρ =
λ

r2∆ur(jut + uφ)

(
2utuφr

3 − 6utr
2uφ − utr2∆uφ,r − utuφ,r∆2u2r

−6ar2u2t − 2a3u2t − 4utuφa
2 + uφr

2∆ut,r − 2au2φ + uφu
2
rut,r∆

2
)
. (23)

From Eqs. (18), (20) and (23) in Eq. (21), η is calculated as

η = − 1

ut
− (jut + uφ)

[
3λ∆2r3ut,r − 6λ∆r3ut − 6λ∆a2rut − 6λ∆rauφ

+3λ∆3ru2rut,r + 3λr5u3t+6λr3a2u3t−12λr2a2u3t−24λr2au2tuφ+3λra4u3t

+18λr3auφu
2
t + 6λra3u2tuφ − 3λ∆3u2rut + λ∆3ruturur,r − 3λr4utu

2
φ

+12λr3utu
2
φ − 12λr2utu

2
φ + 3λra2utu

2
φ + 2λ∆2rutu

2
r − 2λ∆2r2utu

2
r

−6ζ∆2rutu
2
r + 3ζ∆3ruturur,r + 6ζ∆2r2utu

2
r

]/[
3∆λrut

(
2utuφr

3

−6utr2uφ − utr2∆uφ,r − utuφ,r∆2u2r − 6ar2u2t − 2a3u2t − 4utuφa
2

+uφr
2∆ut,r − 2au2φ + uφu

2
rut,r∆

2
)]
. (24)
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7. Temperature, pressure and inertial energy

In the relativistic accretion disks, the generated heat by viscosity is [8]

Q+
vis =

3

2r
3
2

TrφDC
−1 , (25)

where Trφ = 2trφHθ is the vertically integrated viscous stress of rφ compo-
nent and D and C in [9] are:

C = 1− 3

r
+

2a

r
3
2

, D = 1− 2

r
+
r2

a2
=
∆

r2
. (26)

Moreover, the radiation cooling (Q−) is [9]

Q−
rad = 2F =

4brT
4

3kesΣ
, (27)

where F is the flux of the radiation from each face of the disk, br is the radia-
tion constant, T is the temperature of the disk, kes is the electron-scattering
opacity and Σ = 2ρHθ is the vertical density. From energy equation, we
have

Q+
vis −Q

−
rad = Qadv = fQ+

vis , (28)

where Qadv is advected energy, f = Qadv

Q+ shows the relative important of
advection energy. With Eqs. (25)–(28), after some calculation, we have

3∆Hθtrφ(1− f)

r2
(
r

3
2 − 3r

1
2 + 2a

) =
brT

4

3kesρHθ
. (29)

We use Eq. (4) to eliminate Hθ, therefore T is calculated as

T =

 9kes∆trφ

32π2(1− f)brr6ρ (ur)2
(
r

3
2 − 3r

1
2 + 2a

)
 1

4

. (30)

We apply the relativistic equation of state, so the relativistic pressure P
is [10]

P = ρT . (31)
Furthermore, we can calculate the internal energy u and sound velocity cs
from [2]

g(T ) =
45T 2 + 45T + 12

15T 2 + 20T + 8
,

u = ρTg(T ) ,

cs =
T

1 + T [1 + g(T )]
. (32)
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8. Sample solution

In this section, we use the radial model for the radial component of the
four-velocity for Keplerian angular momentum of Moeen [5] to see a sample
solution of ADAF disks relationship

ur̂LNRF = −βr
rn
⇒ urBLF = −β

√
∆

rn+1
,

Ω = Ω+
k =

uφ

ut
=

1

r
3
2 + a

, (33)

where β and n are positive and constant, ur̂LNRF and urBLF are the radial
components of four-velocity in LNRF and BLF, so the four-velocity in BLF
is [5]

uµ =

(
r

3
2 + a

rn+1

√
r2n+1 + rβ2

r2 − 3r + 2ar
1
2

,−β
√
∆

rn+1
, 0,

1

rn+1

√
r2n+1 + rβ2

r2 − 3r + 2ar
1
2

)
.

(34)
Moreover, uµ are calculated with metric components as

uµ =

(
− r

3
2 − 2r

1
2 + a

rn

√
r2n+1 + rβ2

r2 − 3r + 2ar
1
2

,− βr

rn
√
∆
, 0,

r2 − 2ar
1
2 + a2

rn

√
r2n+1 + rβ2

r2 − 3r + 2ar
1
2

)
. (35)

We use the components of the four-velocity and covariant components of
four-velocity to derive the density, relativistic enthalpy, temperature, inertial
energy and sound velocity.

Figures 1 and 2 show the influences of the coefficients of bulk and shear
viscosity on some important thermodynamic quantities. In Fig. 3, the effect
of the spin of the black hole (a) on the thermodynamical quantities is seen.
The influence of n parameter in the components of the four-velocity and
thermodynamic quantities is presented in Figs. 4 and 5. The influence of
β parameter on the covariant components of the four-velocity and thermo-
dynamic quantities is seen in Figs. 6 and 7.
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Fig. 1. Influence of the coefficient of the bulk viscosity in β = 1, n = 1
2 , a = .9 and

λ = 2. Solid curves ζ = 2, dotted curves ζ = 4 and dash-dotted curves ζ = 6.

Fig. 2. Influence of the coefficient of the shear viscosity in β = 1, n = 1
2 , a = .9

and ζ = 2. Solid curves λ = 2, dotted curves λ = 4 and dash-dotted curves λ = 6.
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Fig. 3. Influence of spin of black hole (a) in β = 1, n = 1
2 , λ = 2 and ζ = 2. Solid

curves a = .9, dotted curves a = .5 and dash-dotted curves a = .1.

Fig. 4. Influence of the n parameter in the components of four-velocity in β = 1,
a = .9. Solid curves n = 1

2 , dotted curves n = 1, dash-dotted curves n = 3
2 and

dashed curves n = 1.

9. Summary and conclusions

Components of shear and bulk tensor are calculated in [5], but in this
paper, we derive the simplified and exact relations for the two important
components (rt and rφ) with no approximation which will be useful in the
future calculations. In σtr, all components of the four-velocity are seen but
the sentences with ur and ut are seen more often. Moreover, in σrφ, the
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Fig. 5. Influence of the n parameter (power of r in ur) in β = 1, a = .9, λ = 2 and
ζ = 2. Solid curves n = 1

2 , dotted curves n = 1, dash-dotted curves n = 3
2 and

dashed curves n = 1.

Fig. 6. Influence of β parameter in the components of four-velocity in n = 1
2 , a = .9.

Solid curves β = 1, dotted curves β = 2, and dash-dotted curves β = 4.

sentences with ur and uφ are seen more often. The trt, trφ, trt and trφ are
calculated and we can see that the coefficient of dynamical viscosity (coeffi-
cient of shear viscosity) and coefficient of bulk viscosity are both effective.
We use the relativistic equations of state to obtain the relations of ρ and
η with the four-velocity and coefficient of shear and bulk viscosity. We use
the energy equation to derive temperature, pressure, inertial energy and
sound velocity. For more detailed discussion, we use the radial model of
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Fig. 7. Influence of β parameter in n = 1
2 , a = .9 λ = 2 and ζ = 2. Solid curves

β = 1, dotted curves β = 2, and dash-dotted curves β = 4.

four-velocity of [4]. Figures 1–7 show the treatment of ρ, η, P , T , cs and u
with changing in various variables. In Fig. 1, we see that increasing in the
bulk coefficient, ζ causes increasing in η, T , P , u and decreasing in cs, but
it has no influence in ρ. Figure 2 shows increasing in the coefficient of shear
viscosity, λ causes increasing in ρ, P , cs, u and decreasing in η and T . Fig-
ure 3 shows the influence of specific angular momentum of black holes. In
this figure, we see that the influence of a parameter is important in the inner
radii, especially it is important in η. In Fig. 4, we see that increasing in n
leads decreasing in the values of covariant components of the four-velocity.
In Fig. 5, we see that increasing in n is due to increasing in ρ, T , cs, P , u and
decreasing in η. In Fig. 6, we see that increasing in β leads to increasing in
the values of covariant components of the four-velocity. Figure 7 shows that
increasing in β is due to increasing in ρ, P , u and decreasing in cs, T , but
for η is due to decreasing in the inner radii and increasing in the outer radii.
This sample solution shows that η = 1 is not a good approximation in all
cases. Furthermore, we see that the coefficients of shear and bulk viscosity
are effective. These figures show that the coefficients of shear viscosity have
greater influence and these two coefficients have the clear effects on η.
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Appendix A

The Christoffel symbols in the BLF

The Christoffel symbols (Γαβγ) in the equatorial plan and in our scaling
of the BLF are [5]:

Γ ttt = 0 , Γ trt = Γ ttr =
a2 + r2

r2 (a2 + r2 − 2r)
, Γ ttθ = Γ tθt = 0 ,

Γ ttφ = Γ tφt = 0 , Γ trr = 0 , Γ trθ = Γ tθr = 0 ,

Γ trθ = Γ tθr = 0 , Γ trφ = Γ tφr = −
a
(
a2 + 3r2

)
r2 (a2 + r2 − 2r)

, Γ tθθ = 0 ,

Γ tθφ = Γ tφθ = 0 , Γ tφφ = 0 , Γ rtt =
a2 + r2 − 2r

r4
,

Γ rtr = Γ rrt = 0 , Γ rtθ = Γ rθt = 0 , Γ rtφ = Γ rφt = −
a
(
a2 + r2 − 2r

)
r4

,

Γ rrr =
a2 − r

r (a2 + r2 − 2r)
, Γ rrθ = Γ rθr = 0 , Γ rrφ = Γ rφr = 0 ,

Γ rθθ = −a
2 + r2 − 2r

r
, Γ rθφ = Γ rφθ = 0 ,

Γ rφφ =

(
a2 + r2 − 2r

)
(−r3 + a2)

r4
, Γ θtt = 0 , Γ θtr = Γ θrt = 0 ,

Γ θtθ = Γ θθt = 0 , Γ θtφ = Γ θφt = 0 , Γ θrr = 0 ,

Γ θrθ = Γ θθr =
1

r
, Γ θrφ = Γ θφr = 0 , Γ θθθ = 0 ,

Γ θθφ = Γ θφθ = 0 , Γ θφφ = 0Γ φtt = 0 , Γ φtr = Γ φrt =
a

r2 (a2 + r2 − 2r)
,

Γ φtθ = Γ φθt = 0 , Γ φtφ = Γ φφt = 0 , Γ φrr = 0 ,

Γ φrθ = Γ φθr = 0 , Γ φrφ = Γ φφr =
r3 − a2 − 2r2

r2 (a2 + r2 − 2r)
,

Γ φθθ = 0 , Γ φθφ = Γ φφθ = 0 , Γ φφφ = 0 . (A.1)
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