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Recently, there has been provided two chaotic models based on the
twist-deformation of classical Henon–Heiles system. First of them has been
constructed on the well-known, canonical space-time noncommutativity,
while the second one on the Lie-algebraically type of quantum space, with
two spatial directions commuting to classical time. In this article, we find
the direct link between mentioned above systems, by synchronization both
of them in the framework of active control method. Particularly, we de-
rive at the canonical phase-space level the corresponding active controllers
as well as we perform (as an example) the numerical synchronization of
analyzed models.
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1. Introduction

Since Edward Lorenz proposed his widely-known “model of weather”,
there have appeared a lot of papers dealing with so-called chaotic models,
whose dynamics is described by strongly sensitive with respect to initial
conditions nonlinear differential equations. The most popular of them are:
Lorenz system [1], Roessler system [2], Rayleigh–Benard system [3], Henon–
Heiles system [4], jerk equation [5], Duffing equation [6], Lotka–Volter sys-
tem [7], Liu system [8], Chen system [9], and Sprott system [10]. A lot of
them have been applied in various fields of industrial and scientific divisions,
such as, for example: Physics, Chemistry, Biology, Microbiology, Economics,
Electronics, Engineering, Computer Science, Secure Communications, Image
Processing and Robotics.
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The one of the most interesting among the above models seems to be the
so-called Henon–Heiles system, which has been provided in pure astrophys-
ical context. It concerns the problem of nonlinear motion of a star around
a galactic center, where the motion is restricted to a plane. It is defined by
the following Hamiltonian function:

H(p, x) =
1

2

2∑
i=1

(
p2i + x2i

)
+ x21x2 −

1

3
x32 , (1)

which in Cartesian coordinates x1 and x2 describes the set of two nonlinearly
coupled harmonic oscillators. In polar coordinates r and θ, it corresponds
to the particle moving in noncentral potential of the form of

V (r, ϕ) =
r2

2
+
r3

3
sin (3ϕ) , (2)

with x1 = r cosϕ and x2 = r sinϕ. The above model has been inspired
by observations indicating that star moving in a weakly perturbated central
potential should have apart of total energy Etot constant in time, also the
second conserved physical quantity I1. It has been demonstrated with the
use of so-called Poincaré section method, that such a situation appears in
the case of Henon–Heiles system only for the values of control parameter
Etot below the threshold Eth = 1/6. For higher energies, the trajectories
in phase space become chaotic and the quantity I does not exist (see e.g.
[11, 12]).

Recently, in articles [13] and [14] there have been proposed two noncom-
mutative counterparts of the above-mentioned Henon–Heiles system. They
have been defined respectively on the following canonically as well as Lie-
algebraically deformed Galilei space-times [15–17]2,3

[t, x̂i] = 0 , [x̂i, x̂j ] = iθij , (3)

and
[t, x̂i] = 0 , [x̂i, x̂j ] =

i

κ
tεij , (4)

1 The quantity I plays the role of additional constant of motion, which leads to the
regular trajectories of a particle.

2 The canonically and Lie-algebraically noncommutative space-times have been defined
as the quantum representation spaces, so-called Hopf modules (see e.g. [15, 16]), for
the twist-deformed quantum Galilei Hopf algebras Uθ(G) and Uκ(G) respectively.

3 It should be noted that in accordance with the Hopf-algebraic classification of all
deformations of relativistic and nonrelativistic symmetries (see [18, 19]), apart from
canonical [15–17] space-time noncommutativity, there also exist Lie-algebraic [17–22]
and quadratic [17, 22–24] types of quantum spaces.
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with constant deformation parameters θij = −θji and κ. Particularly, there
have been provided the Hamiltonian functions of the models as well as the
corresponding canonical equations of motion. Besides, it has been demon-
strated that for proper values of deformation parameters θ and κ, and for
proper values of control parameters, there appears (much more intensively)
chaos in both systems. Consequently, in such a way, it has been shown
the impact of the above noncommutative space-times on the basic dynami-
cal properties of this important classical chaotic model. It should be noted
that such deformed constructions are inspired by investigations dealing with
noncommutative classical and quantum mechanics (see e.g. [25–28]) as well
as with field theoretical systems (see e.g. [29–31]), in which the quantum
space-time is not classical. Such models follow (particularly) from formal
arguments based mainly on Quantum Gravity [32, 33] and String Theory
[34, 35], indicating that space-time at Planck scale becomes noncommuta-
tive.

One of the most important problems of the chaos theory concerns so-
called chaos synchronization phenomena. Since Pecora and Caroll [36] in-
troduced a method to synchronize two identical chaotic systems, the chaos
synchronization has received increasing attention due to great potential of
applications in many scientific discipline. Generally, there are known sev-
eral methods of chaos synchronization such as: OGY method [37], active
control method [38, 39], adaptive control method [40, 41], backstepping
method [42, 43], sampled-data feedback synchronization method [44], time-
delay feedback method [45] and sliding mode control method [46, 47]. The
mentioned methods have been applied to the synchronization of many iden-
tical as well as different chaotic models, such as, for example, Sprott, Lorenz
and Roessler systems respectively [48, 49].

In this article, we synchronize by active control scheme the canonically
deformed Henon–Heiles (master) system [13] with its Lie-algebraically non-
commutative (slave) partner [14]. In this aim, we establish the proper so-
called active controllers with the use of the Lyapunov stabilization theory
[50]. Additionally, we illustrate the obtained results by numerical calcula-
tions performed for particular values of deformation parameters θij and κ.

The paper is organized as follows. In Section 2, we recall chaotic canon-
ically and Lie-algebraically deformed Henon–Heiles models proposed in ar-
ticles [13] and [14] respectively. In Section 3, we remind the basic concepts
of active synchronization method, while in Section 4, we find the active con-
trollers which synchronize both noncommutative systems. The conclusions
and final remarks are discussed in Section 5.
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2. The noncommutative Henon–Heiles models

In this section, we very shortly remind the basic facts concerning two
chaotic Henon–Heiles models defined on noncommutative Galilei space-times
(3) and (4) respectively. As it was mentioned in Introduction, first of them
has been provided in paper [13], while the second one in article [14].

2.1. Classical Henon–Heiles system on canonically deformed space-time

In accordance with [13], the dynamics of the model is given by the fol-
lowing Hamiltonian function:

H (p̂, x̂) =
1

2

2∑
i=1

(
p̂2i + x̂2i

)
+ x̂21x̂2 −

1

3
x̂32 (5)

defined on the canonically deformed phase space of the form of4

{ x̂1, x̂2 } = 2θ , { p̂1, p̂2 } = { x̂i, p̂j } = 0 (6)

with constant parameter θ = θ12 = −θ21. In terms of commutative canonical
variables (xi, pi), the Hamiltonian looks as follows:

H(p, x) =
1

2M(θ)

(
p21 + p22

)
+

1

2
M(θ)Ω2(θ)

(
x21 + x22

)
− S(θ)L

+(x1 − θp2)2 (x2 + θp1)−
1

3
(x2 + θp1)

3 , (7)

where

L = x1p2 − x2p1 , (8)

1/M(θ) = 1 + θ2 , (9)

Ω(θ) =
√

(1 + θ2) , (10)

and
S(θ) = θ . (11)

Due to the form of the above energy function, the symbols M(θ) and Ω(θ)
denote the new, deformed mass and frequency of particle, respectively. Ob-
viously, quantity L plays the role of the angular momentum vector, while
S(θ) can be interpreted as the present in third term of the Hamiltonian, the
new θ-dependent coefficient. It should be also noted that two last, nonlinear

4 The correspondence relations are { ·, · } = 1
i
[ ·, · ].



Chaos Synchronization of Canonically and Lie-algebraically . . . 1463

members of formula (7) remain responsible for chaotic behavior of the sys-
tem, while the corresponding to H(p, x) canonical equations of motion are
given by

ẋ1 = [1/M(θ)] p1 + S(θ)x2 +
[
(x1 − θp2)2 − (x2 + θp1)

2
]
θ , (12)

ẋ2 = [1/M(θ)] p2 − S(θ)x1 − 2(x2 + θp1) (x1 − θp2) θ , (13)

ṗ1 = −M(θ)Ω2(θ)x1 + S(θ)p2 − 2 (x2 + θp1) (x1 − θp2) , (14)

ṗ2 = −M(θ)Ω2(θ)x2 − S(θ)p1 − (x1 − θp2)2 + (x2 + θp1)
2 . (15)

Of course, for deformation parameter θ approaching zero, the above system
becomes classical.

2.2. Classical Henon–Heiles system on Lie-algebraically deformed
space-time

The model is defined by the Hamiltonian function (5) given on the fol-
lowing Lie-algebraically deformed phase space:

{ x̂1, x̂2 } =
2t

κ
, { p̂i, p̂j } = 0 , { x̂i, p̂j } = δij (16)

with constant, mass-like parameter κ5. In terms of commutative variables,
the above Hamiltonian takes the form of

H(p, x, t) =
1

2M
(
t
κ

) (p21 + p22
)
+

1

2
M

(
t

κ

)
Ω2

(
t

κ

)(
x21 + x22

)
− S

(
t

κ

)
L

+

(
x1 −

t

κ
p2

)2(
x2 +

t

κ
p1

)
− 1

3

(
x2 +

t

κ
p1

)3

, (17)

where

L = x1p2 − x2p1 , (18)

1

M
(
t
κ

) = 1 +

(
t

κ

)2

, (19)

Ω

(
t

κ

)
=

√√√√(1 + ( t
κ

)2
)

(20)

5 One can check that [κ] = kg.
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and
S

(
t

κ

)
=
t

κ
. (21)

It is worth to notice that due to the similar form of energy functions (7) and
(17), the all coefficients M

(
t
κ

)
, Ω

(
t
κ

)
as well as S

(
t
κ

)
can be interpreted

in the same manner as their θ-deformed counterparts (10)–(11). However,
contrary to the pervious case, the Lie-algebraically modified quantities (20)–
(21) are time-dependent, and the corresponding canonical equations of mo-
tion look as follows:

ẋ1 = 1/M

(
t

κ

)
p1 + S

(
t

κ

)
x2 +

[(
x1−

t

κ
p2

)2

−
(
x2+

t

κ
p1

)2
]
t

κ
, (22)

ẋ2 = 1/M

(
t

κ

)
p2 − S

(
t

κ

)
x1 − 2

[
x2 +

t

κ
p1

] [
x1 −

t

κ
p2

]
t

κ
, (23)

ṗ1 = −M
(
t

κ

)
Ω2

(
t

κ

)
x1 + S

(
t

κ

)
p2 − 2

[
x2 +

t

κ
p1

] [
x1 −

t

κ
p2

]
, (24)

ṗ2 = −M
(
t

κ

)
Ω2

(
t

κ

)
x2 − S

(
t

κ

)
p1 −

[
x1−

t

κ
p2

]2
+

[
x2+

t

κ
p1

]2
. (25)

Obviously, for deformation parameter κ running to infinity, the above model
becomes commutative.

3. Chaos synchronization by active control — general
prescription

In this section, we remind the general scheme of chaos synchronization of
two systems by the so-called active control procedure [38, 39]. Let us start
with the following master model6:

ẋ = Ax+ F (x) , (26)

where x = [x1, x2, . . . , xn] is the state of the system, A denotes the n × n
matrix of the system parameters and F (x) plays the role of the nonlinear part
of the differential equation (26). The slave model dynamics is described by

ẏ = By +G(y) + u , (27)

with y = [y1, y2, . . . , yn] being the state of the system, B denoting the
n-dimensional quadratic matrix of the system, G(y) playing the role of non-
linearity of equation (27) and u = [u1, u2, . . . , un] being the active controller

6 do
dt

= ȯ.
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of the slave model. Besides, it should be mentioned that for matrices A = B
and functions F = G, the states x and y describe two identical chaotic sys-
tems. In the case of A 6= B or F 6= G, they correspond to the two different
chaotic models.

Let us now provide the following synchronization error vector:

e = y − x , (28)

which in accordance with (26) and (27) obeys

ė = By −Ax+G(y)− F (x) + u . (29)

In active control method, we try to find such a controller u, which syn-
chronizes the state of the master system (26) with the state of the slave
system (27) for any initial condition x0 = x(0) and y0 = y(0). In other
words, we design a controller u in such a way that for system (29), we have

lim
t→∞
||e(t)|| = 0 , (30)

for all initial conditions e0 = e(0). In order to establish the synchronization
(29), we use the Lyapunov stabilization theory [50]. It means that if we take
as a candidate the Lyapunov function of the form of

V (e) = eTPV (e)e , (31)

with P being a positive n × n matrix, then we wish to find the active con-
troller u so that

V̇ (e) = −eTQV (e)e , (32)

where Q is a positive definite n× n matrix as well. Then systems (26) and
(27) remain synchronized.

4. Chaos synchronization of the models

The described in previous section algorithm can be used to the synchro-
nization of the two above-reminded noncommutative Henon–Heiles systems.
In our treatment, the canonically deformed model [13] plays the role of mas-
ter system

ẋ1 = [1/M(θ)] p1 + S(θ)x2 +
[
(x1 − θp2)2 − (x2 + θp1)

2
]
θ , (33)

ẋ2 = [1/M(θ)] p2 − S(θ)x1 − 2(x2 + θp1) (x1 − θp2) θ , (34)

ṗ1 = −M(θ)Ω2(θ)x1 + S(θ)p2 − 2 (x2 + θp1) (x1 − θp2) , (35)

ṗ2 = −M(θ)Ω2(θ)x2 − S(θ)p1 − (x1 − θp2)2 + (x2 + θp1)
2 . (36)
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while its slave partner is given by the Lie-algebraically noncommutative
model [14]

ẏ1 = 1/M

(
t

κ

)
π1 + S

(
t

κ

)
y2

+

[(
y1 −

t

κ
π2

)2

−
(
y2 +

t

κ
π1

)2
]
t

κ
+ uy1 , (37)

ẏ2 = 1/M

(
t

κ

)
π2 − S

(
t

κ

)
y1

−2
[
y2 +

t

κ
π1

] [
y1 −

t

κ
π2

]
t

κ
+ uy2 , (38)

π̇1 = −M
(
t

κ

)
Ω2

(
t

κ

)
y1 + S

(
t

κ

)
π2

−2
[
y2 +

t

κ
π1

] [
y1 −

t

κ
π2

]
+ uπ1 , (39)

π̇2 = −M
(
t

κ

)
Ω2

(
t

κ

)
y2 − S

(
t

κ

)
π1 +

−
[
y1 −

t

κ
π2

]2
+

[
y2 +

t

κ
π1

]2
+ uπ2 (40)

with active controllers uy1 , uy2 , uπ1 and uπ2 , respectively.
Using the above equations of motion, one can check that the dynamics

of synchronization errors eyi = yi − xi and eπi = πi − pi is obtained as7

ėy1 = 1/M

(
t

κ

)
π1 + S

(
t

κ

)
y2 +

[(
y1 −

t

κ
π2

)2

−
(
y2 +

t

κ
π1

)2
]
t

κ

− 1

M(θ)
p1 − S(θ)x2 −

[
(x1 − θp2)2 + (x2 + θp1)

2
]
θ + uy1 , (41)

ėy2 = 1/M

(
t

κ

)
π2 − S

(
t

κ

)
y1 − 2

[
y2 +

t

κ
π1

] [
y1 −

t

κ
π2

]
t

κ

− 1

M(θ)
p2 + S(θ)x1 + 2(x2 + θp1) (x1 − θp2) θ + uy2 , (42)

7 See also formula (29).
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ėπ1 = −M
(
t

κ

)
Ω2

(
t

κ

)
y1 + S

(
t

κ

)
π2 − 2

[
y2 +

t

κ
π1

] [
y1 −

t

κ
π2

]
+M(θ)Ω2(θ)x1 − S(θ)p2 + 2 (x2 + θp1) (x1 − θp2) + uπ1 , (43)

ėπ2 = −M
(
t

κ

)
Ω2

(
t

κ

)
y2 − S

(
t

κ

)
π1 −

[
y1 −

t

κ
π2

]2
+

[
y2 +

t

κ
π1

]2
+M(θ)Ω2(θ)x2 + S(θ)p1 + (x1 − θp2)2 − (x2 + θp1)

2 + uπ2 . (44)

Besides, if we define the positive Lyapunov function by8

V (e) =
1

2

(
e2y1 + e2y2 + e2π1 + e2π2

)
, (45)

then for the following choice of control functions:

uy1 = [1/M(θ)] p1 + S(θ)x2 +
[
(x1 − θp2)2 − (x2 + θp1)

2
]
θ

−1/M
(
t

κ

)
π1 − S

(
t

κ

)
y2 −

[(
y1−

t

κ
π2

)2

+

(
y2+

t

κ
π1

)2
]
t

κ
− ey1 , (46)

uy2 = [1/M(θ)] p2 − S(θ)x1 − 2(x2 + θp1) (x1 − θp2) θ

−1/M
(
t

κ

)
π2 + S

(
t

κ

)
y1 + 2

[
y2+

t

κ
π1

] [
y1−

t

κ
π2

]
t

κ
− ey2 , (47)

uπ1 = −M(θ)Ω2(θ)x1 + S(θ)p2 − 2 (x2 + θp1) (x1 − θp2) +

+M

(
t

κ

)
Ω2

(
t

κ

)
y1 − S

(
t

κ

)
π2 + 2

[
y2 +

t

κ
π1

] [
y1 −

t

κ
π2

]
− eπ1 , (48)

uπ2 = −M(θ)Ω2(θ)x2 − S(θ)p1 − (x1 − θp2)2 + (x2 + θp1)
2 +

+M

(
t

κ

)
Ω2

(
t

κ

)
y2 + S

(
t

κ

)
π1 +

[
y1−

t

κ
π2

]2
+

[
y2+

t

κ
π1

]2
− eπ2 , (49)

we have9
V̇ (e) = −

(
e2y1 + e2y2 + e2π1 + e2π2

)
. (50)

Such a result means (see general prescription) that the canonically (see
(33)–(36)) and Lie-algebraically (see (37)–(40)) Henon–Heiles systems are
synchronized for all initial conditions with active controllers (46)–(49).

Let us now illustrate the above considerations by the proper numerical
calculations.

8 The matrix P = 1 in formula (31).
9 The matrix Q = 1 in formula (32).
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First of all, we solve canonically deformed system (33)–(36) with θ = 1
as well as we integrate the Lie-algebraically model (37)–(40) for κ = 1 and
without active controllers uy1 , uy2 , uπ1 and uπ2 , for two different sets of
initial conditions

(x01, x02; p01, p02) = (0.01,−0.01; 0, 0) (51)

and
(y01, y02;π01, π02) = (0, 0;−0.02, 0.02) , (52)

respectively. The results are presented in figure 1 — one can see that there
exist (in fact) the divergences between both phase-space trajectories. Next,
we find the solutions for the master system (33)–(36) (the (x, p)-trajectory)
and for its slave partner (37)–(40) with active controllers (46)–(49) (the
(y, π)-trajectory) for initial data (51) and (52) respectively. Now, we see
that the corresponding phase-space trajectories become synchronized — the
vanishing in time error functions eyi and eπi are presented in figure 2. Ad-
ditionally, we repeat the above numerical procedure for two another sets
of initial data: (x0; p0) = (0, 0; 0, 0) and (y0;π0) = (0.02,−0.02; 0, 0); the
obtained results are presented in figures 3 and 4, respectively.

2 4 6 8 10
time

-0.10

-0.05

0.05

0.10
error function

Fig. 1. (Color online) The error functions eyi = yi − xi and eπi
= πi − pi for the

canonically deformed Henon–Heiles system with initial conditions (51) (the (x, p)-
trajectory), and for the Lie-algebraically noncommutative Henon–Heiles model
without correlation functions uyi , uπi for the initial conditions (52) (the (y, π)-
trajectory). The solid blue line corresponds to the ey1 -error function, the dotted
orange one — to ey2 , the dashed green one — to eπ1

, and the dot-dashed red one
— to eπ2 , respectively.
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2 4 6 8 10
time

-0.03

-0.02

-0.01

0.01

0.02

0.03
error function

Fig. 2. (Color online) The error functions eyi = yi − xi and eπi = πi − pi for
the canonically deformed Henon–Heiles model defined by the master system (33)–
(36) with the initial conditions (51) (the (x, p)-trajectory), and for the slave Lie-
algebraically noncommutative Henon–Heiles system (37)–(40) with the initial con-
ditions (52) (the (y, π)-trajectory). The solid blue line corresponds to the ey1-error
function, the dotted orange one — to ey2 , the dashed green one — to eπ1

, and the
dot-dashed red one — to eπ2

, respectively.

2 4 6 8 10
time

-0.10

-0.05

0.05

0.10
error function

Fig. 3. (Color online) The error functions eyi = yi − xi and eπi = πi − pi for the
canonically deformed Henon–Heiles model with the initial conditions (x0; p0) =

(0, 0; 0, 0) (the (x, p)-trajectory), and for the Lie-algebraically noncommutative
Henon–Heiles model without correlation functions uyi , uπi for the initial condi-
tions (y0, π0) = (0.02,−0.02; 0.01,−0.01) (the (y, π)-trajectory). The solid blue
line corresponds to the ey1 -error function, the dotted orange one — to ey2 , the
dashed green one — to eπ1

, and the dot-dashed red one — to eπ2
, respectively.
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2 4 6 8 10
time

-0.03

-0.02

-0.01

0.01

0.02

0.03
error function

Fig. 4. (Color online) The error functions eyi = yi − xi and eπi = πi − pi for the
canonically deformed Henon–Heiles model defined by the master system (33)–(36)
with the initial conditions (x0; p0) = (0, 0; 0, 0) (the (x, p)-trajectory), and for the
slave Lie-algebraically noncommutative Henon–Heiles system (37)–(40) with the
initial conditions (y0, π0) = (0.02,−0.02; 0.01,−0.01) (the (y, π)-trajectory). The
solid blue line corresponds to the ey1 -error function, the dotted orange one — to ey2 ,
the dashed green one — to eπ1

, and the dot-dashed red one — to eπ2
, respectively.

5. Final remarks

In this article, we synchronize two noncommutative Henon–Heiles models
with the use of active control method. Particularly, we find the proper active
controllers (46)–(49) as well as perform numerical synchronization of the
systems for fixed values of deformation parameters θ and κ.

In our opinion, the obtained result seems to be quite interesting at least
due to the two reasons. Firstly, it finds the direct dynamical link between two
models defined on the completely different noncommutative space-times —
the canonically twisted space and the Lie-algebraically deformed space-time
respectively. Such a connection suggests that there may exist another, more
fundamental (for example taken at the kinematical level) link between both
systems considered here. Secondly, it combines in quite matured way two
disparate scientific fields, such as the elements of Quantum Group Theory
with the techniques typical for the Classical Chaos domain.

Finally, it should be noted that the presented investigations can be ex-
tended in various ways. For example, one may consider synchronization of
the noncommutative Henon–Heiles models with the use of other methods
mentioned in Introduction. Obviously, the works in this direction already
started and are in progress.



Chaos Synchronization of Canonically and Lie-algebraically . . . 1471

REFERENCES

[1] E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963).
[2] O.E. Roessler, Phys. Lett. A 57, 397 (1976).
[3] A.V. Getling, Rayleigh–Benard Convection: Structures and Dynamics, World

Scientific, 1998.
[4] M. Henon, C. Heiles, Astrophys. J. 69, 73 (1964).
[5] J.C. Sprott, Am. J. Phys. 65, 537 (1997).
[6] G. Duffinng, Erzwungene Schwingungen bei Vernderlicher Eigenfrequenz,

F. Vieweg u. Sohn, Braunschweig, 1918.
[7] V. Volterra, Variations and Fluctuations of the Number of Indviduals in

Animal Species Living Together. In Animal Ecology, McGraw-Hill, 1931.
Translated from 1928 edition by R.N. Chapman.

[8] C. Liu, T. Liu, L. Liu, K. Liu, Chaos Solitons Fract. 22, 1031 (2004).
[9] G. Chen, T. Ueta, Int. J. Bifur. Chaos 9, 1465 (1999).
[10] J.C. Sprott, Phys. Rev. E 50, 647 (1994).
[11] M. Tabor, Chaos and Integrability in Nonlinear Dynamics, New York: Wiley,

1989.
[12] M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics,

Springer-Verlag, Berlin 1989.
[13] M. Daszkiewicz, Acta Phys. Pol. B 47, 2387 (2016)

[arXiv:1610.08361 [physics.class-ph]].
[14] M. Daszkiewicz, Mod. Phys. Lett. A 32, 1750075 (2017)

[arXiv:1702.08702 [hep-th]].
[15] R. Oeckl, J. Math. Phys. 40, 3588 (1999).
[16] M. Chaichian, P.P. Kulish, K. Nashijima, A. Tureanu, Phys. Lett. B 604, 98

(2004) [arXiv:hep-th/0408069].
[17] M. Daszkiewicz, Mod. Phys. Lett. A 23, 505 (2008)

[arXiv:0801.1206 [hep-th]].
[18] S. Zakrzewski, Commun. Math. Phys. 185, 285 (1997)

[arXiv:q-alg/9602001].
[19] Y. Brihaye, E. Kowalczyk, P. Maslanka, arXiv:math/0006167.
[20] J. Lukierski, A. Nowicki, H. Ruegg, V.N. Tolstoy, Phys. Lett. B 264, 331

(1991).
[21] S. Giller et al., Phys. Lett. B 286, 57 (1992).
[22] J. Lukierski, M. Woronowicz, Phys. Lett. B 633, 116 (2006)

[arXiv:hep-th/0508083].
[23] O. Ogievetsky, W.B. Schmidke, J. Wess, B. Zumino, Commun. Math. Phys.

150, 495 (1992).
[24] P. Aschieri, L. Castellani, A.M. Scarfone, Eur. Phys. J. C 7, 159 (1999)

[arXiv:q-alg/9709032].

http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1016/0375-9601(76)90101-8
http://dx.doi.org/10.1086/143161
http://dx.doi.org/10.1119/1.18585
http://dx.doi.org/10.1016/j.chaos.2004.02.060
http://dx.doi.org/10.1142/S0218127499001024
http://dx.doi.org/10.1103/PhysRevE.50.R647
http://dx.doi.org/10.5506/APhysPolB.47.2387
http://dx.doi.org/10.1142/S0217732317500754
http://dx.doi.org/10.1063/1.532910
http://dx.doi.org/10.1016/j.physletb.2004.10.045
http://dx.doi.org/10.1016/j.physletb.2004.10.045
http://dx.doi.org/10.1142/S0217732308026479
http://dx.doi.org/10.1007/s002200050091
http://dx.doi.org/10.1016/0370-2693(91)90358-W
http://dx.doi.org/10.1016/0370-2693(91)90358-W
http://dx.doi.org/10.1016/0370-2693(92)90158-Z
http://dx.doi.org/10.1016/j.physletb.2005.11.052
http://dx.doi.org/10.1007/BF02096958
http://dx.doi.org/10.1007/BF02096958
http://dx.doi.org/ 10.1007/s100529800968


1472 M. Daszkiewicz

[25] A.A. Deriglazov, J. High Energy Phys. 0303, 021 (2003)
[arXiv:hep-th/0211105].

[26] S. Ghosh, Phys. Lett. B 648, 262 (2007).
[27] M. Chaichian, M.M. Sheikh-Jabbari, A. Tureanu, Phys. Rev. Lett. 86, 2716

(2001) [arXiv:hep-th/0010175].
[28] Kh.P. Gnatenko, V.M. Tkachuk, Phys. Lett. A 378, 3509 (2014)

[arXiv:1407.6495 [quant-ph]].
[29] P. Kosiński, J. Lukierski, P. Maślanka, Phys. Rev. D 62, 025004 (2000)

[arXiv:hep-th/9902037].
[30] M. Chaichian, P. Prešnajder, A. Tureanu, Phys. Rev. Lett. 94, 151602 (2005)

[arXiv:hep-th/0409096].
[31] G. Fiore, J. Wess, Phys. Rev. D 75, 105022 (2007) [arXiv:hep-th/0701078].
[32] S. Doplicher, K. Fredenhagen, J.E. Roberts, Phys. Lett. B 331, 39 (1994);

Commun. Math. Phys. 172, 187 (1995) [arXiv:hep-th/0303037].
[33] A. Kempf, G. Mangano, Phys. Rev. D 55, 7909 (1997)

[arXiv:hep-th/9612084].
[34] A. Connes, M.R. Douglas, A. Schwarz, J. High Energy Phys. 9802, 003

(1998) [arXiv:hep-th/9711162].
[35] N. Seiberg, E. Witten, J. High Energy Phys. 9909, 032 (1999)

[arXiv:hep-th/9908142].
[36] L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
[37] E. Ott, C. Grebogi, J.A. Yorke, Phys. Rev. Lett. 64, 1196 (1990).
[38] M.C. Ho, Y.C. Hung, Phys. Lett. A 301, 424 (2002).
[39] H.K. Chen, Chaos Solitons Fract. 23, 1245 (2005).
[40] T.L. Liao, S.H. Tsai, Chaos Solitons Fract. 11, 1387 (2000).
[41] V. Sundarapandian, Int. J. Cont. Theory Comp. Model. 1, 1 (2011).
[42] Y.G. Yu, S.C. Zhang, Chaos Solitons Fract. 27, 1369 (2006).
[43] X. Wu, J. Lu, Chaos Solitons Fract. 18, 721 (2003).
[44] T. Yang, L.O. Chua, Int. J. Bifur. Chaos 9, 215 (1999).
[45] J.H. Park, O.M. Kwon, Chaos Solitons Fract. 17, 709 (2003).
[46] V. Sundarapandian, Int. J. Cont. Theory Comp. Model. 1, 15 (2011).
[47] V. Sundarapandian, Int. J. Comp. Sci. Eng. 3, 2163 (2011).
[48] D. Xu, Adv. Theor. Appl. Mech. 3, 195 (2010).
[49] S. Vaidyanathan, Int. J. Inf. Comp. Sec. 1, 13 (2011).
[50] A.M. Lyapunov, The General Problem of the Stability of Motion (in

Russian), Doctoral Dissertation, Univ. Kharkov, 1892. English translation:
Stability of Motion, Academic Press, New York and London 1966.

http://dx.doi.org/10.1088/1126-6708/2003/03/021
http://dx.doi.org/10.1016/j.physletb.2007.03.016
http://dx.doi.org/10.1103/PhysRevLett.86.2716
http://dx.doi.org/10.1103/PhysRevLett.86.2716
http://dx.doi.org/10.1016/j.physleta.2014.10.021
http://dx.doi.org/10.1103/PhysRevD.62.025004
http://dx.doi.org/10.1103/PhysRevLett.94.151602
http://dx.doi.org/10.1103/PhysRevD.75.105022
http://dx.doi.org/10.1016/0370-2693(94)90940-7
http://dx.doi.org/10.1007/BF02104515
http://dx.doi.org/10.1007/BF02104515
http://dx.doi.org/10.1103/PhysRevD.55.7909
http://dx.doi.org/10.1088/1126-6708/1998/02/003
http://dx.doi.org/10.1088/1126-6708/1998/02/003
http://dx.doi.org/10.1088/1126-6708/1999/09/032
http://dx.doi.org/10.1103/PhysRevLett.64.821
http://dx.doi.org/10.1103/PhysRevLett.64.1196
http://dx.doi.org/10.1016/S0375-9601(02)00987-8
http://dx.doi.org/10.1016/S0960-0779(04)00373-X
http://dx.doi.org/10.1016/S0960-0779(99)00051-X
http://dx.doi.org/10.1016/j.chaos.2005.05.001
http://dx.doi.org/10.1016/S0960-0779(02)00659-8
http://dx.doi.org/10.1142/S0218127499000092
http://dx.doi.org/10.1016/S0960-0779(02)00487-3

	1 Introduction
	2 The noncommutative Henon–Heiles models
	2.1 Classical Henon–Heiles system on canonically deformed space-time
	2.2 Classical Henon–Heiles system on Lie-algebraically deformed space-time

	3 Chaos synchronization by active control — general prescription
	4 Chaos synchronization of the models
	5 Final remarks

