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In this paper, we study the relativistic, steady state, optically thin,
advection-dominated accretion disks around the rotating black holes. We
study axisymmetric and vertically averaged disks. For shear stress vis-
cosity, the exact relations of the four-velocity with no approximation are
derived. We effort to derive the general and analytic relation for density,
relativistic enthalpy, temperature, pressure and inertial energy. We use the
radial model for the radial component of four-velocity. In the radial model,
the figures of density etc. are plotted. The influences of shear and bulk
coeflicients and spin of the black hole etc. are studied.
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1. Introduction

The relativistic accretion disks around the black holes were studied by
many authors. Viscosity is important for energy distribution, so many au-
thors used the different way to study viscosity and its influences. Abramow-
icz et al. [1] used the non-relativistic & model viscosity in the study of accre-
tion disks in the Kerr metric. Gammie and Popham [2] used non-relativistic
and relativistic casual viscosity to study the thin ADAF disks in the Kerr
metric. Takahashi [3] studied the transonic accretion disks around the ro-
tating black holes by using relativistic and non-relativistic causal viscosity
in the relativistic accretion disks in the Kerr—Schild coordinate. Moeen [4]
studied the relativistic accretion disks in the Schwarzschild metric with the
radial model for four-velocity and calculated the components of shear stress
tensor and some important variables of disks. Moeen [5] calculated all com-
ponents of shear, bulk, and shear stress tensor in the equatorial plane for
relativistic accretion disks in the Kerr metric.
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We concentrate on the optically thin, advection-dominated accretion
flows around the rotating black holes. In these disks, most of the heat gen-
erated by relativistic viscosity is advected to the black hole, so this disk is of
low luminosity. In the relativistic accretion disks, viscosity has the impor-
tant role in generating and distributing energy. In the relativistic viscosity,
two important components are the rt and r¢ components which were calcu-
lated with different methods. In this paper, we use the relations of Moeen
[5] and derive a simplified and global relation for these components which
includes relativistic bulk and shear viscosity. We also use the relativistic
equation of state to calculate some basic variables such as density, relativis-
tic enthalpy, temperature, pressure and inertial energy analytically. In the
previous paper, we see the radial form for radial components of four-velocity,
so the radial model of Moeen [4] is used and then the relationship of density,
relativistic enthalpy, temperature, pressure and inertial energy and also the
influences of relativistic viscosity are seen. Space-time and references frame
are discussed in Sec. 2. Basic equations of the relativistic disks are given in
Sec. 3. Relativistic relations of shear stress viscosity, shear and bulk viscos-
ity are studied in Sec. 4. In Sec. 5, the rt and r¢ components of viscosity
are calculated. Density, relativistic enthalpy temperature, pressure, inertial
energy and sound velocity are derived in Secs. 6 and 7. Sample solution is
presented in Sec. 8. Summary and conclusions are given in Sec. 9.

2. Space-time and reference frames

We study the relativistic, steady state, axisymmetric accretion disks
around the rotating black holes with the zero magnetic field. Spherical
coordinate system (¢,7, 0, ¢) is used. All calculations are done in the Boyer—
Lindquist coordinates (BLF'), so the components of the Kerr metric g,,,, and
its inverse, g"” in the BLF are:

2mr )
9tt=—<1— Z)’ Grr = 7> go9 = X,
Asin? 0 2mar sin? 0
Gop = SR gtqﬁz_?a (1)
A A 1
tt rr_ = 90:7
g - <A2>7 g 27 g 27
1 2mr 2mar
b6 — (12 tp 2T )
g Asin20< b5 > g SA 2)

where m = GM/c? is the geometric mass, M is the black hole mass, G is
the gravitational constant and c is the speed of light, ¥ = 72 + a? cos?#,
A=72—-2Mr+a? and A = XA+ 2mr(r? + a?). The angular momentum
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of the black hole, J, is
a=Jc/GM?, (3)
where —1 < a < 1. For basic scaling in this paper, we set G = M =c¢ = 1.

3. Basic equation

We use the basic equations of relativistic accretion disks around the
rotating black holes that respect mass conservation, radial momentum con-
servation and angular momentum conservation [6]:

—4rHppu'r* = 1, 4)
Mnug — 47TH97”2t; = Mj, (5)
AnHpr? (P +p+u)uu” +17) = E. (6)

In those equations, p is the density, Hy is the half thickness, M is the accre-
tion rate, n = 2 H; *U is the relativistic enthalpy, M7 is the total inward flux

of the angular momentum, E is the actual rate of change of the black hole
mass, P is the pressure and u is the internal energy Slmllar to Gammie and
Popham [2], we assume E ~ M = 1. u* = (u',u",u’, u®) are components
of four-velocity, u, = (u¢, ur, up, ug) are Components of contravariant four-
velocity, (in this paper, we ignore u? (u? = 0)), a* is four acceleration of the
fluid, t*¥ are components of shear stress viscosity which will be studied.

4. Shear and bulk viscosity and shear stress viscosity

4.1. Bulk and shear tensor

The relativistic bulk tensor (b*) in the relativistic Navier-Stokes flow
is 7]

b = eht", (7)
where h*” = g" + ufu” is the projection tensor and the expansion of the
fluid world line (© = uy) in this paper is [4]

ou” ou” 2 2u”
Y= vul = — 4= T
O =ul = 37+F 5 +ou=uy .
The shear rate, o4, is [3]

OaB = 3 (“aﬁhﬁ + ug; ’ym) @hwf

= % (U + Ui + @iy + ayuy) — %@hw ’ ©)

where a;, = u,.,u? is the contravariant of the four acceleration. Therefore,
the relativistic shear tensor (o) of the fluid is

_ g“ag”ﬂ(aaﬁ) 1 (u" R 4+ u hw) _ %@huv. (10)

(®)
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4.2. Shear stress viscosity

In the relativistic Navier—-Stokes equations, the shear stress viscosity is
written as [7]
th = =2 "’ — COR" | (11)

where ) is the coefficient of the dynamical viscosity, ¢ is the coefficient of
the bulk viscosity.
5. The rt and r¢ components of viscosity

5.1. Simplified relations of rt and r¢ components of shear tensor

All components of shear and bulk tensor in the equatorial plan are cal-
culated in [5], but in most papers, two components of shear tensor rt and r¢
are used more often. We use the relation of these two components of Moeen
[5] and we convert them to the facile relations.

The rt and r¢ components of shear tensor are [5]:

o =o"=1 [ (utr + Thut + Ff¢u¢> R+ I "R + Férurhrd’
+ (a4 TLu) B+ (Fg;ut + F[¢u¢> Kt + (r;;tut + F;¢u¢) hfﬂ
_% (UTT + 2%) At )
o = g% = %[(u; 4T R+ (Fg;ut + F;;M) Bt
+ (F(;tut T ) B9 (ufy + Ty’ + Toul )™
FI R 4 ) = (ur, o+ 20 o (12)

where I’ 57 are the Christoffel symbols (see Appendix A) and in the equatorial

plan (6 = 3), ut = (uf,u",0,u®) are the components of the four-velocity.

After some calculations, the rt and r¢ components of shear tensor in the
Kerr metric are:

o =o" = Gr}lA {9(ur)2utr4 + 6(u")?ulr?a® + 37“2A2ufr + 3r4Aufr(ur)2
—18rtau? (u")? - 6au® (u")?r? + 3 (ut)3 A% — 6au? (ut)2 A%+ A(u")2ulr?
+Autu’"r4uf} -3 <u¢’>2 r3ut A% + 3 (u¢)2 a?u' A% — 3ul (u")*r®

—2Aut(ur)2r7} : (13)

0_7"(;5 — O_d)r _ 1

©6riA
3 3
+Auru¢r4ufr -3 <u¢) A% 3 <u¢> a? A% 4 6a(u”)?ulr?

[3 (ut)z u?A? — 6a <u¢>2 ut A% + A(u")?u®r3
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+3ufz,17“2A2 + 3ufz;r4A(ur)2 + 3u®rS (u")? — 6u®a®(u")?r?
—9(u")2ulrt — 2Au¢(ur)2r7} . (14)

5.2. The rt and r¢ components of shear stress viscosity

In the Kerr metric, the rt and r¢ components of bulk tensor are [5]:

2 2u”
th‘ — bT‘t _ (urT + u )hrt < T'T + u > (urut) ’
b /r b /rl
2 2u”
b — b — (uz;+ g)w (+) (we?) . (19

With Egs. (11), (13), (14) and (15), the rt and r¢ components of shear stress
viscosity are:

ttT‘ — trt

2t .4 2, t.2 2 2.2 ¢t
~ 3 4A{9)\( utrt 4+ 6A(u")*u'ra® + 3NA“ru’,
—|—3)\T4AU’T( M2 — 18 rtau® (u")? — 6XaPu® (u")*r? + 3\ (ut)SA2
2
—6Aau? (ut)2 A%+ NA(u")2ulr? + )\Auturr4ur 3\ <u¢) rut A?

2
+3A <u¢> a?ut A% — 3xul (u")2r5 — 220 Aut (u") 2" + 3¢ut (uT) 23 A

+3Cuturr4Au;, + 3Cut(ur)2r7A] , (16)
1 2
ré _ aér _ _ N2, 6 A2 _ o\t A2 2, 6.3
t t 3T4A[3)\(u)uA 6)\a<u> A%+ ANA(W")*u®r
3 3
+)\Auru¢r4ufr -3 (u¢) r3 A% 43\ <u¢) a® A% 4+ 6)a(u”)*ulr?

+3)\uﬁr2A2 + 3Au?;,r4A(uT)2 + 3?0 (u")? — 6 u’a®(u")?r?
—ON(u")2u®rt — 20 Au® (u")2r" — 3¢(u")2urt 4 3¢ (u") 2 ulrd A
+3§uru¢r4Aufr + 3C(ur)2u¢r7} . (17)

By similar calculation, the ¢,; and ?,4 components in the Kerr metric are:

1
ttT‘ - tTt: 3 3A2

+3)\A3rut7rurr + 3\r0u? + 63 a%u) — 120a?r?u} — 2402 autu¢
+3)\7"a4ut3 + 18)\r3aut Ugp + 6Ara’ u¢ut —3a\A3 utuT +AA3 TULUp U
—3)\7“4utu2 + 12)\r3utu2 — 12)\r2utu3, + 3/\7“a2utu?¢ + )\A2rutuz

_)\A2r2utu 6CA27“U75U + 3CA3’I"’UJturur rt 6CA2T2’LL{/’UJ2} ) (18)

T

[3AA2ut S — 6AAT U — 6N Aa’ru, — 6AATaug
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1
tro = lor =—3370

[ — 6AAT Uy — AATP P ugul + AAPruluy,

+3NA U uZ + 3NA g, — 3AA Uy + 3)\7‘a2u2 + 3P udug
+3)\ra4ut2u¢ + 18 Aardu; + 6\ Aradu;, + 6)\Ara2u¢ + 12)\Ar3u¢

—3)\7‘4u¢ + 1273 u¢ — 12)r2 u¢ + 6 utugria
718)\utu¢r a+ 6)\utu¢ra — 24)\utu¢r a—+ 6CA27“ Uy U

—GCAzruTuqs +3¢A3 TUp Uy U | -

6. Density and relativistic enthalpy

In [6], density and relativistic enthalpy are derived as

uply, — ugty

1w
n=-———"

r b
Ut pu Ut

where ¢j and ¢} are

T'T't

T _
6=

— 12)\ufu¢r2a2

u” (Jur +ug)

ro t; = grrtrt

(19)

(20)

(21)

(22)

We put Egs. (18), (19) and (22) into Eq. (20), so the density is derived as

A
r2 Auy (jur + ug)

p:

(2utu¢r3 - 6utr2u¢ — utTQAu(ﬁ,r - utu(b,rAQuz

—6ar2u§ — 2a3u§ — 4utu¢a2 + u¢r2Aut7r — 2aui + u¢u$ut77«A2) . (23)

From Egs. (18), (20) and (23) in Eq. (21), n is calculated as

1
n=———(Jus+ uy) [3)\A2r3ut,r — 6AAT U, — 6MN AUy — 6AATrau,
Ut

F3NA3 Uy + AU 603 aud — 1202 aud —
+18)\r3au¢u? + 6Ara® ut u¢, - 3/\A3u2ut + )\A3ruturuw -
+12Ar3 utu¢ — 12X utu + 3\ra? utu + 2)\A27"utu

—6uyr? Uy — UT Audm" - utu¢,rA2u$ — 6ar? ut

+u¢r2Aut7T - 2au§, + u¢u$ut7rA2)} )

2/\A2r2utu2

—6§A2rutu + 3CA37“uturuM + 6CA2r2utu }/[3A)\rut <2utu¢r

— 242 autu¢+3)\ra up

(24)
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7. Temperature, pressure and inertial energy

In the relativistic accretion disks, the generated heat by viscosity is [§]
3 -
Qfy = —5TDC, (25)
2r2

where T4 = 2t,4Hp is the vertically integrated viscous stress of r¢ compo-
nent and D and C in [9] are:

3  2a 2 2 A
C=1--+— D=1—-—+—5=—. 26
P rs L R (26)
Moreover, the radiation cooling (Q~) is [9]
4b, T4
L =2F = 27
Qs =2 = (27)

where F' is the flux of the radiation from each face of the disk, b, is the radia-
tion constant, T' is the temperature of the disk, kes is the electron-scattering
opacity and X' = 2pHy is the vertical density. From energy equation, we
have

Quis = Qraq = Qaav = fQY, (28)
where Q.qv is advected energy, f = % shows the relative important of

advection energy. With Eqs. (25)—(28), after some calculation, we have

3AHgt,e(1—f)  bT*

= . (29)
r2 ('r% 33 4 2a> SkespHp
We use Eq. (4) to eliminate Hy, therefore T' is calculated as
Okes At !
T — eslrep (30)

3272(1 — f)byrSp (ur)? (r% —3r3 + Qa)

We apply the relativistic equation of state, so the relativistic pressure P
is [10]

P=,T. (31)
Furthermore, we can calculate the internal energy u and sound velocity cq
from [2]

A5T2 + 45T + 12

T —
9(T) = 572 o078
u = pTy(T),
T
s = (32)

I+ T+ g(T)]
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8. Sample solution

In this section, we use the radial model for the radial component of the
four-velocity for Keplerian angular momentum of Moeen [5] to see a sample
solution of ADAF disks relationship

B pva

7 _ _
ULNRF = T 5 = UpLp = — Tl

_ o+t_* _
2 =0f=— T (33)

where 8 and n are positive and constant, quRF and uppp are the radial
components of four-velocity in LNRF and BLF, so the four-velocity in BLF
is [5]

uu_<r3+a\/ r2ntl 4 32 _ﬁ\/z 0 1 \/ r2ntl 4 32 )

1 1 A 1 1
rt r2 — 3r + 2ar2 rt U VS B Y Y o

(34)
Moreover, u,, are calculated with metric components as

( r§—2r§+a\/ r2ntl 4 32 Br
uu = — s 0

T r2 —3r 4 2arz WA
2~ 2ars + a2\/ r2ntl 4 p 32 ) . (35)

1
T r2 —3r + 2ar2

We use the components of the four-velocity and covariant components of
four-velocity to derive the density, relativistic enthalpy, temperature, inertial
energy and sound velocity.

Figures 1 and 2 show the influences of the coefficients of bulk and shear
viscosity on some important thermodynamic quantities. In Fig. 3, the effect
of the spin of the black hole (a) on the thermodynamical quantities is seen.
The influence of n parameter in the components of the four-velocity and
thermodynamic quantities is presented in Figs. 4 and 5. The influence of
[ parameter on the covariant components of the four-velocity and thermo-
dynamic quantities is seen in Figs. 6 and 7.
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Fig. 1. Influence of the coefficient of the bulk viscosity in 5 =1, n = %, a =.9 and
A = 2. Solid curves ( = 2, dotted curves ¢ = 4 and dash-dotted curves ( = 6.
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Fig.2. Influence of the coefficient of the shear viscosity in 5 = 1, n = %, a=.9
and ¢ = 2. Solid curves A = 2, dotted curves A = 4 and dash-dotted curves A = 6.



1454 M. MOEEN
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0.01 4

0.001

r/m

Fig. 3. Influence of spin of black hole (a) in 8 =1, n = %, A=2and ¢ =2. Solid
curves a = .9, dotted curves a = .5 and dash-dotted curves a = .1.

5 10 50 100
r/m

Fig. 4. Influence of the n parameter in the components of four-velocity in 5 = 1,

a =.9. Solid curves n = %, dotted curves n = 1, dash-dotted curves n = % and

dashed curves n = 1.

9. Summary and conclusions

Components of shear and bulk tensor are calculated in [5], but in this
paper, we derive the simplified and exact relations for the two important
components (rt and r¢) with no approximation which will be useful in the
future calculations. In ¢, all components of the four-velocity are seen but
the sentences with «” and u! are seen more often. Moreover, in 0", the
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Fig. 5. Influence of the n parameter (power of r in ") in =1, a=.9, A =2 and
¢ = 2. Solid curves n = %, dotted curves n = 1, dash-dotted curves n = % and

dashed curves n = 1.

r/m

I
©

Fig. 6. Influence of 8 parameter in the components of four-velocity in n = %, a
Solid curves 8 = 1, dotted curves § = 2, and dash-dotted curves § = 4.

sentences with «” and u® are seen more often. The ", t"?, t,, and tre are
calculated and we can see that the coefficient of dynamical viscosity (coeffi-
cient of shear viscosity) and coefficient of bulk viscosity are both effective.
We use the relativistic equations of state to obtain the relations of p and
1 with the four-velocity and coefficient of shear and bulk viscosity. We use
the energy equation to derive temperature, pressure, inertial energy and
sound velocity. For more detailed discussion, we use the radial model of
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0.01
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Fig. 7. Influence of § parameter in n = %, a=.9X=2and { =2. Solid curves

B =1, dotted curves 8 = 2, and dash-dotted curves 8 = 4.

four-velocity of [4]. Figures 1-7 show the treatment of p, n, P, T, ¢s and u
with changing in various variables. In Fig. 1, we see that increasing in the
bulk coefficient, ¢ causes increasing in 5, T', P, u and decreasing in c¢g, but
it has no influence in p. Figure 2 shows increasing in the coefficient of shear
viscosity, A causes increasing in p, P, cs, v and decreasing in  and T'. Fig-
ure 3 shows the influence of specific angular momentum of black holes. In
this figure, we see that the influence of a parameter is important in the inner
radii, especially it is important in n. In Fig. 4, we see that increasing in n
leads decreasing in the values of covariant components of the four-velocity.
In Fig. 5, we see that increasing in n is due to increasing in p, T, ¢s, P, u and
decreasing in 7. In Fig. 6, we see that increasing in S leads to increasing in
the values of covariant components of the four-velocity. Figure 7 shows that
increasing in [ is due to increasing in p, P, v and decreasing in cg, T', but
for 0 is due to decreasing in the inner radii and increasing in the outer radii.
This sample solution shows that n = 1 is not a good approximation in all
cases. Furthermore, we see that the coefficients of shear and bulk viscosity
are effective. These figures show that the coefficients of shear viscosity have
greater influence and these two coefficients have the clear effects on 7.
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Appendix A
The Christoffel symbols in the BLF

The Christoffel symbols (I Bav) in the equatorial plan and in our scaling

of the BLF are [5]:

=0,

2 2
A a“+r to_
th)t:()’ Fr?rzoa F£9:F9tT:07
a(a2+3r2)
[vt =0 [‘t _F — Ft =0
Or ) ro dr — 702 (CL2+T2—2T)7 (L )
2 2
-2
F(]t59:07 Féd):(], F;f:%’
2 2
(a + 1% —2r)
F:t:()v tTH:[‘gt:O’ t¢_F¢t rd ’
2
a“—r
r(a2+r2—2r)’ o =16 =0, o=t =0,
2 2
a“ +r< —2r
SEEEEEL g=rg =0,
2 2 3 2
a®+r*—2r) (—r° +a®) ) 9 0
( r4) ) Iy =0, Iy =1 =0,
0 0 0
th—o, Ft¢—F¢t:Oa FM’ZO’
1
9 9 g
Fer:; Fr¢_F¢>r:O’ Tyo =0,
. a
o =0, Ify=0Ij=0, If=TIf= 2 (a2 12 —2r)"
ry=0, IL=I5=0, TI%=0,
3 2 2
6 6 e TO—a — 2r
F@T_()’ Fr¢_F¢T_

r2 (a2 +1r2—2r)’
¢ _ P o _
Iy, =rf=0, If=0. (A1)
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