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This paper is dedicated to the generation of chaotic systems with differ-
ent equilibria and different dynamical behaviors. A unified four-dimensional
autonomous chaotic system is presented. The number of the equilibria of
the system is determined by its nonlinear terms. For different nonlinear
terms, the system can generate chaotic attractor with one or two unstable
equilibria, multiple coexisting chaotic attractors with three unstable equi-
libria, multi-scroll hyper-chaotic attractor with multiple equilibria. The
dynamical behaviors of the system with different nonlinear terms are ana-
lytically and numerically investigated.
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1. Introduction

Chaos has been widely discovered in natural systems and artificial sys-
tems [1–4]. A nonlinear dynamical system which shows extreme sensitivity
to initial conditions on a bounded set is generally considered to be chaotic.
The chaotic system has many unique characteristics that can be used for im-
age encryption, fault diagnosis, route planning and weather forecast [5–8].
A lot of scholars have been interested in the study of chaos. After decades
of research, the chaos theory and its applications have been developed more
and more mature.

Chaos generation is an important issue that has aroused wide concern in
scientific community. Since the discovery of the so-called Lorenz attractor,
it is generally believed that polynomial autonomous nonlinear differential
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systems can produce abundant chaos [9]. Until now, a great number of po-
lynomial chaotic systems have been proposed, see [10–15]. The number and
stability of equilibria often show important impact on the dynamical behav-
iors of chaotic systems. An effective way to construct and analyze chaotic
systems is to consider the properties of the equilibria. Shilnikov claimed that
an autonomous system with one saddle focus and a homoclinic orbit or two
saddle foci and a heteroclinic orbit can generate horseshoe-type chaos [16].
The Chen system was proved to be the Shilnikov chaos with heteroclinic or-
bit [17]. Based on Shilnikov’s theorem, Yu et al. generated a special kind of
chaotic attractors named multi-wing attractors from the Lorenz system fam-
ily by extending the index-2 saddle foci [18]. Jafari et al. [19] gave seventeen
examples of non-equilibria systems which generate hidden chaotic attrac-
tors. Qiang et al. [20] constructed multiple chaotic attractors by increasing
the number of saddle foci of the Sprott B system, and presented a new au-
tonomous chaotic system with sign function and various types of coexisting
attractors [21]. Danca et al. [22] found a chaotic system with five equilib-
ria that yielded a strange attractor with two point attractors, two strange
attractors, three limit cycles. The multi-scroll and multi-wing attractors
have also been studied by scholars [23–25]. By using the hysteresis series
switching approach, Lu et al. [26] constructed the multi-scroll attractors
from a three-dimensional autonomous system. Bouallegue et al. [27] pro-
posed ring-structured multi-scroll and multi-scroll attractors by combining
Lorenz attractors through Julia’s process. Wang et al. [28] derived a type of
multi-scroll attractors from a modified Chua’s circuit by using the saw-tooth
function and studied the circuit realization of the attractors on electronics
workbench. Elwakil et al. [29] proposed a method of generating multi-scroll
chaotic attractors by using the multilevel-logic pulse-excitation. Zhang et al.
[30] put forward a new chaotic system with multiple-angle sinusoidal nonlin-
earity generating multi-scroll attractors. In general, the existence of multiple
equilibria provides the possibility for the system to have more abundant dy-
namical behaviors including multiple coexisting attractors, multi-wing or
multi-scroll strange attractors, etc. It is particularly evident in the high-
dimensional neural network which displays multi-stability, multi-periodicity,
multi-chaos for its multiple equilibria [31, 32].

Due to the importance of the equilibria in the dynamical behavior of the
chaotic system, this paper will present a framework for generating a class of
chaotic systems with different number of equilibria by introducing different
nonlinear terms. The stability of the equilibria of the systems is investi-
gated. The chaotic systems with one, two, three, and multiple equilibria are
presented. The multiple coexisting attractors of the system with three equi-
libria and the multi-scroll attractor of the system with multiple equilibria
are analytically and numerically investigated.
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2. Chaotic systems with different number of equilibria

Here, we will consider a unified system which is given by the following
four-dimensional autonomous differential equations:

ẋ = y ,
ẏ = z ,
ż = −ax− by − z + u ,
u̇ = f(x, y, z)− ku

(1)

with state vector (x, y, z, u) ∈ R4 and parameter vector (a, b, k) ∈ R3. The
function f(x, y, z) with respect to x, y, z represents the nonlinear term of
system (1). In essence, system (1) is an augmented jerk system. The jerk
system is expressed by three-dimensional differential equations of the form of...
x = J(ẍ, ẋ, x) [33, 34]. The function J(·) is called the ‘jerk’ since it portrays
the third-time derivative of x and corresponds to the first-time derivative of
acceleration in mechanical systems. System (1) is constructed from the jerk
system by applying a nonlinear controller u with u̇ = f(x, y, z) − ku. To
a certain extent, system (1) preserves some physical properties of the jerk
system for some special forms of the nonlinear function f(x, y, z). If k > −1,
system (1) is dissipative as its divergence ∇V = −(1 + k) < 0.

The expression of the function f(x, y, z) determines the existence of chaos
and the number of equilibria of system (1). Thus, it is important to select a
suitable function f(x, y, z) for generating different types of strange attractors
from system (1). The following part will investigate the dynamical behav-
iors of system (1) for given function f(x, y, z) by theoretical and simulation
observation.

2.1. One equilibrium with f(x, y, z) = z2 − xy
Suppose that the function f(x, y, z) = z2−xy, then system (1) has only

one equilibrium P (0, 0, 0, 0). The corresponding characteristic equation at
the equilibrium can be computed as follows:

(λ+ k)
(
λ3 + λ2 + bλ+ a

)
= 0 . (2)

By applying the Routh–Hurwitz criterion, we can easily judge that the equi-
librium P is asymptotically stable if k > 0, b > a > 0. If b = a, then the
roots of Eq. (2) can be calculated as λ1 = −k, λ2 = −1, λ3,4 = ±

√
bi. Ob-

viously, Eq. (2) has a pair of pure imaginary roots. Since the transversality
condition

Re

(
dλ

da

) ∣∣∣λ=√bi,a=b = − b2 + k2b

2b3 + (1 + k2) b2 + k2b
< 0
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is satisfied, then system (1) yields a Hopf bifurcation at P when a increases
through a critical value a0 = b. System (1) becomes unstable with the
emergence of periodic oscillation.

For parameters b = 0.5, k = 5 and initial value x0 = (0.1, 0.1, 0.1, 0.1), we
can plot the bifurcation diagram and maximum Lyapunov exponent (MLE)
of system (1) with regard to a ∈ [0.1, 1.3], as shown in Fig. 1. It is obvious
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Fig. 1. Bifurcation diagram and maximum Lyapunov exponent of system (1) with
f(x, y, z) = z2 − xy and a ∈ [0.1, 1.3].

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

x

y

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

x

y

(a) (b)

−4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

x

y

−5 0 5 10 15 20 25
−10

−5

0

5

10

15

20

x

y

(c) (d)

Fig. 2. The projections on phase plane x–y of system (1) with: (a) a = 0.4;
(b) a = 0.8; (c) a = 0.9; (d) a = 1.2.
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that system (1) is stable with a ∈ [0.1, 0.5), periodic with a ∈ [0.5, 1), chaotic
with a ∈ [1, 1.3) as its MLE is, respectively, less than zero, equal to zero,
greater than zero. System (1) enters the periodic state through the Hopf
bifurcation when a = 0.5. The chaos in system (1) is generated by period-
doubling bifurcation with the variation of a. The projections on phase plane
x–y shown in Fig. 2 give a close look at different states of system (1) with
a = 0.4, a = 0.8, a = 0.9, a = 1.2. It is clear that system (1) is chaotic with
a = 1.2. The chaotic attractor has a fractal dimension D = 3.0189.

2.2. Two equilibria with f(x, y, z) = x2

Suppose that the function f(x, y, z) = x2, then system (1) has two equi-
libria P (0, 0, 0, 0), Q(ak, 0, 0, a2k). The eigenvalues λ of the equilibrium P
and µ of the equilibrium Q should satisfy the following equations:

(λ+ k)
(
λ3 + λ2 + bλ+ a

)
= 0 ,

(µ+ k)
(
µ3 + µ2 + bµ+ a

)
− 2ak = 0 .

For verifying the stability of P and Q, we should analyze the distribution
of the roots of Eq. (3) and Eq. (4). If all the roots of Eq. (3) (or Eq. (4))
are on the left half of the complex plane, then we can say P (or Q) is local
stable. Otherwise P and Q are unstable. According to the Routh–Hurwitz
criterion, we get that P is stable with k > 0, b > a > 0 and Q is always
unstable with k > 0, a > 0.

The dynamical evolution of system (1) can be illustrated by plotting
its bifurcation diagram and maximum Lyapunov exponent (MLE). Fig-
ure 3 shows the bifurcation diagram and maximum Lyapunov exponent
with respect to the parameters b = 1, k = 2, a ∈ [0.2, 2.1] and initial value
x0 = (0.1, 0.1, 0.1, 0.1). From Fig. 3, we know that system (1) is stable with
a ∈ [0.2, 1), periodic with a ∈ [1, 1.83) and chaotic with a ∈ [1.83, 2.1]. The
chaotic attractor in system (1) with a = 2 is observed in Fig. 4. We also
can use the electronic circuit to demonstrate the physical existence of the
chaos in system (1) with f(x, y, z) = x2 and a = 2, b = 1, k = 2. A circuit
diagram is designed on the basis of the system equations, as shown in Fig. 5.
By fixing C1 = C2 = C3 = C4 = 10 nF, R9 = R10 = R11 = R14 = 100 kΩ,
R1 = R2 = R3 = R4 = R5 = R6 = R7 = R8 = R12 = R13 = R16 = R17 =
R18 = R19 = R20 = R21 = R22 = R24 = 10 kΩ, R15 = R23 = 5 kΩ and
running the circuit, we can observe the chaotic attractor of system (1) in the
oscilloscope as shown in Fig. 6. It is obvious that Fig. 6 (a), (b) is consistent
with Fig. 4 (a), (b). It implies that the chaos of system (1) is physically
verified.
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Fig. 3. Bifurcation diagram and maximum Lyapunov exponent of system (1) with
f(x, y, z) = x2 and a ∈ [0.2, 2.1].
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Fig. 4. Chaotic attractor of system (1) with f(x, y, z) = x2 and a = 2, b = 1, k = 2.
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Fig. 6. The phase portraits of system (1) in oscilloscope: (a) x–y; (b) x–z.
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2.3. Three equilibria with f(x, y, z) = x3

Suppose that the function f(x, y, z) = x3, then system (1) has three
equilibria P (0, 0, 0, 0), Q1,2(±

√
ak, 0, 0,±a

√
ak). Similarly, we can obtain

that P is stable with k > 0, b > a > 0. The eigenvalues µ of the equilibria
Q1,2 should satisfy the following equation:

(µ+ k)
(
µ3 + µ2 + bµ+ a

)
− 3ak = 0 . (3)

Thus, Q1,2 is always unstable with k > 0, a > 0. Let a = 3.7, b = 1, k = 4,
the equilibria and their eigenvalues of system (1) are expressed as follows:

P (0, 0, 0, 0) :
λ1 = −4 , λ2 = −1.6963 , λ3,4 = 0.3482± 1.4353i ,

Q1,2(±3.8471, 0, 0,±14.2343) :
µ1 = −3.5262 , µ2 = −2.699 , µ3,4 = 0.6126± 1.6537i .

Evidently, P and Q1,2 are all index-2 saddle foci. Importantly, system (1)
generates a pair of strange attractors under the parameters a = 3.7, b = 1,
k = 4, as shown in Fig. 7. The dark gray (red colored) and light gray
(green colored) attractors are, respectively, yielded from initial values x0 =
(0.1, 0.1, 0.1, 0.1), x′0 = (−0.1,−0.1,−0.1,−0.1). Their Lyapunov expo-
nents are l1 = 0.1308, l2 = −0.0028, l3 = −0.8523, l4 = −4.2757. The
Lyapunov dimension is fractal as D = 3.0255.
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Fig. 7. (Color online) Two strange attractors of system (1) with f(x, y, z) = x3,
a = 3.7, b = 1, k = 4 and initial values x0 (dark gray/red), x′0 (light gray/green).
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The coexisting attractors of system (1) can be verified by using the
bifurcation diagram. Figure 8 (a) and 8 (b), respectively, show the bi-
furcation diagrams of system (1) with a ∈ [0.1, 3.7], b = 1, k = 4 and
a = 3.2, b = 1, k ∈ [1.6, 7.6]. The red and green branches are generated
from initial values x0 and x′0. In Fig. 8, the separated branches indicate the
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Fig. 8. (Color online) Bifurcation diagrams of system (1) with f(x, y, z) = x3 and:
(a) a ∈ [0.1, 3.7]; (b) k ∈ [1.6, 7.6].

coexistence of two attractors in system (1). Clearly, Fig. 8 (a) shows that
system (1) is mono-stable with a ∈ [0.1, 1), mono-periodic with a ∈ [1, 2.37),
multi-periodic with a ∈ [2.37, 3.06), multi-chaotic with a ∈ [3.06, 3.23) and
a ∈ [3.62, 3.7], mono-chaotic with a ∈ [3.23, 3.62). It can be illustrated by
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Fig. 9. Different states of system (1): (a) mono-stable with a = 0.7; (b) mono-
periodic with a = 1.5; (c) multi-periodic with a = 2.7; (d) mono-chaotic with
a = 3.2; (e) multi-chaotic with a = 3.4; (f) multi-chaotic with a = 3.65.
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phase portraits in Fig. 9 with parameter values a = 0.7, 1.5, 2.7, 3.2, 3.4, 3.65.
Figure 8 (b) shows that system (1) has a pair of chaotic attractors with
k ∈ [3.9, 5.1) and a pair of periodic attractors with k ∈ [5.1, 7.6]. By select-
ing k = 4.5, 6.5, we can observe the coexisting attractors of system (1) as
shown in Fig. 10.
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Fig. 10. The coexisting attractors of system (1) with f(x, y, z) = x3 and k =

4.5, 6.5.

2.4. Multiple equilibria with f(x, y, z) =
∑n

i=1 sgn(x+ si)

Suppose that the function f(x, y, z) =
∑n

i=1 sgn(x+ si), where i =
1, 2, · · · , n, si are real numbers. It is clear that the number of the equi-
libria is determined by n and si. Assume M(x∗, y∗, z∗, u∗) is an equilibrium
of system (1), where x∗ = f(x∗)/ak, y∗ = z∗ = 0, u∗ = ax∗, then the
characteristic equation at M can be obtained as follows:

(λ+ k)
(
λ3 + λ2 + bλ+ a

)
= 0 . (4)

Thus, M is stable with k > 0, b > a > 0. Obviously, the stability of M is
only determined by a, b, k and has nothing to do with the function f(x, y, z).
Owing to the existence of multiple equilibria, system (1) can generate multi-
scroll chaotic attractor. We will use the numerical simulations for finding
the multi-scroll attractor of system (1). In the following discussion, we fix
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the parameter values at a = 1, b = 0.5, k = 2. Therefore, all the equilibria of
system (1) are index-2 saddle foci with eigenvalues λ1 = −2, λ2 = −1.2442,
λ3,4 = 0.1221± 0.8882i.

For the function f(x, y, z) = sgn(x), system (1) has two equilibria M1,2

(±0.5, 0, 0,±0.5) and generates two-scroll attractor as shown in Fig. 11 (a).
For f(x, y, z) = sgn(x) + sgn(x + 1) + sgn(x − 1), system (1) has four
equilibria M1,2(±0.5, 0, 0,±0.5), M3,4(±1.5, 0, 0,±1.5) and generates four-
scroll attractor as shown in Fig. 11 (b). For f(x, y, z) = sgn(x) + sgn(x +
1) + sgn(x − 1) + sgn(x + 2) + sgn(x − 2), system (1) has six equilib-
ria M1,2(±0.5, 0, 0,±0.5), M3,4(±1.5, 0, 0,±1.5), M5,6(±2.5, 0, 0,±2.5) and
generates six-scroll attractor as shown in Fig. 11 (c). For f(x, y, z) =
sgn(x)+sgn(x+1)+sgn(x−1)+sgn(x+2)+sgn(x−2)+sgn(x+3)+sgn(x−3),
system (1) has eight equilibria M1,2(±0.5, 0, 0,±0.5), M3,4(±1.5, 0, 0,±1.5),
M5,6(±2.5, 0, 0,±2.5), M7,8(±3.5, 0, 0,±3.5) and generates eight-scroll at-
tractor as shown in Fig. 11 (d). These multi-scroll attractors has the same
Lyapunov exponents l1 = 0.1220, l2 = 0.1212, l3 = −1.2432, l1 = −2. Since
there exist two positive Lyapunov exponents, they are all hyper-chaotic. As
to different values of n, we can get different scroll attractors. If n approaches
to infinity, then infinite scroll attractor can be obtained.
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Fig. 11. Themulti-scroll attractors of system (1)with f(x, y, z)=
∑n

i=1 sgn(x+si).
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3. Conclusions

In this paper, we have considered the problem of the construction of a
framework for generating chaotic systems with different number of equilibria.
For accomplishing this proposition, a four-dimensional autonomous chaotic
system has been presented. The nonlinear term of the system determines its
equilibria and dynamical behaviors. Interestingly, the system yields a pair of
chaotic attractors or periodic attractors with nonlinear term f(x, y, z) = x3

and multi-scroll hyper-chaotic attractors with nonlinear term f(x, y, z) =∑n
i=1 sgn(x+ si). This work shows that the number and stability of the

equilibria usually determine the types of the attractors of the system.
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