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Triple-shape coexistence and superdeformation in Pb isotopes with neu-
tron numbers N = 96–138 is studied. The constrained calculations are
performed within the Relativistic Hartree–Bogoliubov (RHB) model using
DD-ME2, DD-PC1, and NL3* force parameters, and pairing interaction
separable in momentum space. Triple-shape coexistence (spherical, prolate
and oblate) manifests themselves in a clear manner in 184−190Pb nuclei with
axial RHB calculations. Triaxial RHB calculations further confirm the find-
ings. Superdeformed minimum is observed for 188−220Pb isotopes, and the
corresponding excitation energy, deformation and depth of well are compa-
rable within different force parameters used. The behaviour with neutron
number of the superdeformed excitation energy, two-neutron separation
energy in the ground state and superdeformed minimum, and its differ-
ential are fairly reproducing the trend of the available experimental data.
The present numerical results are compared with Macro–microscopic Fi-
nite Range Droplet Model (FRDM) and Hartree–Fock–Bogoliubov (HFB)
model based on the interaction Gogny-D1S force. Overall, a fairly satis-
factory agreement is found within the different force parameters and the
calculated and experimental results.
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1. Introduction

Recent experimental attempts devoted to understanding the atomic nu-
clear structure has observed a rich variety of nuclear shapes and structural
phenomena. These observations have given a boost for new experiments
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as well as how challenges for the theoretical models in the field of nuclear
structure research. The different shapes of an atomic nucleus from spherical
to some higher order multipole deformations are effectively due to, as now,
only a few protons and neutrons are being rearranged among the orbitals
around the Fermi surface. In the nuclear structure studies, shape coexis-
tence and shape-phase transitions in nuclei have been a matter of major
theoretical and experimental interest for many years. The phenomena of
shape coexistence and phase transition along an isotopic and isotonic chain
are effectively the outcome of the sensitive correlations between the single
particle energies and the collective degrees of freedom [1]. Observations of
shape coexistence close to the region around proton Z = 82 and neutron
N = 126 magic numbers of the nuclear chart have been for many years one
of the dedicated regions of active nuclear research, both experimentally and
theoretically to understand the intrinsic structure of many excitations and
their structural evolution. Studies have shown that the shape coexistence
at and near the regions of the shell closure is the result from intruder exci-
tations [2, 3], and its origin, in general, is due to the interplay between the
neutron–proton interaction and the shell effects [4].

In even–even nuclei, the phenomenon of shape coexistence is interpreted
when low-lying 0+ states with similar energies show different intrinsic defor-
mations. This leads to competing minima close in excitation energy. The
experimental observations of several 0+ states coexisting at low excitation
energy are interpreted as coexistence of nuclear shapes [2, 3, 5–11]. It has
been supported by many direct evidences such as α-decay studies, in-band
and out-of-band γ-ray transition probabilities, measurements of g-factor,
and by charge radii [9, 12–18]. Rapid evolution of nuclear structure with
neutrons and protons is known in the neutron-deficient Pb region. In the
structural interpretation of neutron-deficient Pb nuclei close to the neutron
midshell (N = 104), experimental observations of collective bands have pro-
vided the evidence for shape coexistence. Theoretically, the overall combined
effect of the presence of a strong proton shell closure at Z = 82 and a large
number of neutron holes below N = 126 is responsible for the coexistence of
the low-lying excited 0+ states. From the experimental observations of the
low-energy spectrum of Pb isotopes around N = 104, it is evident that the
ground state for all isotopes is predominantly spherical [10, 11]. Coexisting
structures with different properties associated with the observation of two
lowest excited 0+ states have been interpreted as an oblate (lower in energy
above 188Pb) and a prolate (lower in energy in lighter Pb nuclei) shape. The
interesting one is 186Pb with unique excitation spectrum having the three
lowest excited 0+ states [13]. The two 0+ excited states being located at low
excitation energy around 600 keV, associated with two different structures,
prolate and oblate, together with the spherical ground state, give evidence
for triple-shape coexistence in 186Pb.
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Many experiments, through several experimental techniques, have pro-
vided the structural richness for neutron-deficient Pb nuclei [6, 9, 13, 19–35].
Collective yrast bands have been identified in the four even–even isotopes
182−188Pb [21–25]. However, observation of a non-yrast collective band built
on the coexisting oblate minimum has been reported in 186,188Pb nuclei
[26–32] based on recoil-tagging measurements. In addition to the lowest 0+2
(532 keV) state in 186Pb nucleus [36], a systematic lowering of the first ex-
cited 0+ state in the even–even 188−202Pb isotopes has been observed, where
a low-spin sequence of non-yrast states in 196Pb described as a shell-model
intruder excitation provides the evidence for the microscopic nature of these
states [37]. Recent experimental studies using the total absorption tech-
nique at the ISOLDE (CERN) facility have inferred spherical ground states
for 192,190Pb isotopes [35].

Coexistence of 0+ states in Pb isotopes has been extensively studied
theoretically [38–59]. In the Nilsson framework, including shell corrections,
shape coexistence was predicted in Pb isotopes [38]. The two excited states
of Pb nuclei with neutron number close to N = 104 were predicted as oblate
and prolate in the phenomenological deformed mean-field models and the
Strutinsky method based on the yrast line formed by a collective band as-
sociated with the prolate minimum, near the ground state spherical config-
uration [39–43]. The self-consistent mean-field calculations, including corre-
lations beyond the mean field focusing on the static potential energy surface
properties of Pb isotopes including its spectroscopic properties account for
the coexistence of low-lying excited 0+ states [45–51]. This has also been
studied in the framework of the interacting boson model [52–54]. Besides,
a configuration mixing calculations of angular-momentum projected mean-
field states using the Skyrme interaction have been performed for neutron
deficient Pb nuclei. In the configuration-mixing interacting boson model
(IBM), for Pb isotopes, the mid-shell 186Pb has been reported to have three
minima (spherical, oblate, and prolate shapes). Moreover, in the heavier
Pb isotopes, away from the mid-shell, spherical ground state is found [55].
Recently, an investigation of shape-coexisting rotational states in 186−194Pb
nuclei has been carried out by using angular-momentum-conserved PES cal-
culations [57] which incorporate the Angular-Momentum-Projection (AMP)
technique into the macroscopic–microscopic (MM) model [58].

Superdeformation (SD) in Pb isotopes is also one of the interesting fea-
tures of nuclear structure studies. Nuclear structure experimentalists and
theorists over the past two decades have observed several rotational bands
corresponding to superdeformed shapes in the A ∼ 150 and 190 regions [60].
Besides the availability of large amount of experimental information on SD
bands, many fundamental properties such as the spin, parities and the exci-
tation energies have not yet been significantly measured [61–66]. The reason
behind this is the difficulty to identify the low intensity discrete transitions
which links the SD levels to the normal deformed (ND) levels.
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In 1989, identification of γ rays comes up with the first experimental
evidence for superdeformed (SD) rotational band in 191Hg [66, 67]. Until
now, over 85 SD bands have been identified in 25 isotopes with 79 < Z < 84
in the A ∼ 190 region. Some of the experimentally identified SD bands
in this region are in 190,192,194Hg [61, 62, 68, 69] and 190,192,194,195,196Pb
[63–65, 70–72] isotopes. The existence of superdeformed states and their
fundamental properties has been predicted within the different theoretical
approaches. These approaches include the Strutinsky method with aWoods–
Saxon potential [73], the Hartree–Fock–Bogoliubov (HFB) model with dif-
ferent Skyrme forces [74–76], with a Gogny force [77], the cluster model [78],
and the relativistic mean-field (RMF) theory [79–81]. These models have
predicted exactly the excitation energies and well depth of SD states. Other
theoretical calculations have predicted some other interesting features beside
the existence of the lowest SD bands, like octupole correlations in the SD
minimum, and the existence of low-lying multi-quasiparticle states within
the SD minimum [82–88].

Recent observations and predictions, through experimental analysis and
theoretical studies on the co-existence of excited 0+ states below 1 MeV
in even–even Pb isotopes between A = 182 and A = 194, especially the
case of triple-shape coexistence, and the prediction that N = 108 [71–74]
will mark the limit of observable superdeformation (SD) in the Pb isotopes,
have motivated us to reanalyse the geometry of even–even Pb isotopes. In
the present analysis, we shall present the numerical results of a system-
atic calculation in the search of ground state properties, shape coexistence,
and the structure of the superdeformed state of neutron-deficient isotopes
178−220Pb with neutron number N = 96–138. The systematic constrained
axial and triaxial calculation is done in the self-consistent mean-field model
— the Relativistic Hartree–Bogoliubov (RHB) with density-dependent zero
and finite range N–N interactions. The triaxial calculation is done for those
isotopes where the existence of triple-shape coexistence is expected. The
model parameters used are: the density-dependent DD-ME2 [89], point-
coupling DD-PC1 [90], and non-linear meson-exchange coupling NL3* [91].
They provide a successful description of ground state properties [92–95] over
the whole nuclear chart. Pairing correlations are considered in the separable
pairing model [96]. A systematic comparison is made with calculated values
and experimental data [97, 98], Macro–microscopic Finite Range Droplet
Model (FRDM) [99], and self-consistent Hartree–Fock–Bogoliubov (HFB)
theory extended by the generator coordinate method and mapped onto a
five-dimensional collective quadrupole Hamiltonian (CHBF+5DCH) based
on the Gogny-D1S interaction [100]. In the present study, our intention is
to get a deeper understanding about density functionals in general. The
present study also deals with the superdeformation within RHB not done
earlier.
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This manuscript is organized as follows. In Section 2, a general overview
of the Relativistic Hartree–Bogoliubov (RHB) formalism is presented. In
Section 3.1, the numerical results of the calculations are discussed and com-
pared with the results from other works. Summary and conclusions are in
Section 4.

2. Theoretical framework

The present investigation is carried out in the framework of covariant
density functional theory (CDFT). We use the covariant energy density
functionals (CEDFs) based on the finite interaction range DD-ME2 [89], a
zero-range point-coupling DD-PC1 [90], and non-linear meson–nucleon cou-
pling (NL3*) [91]. The pairing correlations are treated suitably within the
separable pairing model. We have used these models very successfully and
have provided an excellent predictions of different ground states and excited
state properties [101–104]

2.1. The meson-exchange model
The meson-exchange model is defined by the standard Lagrangian den-

sity with medium-dependent vertices [105]

L = ψ̄ [γ(i∂ − gωω − gρ~ρ~τ − eA)−m− gσσ]ψ

+1
2 (∂σ)2 − 1

2mσ
2σ2 − 1

4ΩµνΩ
µν + 1

2m
2
ωω

2

−1
4
~Rµν

~R
µν

+ 1
2m

2
ρ~ρ

2 − 1
4F µνF

µν , (1)

where m is the bare nucleon mass and ψ denotes the Dirac spinors. The
masses mσ, mω, and mρ are those of the σ meson, ω meson, and the ρ meson,
with the corresponding coupling constants for the mesons to the nucleons as
gσ, gω, gρ, respectively, and e is the charge of the proton. These coupling
constants and unknown meson masses are Lagrangian Eq. (1) parameters.
Here, Ωµν , ~Rµν , and Fµν are the field tensors of the vector fields ω, ρ, and
the photon.

This linear model has first been introduced by Walecka [106, 107], how-
ever, this simple model does not provide a quantitative description of nuclear
system [108, 109] with interaction terms linear only in the meson fields. For
a realistic description of complex nuclear system properties, a non-linear
self-coupling

U(σ) = 1
2m

2
σσ

2 + 1
3g2σ

3 + 1
4g3σ

4 (2)

for scalar mesons has turned out to be crucial [108]. In the meson-exchange
model, the meson–nucleon vertex functions gσ, gω and gρ are determined by
adjusting the parameters of an assumed phenomenological density-depen-
dence of meson–nucleon coupling to reproduce the experimental data in
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finite nuclei. The couplings of the σ meson and ω meson to the nucleon field
are defined as

gi(ρ) = gi(ρsat)fi(x) for i = σ, ω , (3)

where

fi(x) = ai
1 + bi(x+ di)

2

1 + ci(x+ di)2
(4)

is a function of x = ρ/ρsat, and ρsat denotes the baryon density at saturation
in symmetric nuclear matter. The eight real and positive parameters in
Eq. (4) are not independent. In order to have small number of parameters
in the fit, these eight parameters are constrained as follows [110]:

fi(1) = 1 , f ′′σ (1) = f ′′ω(1) , f ′′i (0) = 0 . (5)

The latter constraint guarantees that the rearrangement contributions be-
comes finite for zero density and do not diverge. These five constraints
reduce the number of independent parameters to three. Three additional
parameters in the isoscalar channel are gσ(ρsat), gω(ρsat), and mσ. The
functional form of the density dependence for the ρ-meson coupling is sug-
gested by a Dirac–Brückner calculations of asymmetric nuclear matter

gρ(ρ) = gρ(ρsat) exp [−aρ(x− 1)] . (6)

The isovector channel is parameterized by gρ(ρsat) and aρ. The eight inde-
pendent parameters (seven coupling parameters and the mass of the σ meson)
were adjusted to reproduce the properties of symmetric and asymmetric nu-
clear matter, and to ground state properties of spherical nuclei. The present
investigation uses the very successful density-dependent meson-exchange
DD-ME2 [89], and non-linear NL3* [91] parameter sets.

2.2. The point-coupling model
The effective Lagrangian density for the density-dependent point-coupling

model [90, 111, 112] that includes the isoscalar–scalar, isoscalar–vector and
isovector–vector four-fermion interactions is given by

L = ψ̄(iγ ∂ −m)ψ

−1

2
αs(ρ̂)

(
ψ̄ψ
) (
ψ̄ψ
)
− 1

2
αV (ρ̂)

(
ψ̄γµψ

) (
ψ̄γµψ

)
−1

2
αTV (ρ̂)

(
ψ̄~τγµψ

) (
ψ̄~τγµψ

)
−1

2
δS
(
∂v ψ̄ψ

) (
∂v ψ̄ψ

)
− eψ̄γ ·A1− τ3

2
ψ . (7)

It contains the free-nucleon Lagrangian, the point-coupling interaction terms,
and, in addition to these two, the model includes the coupling of the proton
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to the electromagnetic field. The derivative terms in Eq. (7) account for the
leading effects of finite-range interactions that are crucial for a quantitative
description of the nuclear properties. The functional form of the chosen
point-couplings is

αi(ρ) = ai + (bi + cix ) e−dix , (i = S, V, TV ) , (8)

where x = ρ/ρsat, and ρsat denotes the nucleon density at saturation in
symmetric nuclear matter. In the present work, we have used the recently
developed density-dependent point-coupling interaction DD-PC1 [90].

In the present investigation, the axial and triaxail RHB with separable
pairing is used [113–115]. In the presence of pairing, the single-particle
density matrix is generalized to two densities [116]: the normal density ρ̂
and the pairing tensor κ̂. The RHB energy density functional is then given
by

ERHB[ρ̂, κ̂] = ERMF[ρ̂] + Epair[κ̂] , (9)

where ERMF[ρ̂] is given by

ERMF

[
ψ, ψ̄, σ, ωµ, ~ρµ, Aµ

]
=

∫
d3rH , (10)

and the Epair[κ̂] is given by

Epair[κ̂] =
1

4

∑
n1n′

1

∑
n2n′

2

κ∗n1n′
1

〈
n1n

′
1

∣∣V PP
∣∣n2n′2〉κn2n′

2
. (11)

n refers to the original basis, and 〈n1n′1|V PP |n2n′2〉 are the matrix elements
of the two-body pairing interaction. The effective interaction in the pp chan-
nel, in r-space has the form of

V PP
(
r1, r2, r

′
1, r

′
2

)
= −Gδ (R−R′)P (r)P (r′) , (12)

where

R =
1√
2

(r1 + r2) , (13)

r =
1√
2

(r1 − r2)

are the center of mass and the relative coordinates, respectively. The form
factor P (r) is of the Gaussian shape

P (r) =
1

(4πa2)3/2
e−r

2/2a2 . (14)
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The two parameters G = 728 MeV fm3 and a = 0.644 fm of this interaction
are the same for the protons and neutrons. They are derived in Refs. [117–
120] by mapping of the 1S0 pairing gap of infinite nuclear matter to that of
the Gogny-D1S force [121].

The constrained calculations are performed by imposing constraints on
both axial and triaxial mass quadrupole moments. The potential energy
surface (PES) studied as a function of the quadrupole deformation parameter
is performed by the method of quadratic constrains [116]. The method of
quadratic constraints uses an unrestricted variation of the function〈

Ĥ
〉

+
∑
µ=0,2

C2µ

(〈
Q̂2µ

〉
− q2µ

)2
, (15)

where 〈Ĥ〉 is the total energy, 〈Q̂2µ〉 denotes the expectation values of mass
quadrupole operators

Q̂20 = 2z2 − x2 − y2 and Q̂22 = x2 − y2 , (16)

q2µ is the constrained value of the multipole moment, and C2µ is the corre-
sponding stiffness constant [116]. Moreover, the quadratic constraint adds
an extra force term

∑
µ=0,2 λµQ̂2µ to the system, where

λµ = 2C2µ

(〈
Q̂2µ

〉
− q2µ

)
(17)

for a self-consistent solution. This term is necessary to force the system to a
point in deformation space different from a stationary point. The augmented
Lagrangian method [122] has also been implemented in order to resolve the
problem of convergence of the self-consistent procedure which diverges while
increasing the value of stiffness constant C2µ used in the procedure.

3. Results and discussion

3.1. Potential energy surface
In Fig. 1, we display the calculated potential energy surfaces of even–even

178−220Pb isotopes as functions of the quadrupole deformation. It is done
within the axially deformed RHB model with constrained quadrupole defor-
mations. The spherical ground state is found in 178−184Pb and 202−220Pb
nuclei, as expected for nuclei with proton shell closure at Z = 82. Beside
these spherical ground states, several deformed (prolate and oblate) compet-
ing minima are also there at very low energy, corresponding to an evident
shape coexistence in nuclei 182−200Pb. Furthermore, we can consider spheri-
cal ground states of nuclei 194−200Pb on the basis of larger external potential
barrier as compared to their coexisting oblate minimum.
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Fig. 1. Potential energy curves of even–even Pb isotopes from neutron number
N = 96–138 as functions of the quadrupole deformation, obtained from axial RHB
calculations with constrained quadrupole deformation. The effective interactions
used are DD-ME2 (solid), DD-PC1 (dashed) and NL3* (dash-dotted). The curves
are scaled such that the ground state has a zero MeV energy.

The nuclei 182−192Pb show triple-shape coexistence (oblate, prolate and
spherical). Moreover, nuclei 184−190Pb have larger barrier potential between
oblate, prolate and spherical minima as compared to nuclei 182,192Pb. The



1662 T. Naz, S. Ahmad, H. Abusara

coexistence of triple-state in these nuclei is in qualitative agreement with the
experimental finding [9, 13]. 182Pb and 184Pb have spherical ground states,
in addition to low-lying oblate and prolate minima. The first 0+ excited
state in nuclei 182,184Pb is oblate (β2 = −0.18) and the second one is prolate
(β2 = 0.30). However, the ground state of 186Pb is not spherical, rather
prolate (β2 = −0.18) with DD-PC1 and NL3*, and oblate (β2 = 0.31) with
DD-ME2. We find second minima as oblate (β2 = 0.31) with DD-PC1 and
NL3*, and prolate (β2 = −0.18) with DD-ME2. Third minimum is spherical
in the present calculation. The finding is the same for other 188,190,192Pb
isotopes having oblate, prolate and spherical shape as their first, second and
third minima, respectively with all the effective interactions. However, on
the basis of their external potential barrier heights, we can say that the
triple-shape for these nuclei is prolate, oblate and spherical as their first,
second and third minimum, respectively.

The structural evolution of Pb isotopes in terms of quadrupole moments
is shown in Fig. 2. The encircled open square symbols indicate the shapes
corresponding to the ground states obtained in our calculations. The ex-
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Fig. 2. (Color online) Quadrupole deformation parameters β20 for even–even Pb
isotopes using DD-ME2, DD-PC1 and NL3* as a function of mass number (A),
compared to FRDM values [99]. Results for prolate, oblate, and spherical minima
are displayed with different symbols (see the legend). Ground state results are
shown by open squares. In the case of 186Pb, the ground state with DD-ME2 is
shown by the gray/orange square.

citation energies of the three minima are compared with the experimental
data [6, 9, 13, 19–29, 33, 34, 49, 50], shown in Fig. 3. We have plotted the
excitation energies of the oblate and prolate minima relative to the spheri-
cal state. We notice that the crossing of the theoretical prolate and oblate
states takes place at A = 186, as suggested by the experiment [9]. There
is a partial agreement with the experimental excitation energies, but they
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Fig. 3. Excitation energies of 0+ excited states in 182−194Pb as a function of mass
number (A). Compared to experimental (open symbols) excitation energies for the
prolate (square) and oblate (circle) 0+ states. Solid lines correspond to the axial
RHB calculations with DD-ME2, DD-PC1, and NL3* effective interactions.

are not corresponding to their respective shapes. These results do reproduce
quantitatively the experimental results, but also provide a good qualitative
description of the triple-shape coexistence. So, we see that with an increasing
neutron number, after N = 184, the oblate minimum is lowered in energy
except at 186Pb where it is prolate, and the nuclei 188−198Pb have oblate
ground states, contradicting the experimental findings as ground state be-
ing of spherical shape. However, as discussed above, we can consider ground
states of 194−200Pb nuclei as spherical ones. Further, with increasing neutron
number, we find that 202−220Pb nuclei have spherical ground states.

Keeping in mind the role of the pairing correlations and the proton–
neutron (p–n) interaction to interpret the low-lying prolate and oblate min-
ima in the closed shell Pb isotopes [49, 50], we have shown the absolute values
of the pairing energies for proton and neutron along with the potential en-
ergy curves (thick lines) for the isotopes 182−192Pb showing the triple-shape
coexistence as the functions of the axially symmetric quadrupole moment
with the DD-ME2, DD-PC1 and NL3* parameter set. We expect the proton
pairing energy to vanish at and around the spherical shape because of the
Z = 82 shell closure. This is what we get in Fig. 4. The neutron pairing
energy is very large around the spherical shape. Further, for large defor-
mation, the proton pairing energy increases and the neutron pairing energy
decreases to the same extent. What else we notice is that apart from the zero
of the proton pairing energy around the spherical shape, it also vanishes or
approaches zero at other different deformations that is on either prolate or
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Fig. 4. (Color online) Mean field potential energy surfaces (continuous thick line)
as well as the absolute value of the pairing energies for neutrons (dotted/blue line)
and proton (dashed/red line) for the nuclei 182−192Pb considered as functions of
the axially symmetric quadrupole moment with the DD-ME2, DD-PC1 and NL3*
parameter set.

oblate side. The behavior of neutron and proton pairing energies is the same
in almost all the isotopes with all the effective interactions considered. Ear-
lier studies have shown that on the basis of the pairing energy contribution
as well as the occupancies of the quasiparticle states in the single particle
energies, one cannot predict directly the appearance of energy minima in
the potential energy curve [49, 50].



Triple-shape Coexistence and Superdeformation in Pb Isotopes 1665

In order to get a further insight into the triple-shape coexistence, we
have performed the systematic constrained triaxial calculations for these
184−190Pb isotopes mapping the quadrupole deformation space defined by β2
and γ using DD-ME2 and DD-PC1 effective interactions. For each nucleus,
two contour plots have been made for each parameterization to investigate
the location of a triaxial ground state, and the possibility of triple-shape
coexistence. The location of the ground state in the β–γ deformation space
is indicated by the point (β0, γ0). We can see in Fig. 5 the β–γ contour plots
for 184−190Pb isotopes. We have also plotted the energy difference (∆E)
between the three minima as a function of β for fixed γ values. As can be

Fig. 5. (Color online) Mean field potential energy surfaces for the nuclei 184−190Pb
in the (β, γ) plane, obtained from a triaxial RHB calculations with the DD-ME2
and DD-PC1 parameter set. The color scale shown at the right has the unit of
MeV, and scaled such that the ground state has a zero MeV energy.

seen from Fig. 6, the triaxial calculations are confirming the coexistence of
triple-shape with an energy difference of less than 1 MeV. In these figures,
we can see that for 184Pb, isotope the global minimum is spherical. Two of
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the remaining minima are axially deformed oblate (0.236 MeV) and prolate
(0.641 MeV). The axial prolate with an energy difference of 0.641 MeV agrees
with the experimental prolate excitation energy of 0.65 MeV.
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Fig. 6. Mean-field potential energy curves for the nuclei 184−190Pb showing the
energy difference (∆E) between the three minima as a function of β for fixed
γ-values with DD-ME2 and DD-PC1 set.

For the 186Pb isotope, the experimental ground state is spherical with
two low-lying oblate (0.536 MeV) and oblate (0.662 MeV) minima. In our
calculation, the global minimum is oblate at β = 0.20 and γ = 60◦. The
other two minima are spherical (0.686 MeV) and prolate (0.092 MeV). From
Fig. 6, we can see that there is a competition between oblate (0.000 MeV)
and prolate (0.092 MeV) to be the global minimum. Beside this, we have
another axially prolate (0.573 MeV) minimum as well as triaxial minima with
an energy difference of 0.725 MeV and 0.500 MeV closer to the experimental
values. Further, in the case of 188Pb and 190Pb isotope, we observed the
similar structures. The findings are almost the same with both the DD-ME2
and DD-PC1 parameterizations used. The comparison with experimental
data [6, 9, 13, 19–29, 33, 34, 49, 50] is shown in Fig. 7.
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Fig. 7. Excitation energies of 0+ excited states in 182−194Pb as a function of mass
number (A) obtained in triaxial RHB calculations, compared to experimental (open
symbols) excitation energies for the prolate (square) and oblate (circle) 0+ states.

We see that the contradiction is there with the present RHB calculation
and the experimental findings for those Pb isotopes in which the triple-
shape coexistence is observed. We indeed are reproducing the triple-shape
coexistence (spherical, prolate and oblate), but not as a spherical ground
state along with the two low-lying prolate and oblate as first and second
excited states, respectively, except for 184Pb nuclei. This discrepancy may
not be very significant. We can say that any tiny changes in the details of
the calculations would lead to a different shape of the ground state due to
very delicate competition between the spherical, axially prolate, oblate and
triaxial shapes being within the very small degenerate energies.

3.2. Ground state properties

In Fig. 8, we display the binding energies per nucleon of even–even Pb
isotopes, calculated within the RHB formalism using density-dependent zero
and finite range mean-field effective nucleon–nucleon interactions DD-PC1,
DD-ME2, respectively, and the non-linear finite range meson-exchange NL3*
interaction, and with the separable pairing. In this figure, we have plotted
those theoretical values that correspond to the ground states of the corre-
sponding isotopes whether it is prolate oblate or spherical. The theoretical
binding energies are compared with the available experimental data [97, 98].
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Fig. 8. Binding energies of even–even Pb isotopes calculated in the RHB model
with the mean-field effective interactions DD-ME2, DD-PC1, and NL3*, and with
the separable pairing model. The theoretical binding energies are compared with
the experimental data [97, 98], FRDM [99], and HFB [100].

There is a good agreement with experimental data for both the density-
dependent DD-ME2 and DD-PC1 interactions except they underbind the
nuclei after 214Pb, while the non-linear NL3* interaction strongly overbind
the nuclei except around 208Pb. The numerical results are also found to be
in agreement with the Macro–microscopic FRDM calculations [99], and the
self-consistent HFB calculations based on the interaction Gogny-D1S [100].
However, the HFB calculations underbind the nuclei throughout the isotopic
series except around 208Pb.

In Fig. 9, we can see the results obtained for S2n energies for even–even
Pb isotopes. The result is shown as a function of the even neutron number N
in the range of interest. Focusing on the behavior, we see that besides the
abrupt decrease of S2n at N = 126 corresponding to the shell closure, the
evolution of the S2n along the isotopic chain shows a change in the tendency
at N = 104 and at N = 120. This suggests a change in the ground-state
shape of these isotopes corresponding to the transition from the spherical to
the prolate, oblate and the spherical shape. In general, the measured S2n are
reproduced reasonably well using DD-ME2 and DD-PC1 interactions except
underestimated by the calculations between N = 120 and N = 138 within
1–1.5 MeV. The numerical results with NL3* interaction underestimate the
experimental data except in the region of N = 126 shell closure location.
The calculated shell gap at N = 126 is larger than observed. Present numer-
ical results are also found to be in agreement with the Macro–microscopic
FRDM calculations [99], and the self-consistent HFB calculations based on
the Gogny-D1S interaction [100] up to N = 126. After N = 126, it lies in
between FRDM and HFB calculations.
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Fig. 9. Two neutron separation energies of even–even Pb isotopes calculated in
the RHB model with the mean-field effective interactions DD-ME2, DD-PC1, and
NL3*, and with the separable pairing model. The theoretical binding energies are
compared with the experimental data [97, 98], FRDM [99], and HFB [100].

In Fig. 10, the experimental charge radii (solid circles) of Pb isotopes
from [123] are compared against the predictions of the RHB calculations with
DD-ME2, DD-PC1, and NL3* effective interactions with separable pairing.
In these figures, we show the values for the oblate (down triangles), prolate
(up triangles) and spherical (solid dots) shapes corresponding to the local
minima in the potential energy curves. The theoretical values corresponding
to the ground states of the isotopes are shown by open circles. We see the
smooth increase of charge radii with a kink at A = 208 in the case of the
spherical shape of Pb isotopes. We also observe that the lighter isotopes
are spherical, then the shape changes to oblate at A = 186, remains oblate
till A = 196, then becomes spherical. The observed jump at A = 186
and A = 196 corresponds to the transition from spherical to prolate. The
charge radii corresponding to the prolate solution for the Pb isotopes are also
shown. The oblate deformation appears near β ∼ −0.2, while the prolate one
appears around β ∼ 0.3. In the case of DD-ME2, we get prolate deformation
for the ground state. The behavior is similar to the one discussed and shown
in the quadrupole deformation plot in Fig. 2. In contrast to this, the results
of the calculations are in a good agreement with experimental data. The
maximum deviation between the experimental values and the theoretical
values corresponding to the ground state solution is 0.05 fm.

Figure 11 (a) shows the well-known anomalous kink in the isotopic shift
of Pb isotopes, which represents the success of relativistic mean-field models
in which it is expected to get naturally the anomalous charge isotopic shifts
because of the intrinsic isospin dependence of the effective single-nucleon
spin-orbit potential [124]. The numerical values of the mean-square nuclear
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Fig. 10. Charge radii rch (fm) for even–even Pb isotopes using DD-ME2, DD-PC1
and NL3* as a function of mass number (A), compared to experimental data from
Ref. [123]. Results for prolate, oblate, and spherical minima are displayed with
different symbols (see the legend). Ground state results are shown by open circles.

charge radius used to calculate this isotopic shift correspond to the ground
states (spherical, prolate or oblate) obtained in our calculations. The ex-
perimental values [125] of change in mean-square nuclear charge radius from
optical isotopic shifts are very well reproduced in the present RHB calcula-
tion with DD-ME2, DD-PC1, and NL3* effective interactions with separable
pairing. In Fig. 11 (b), we show the RHB calculations for the charge isotopic
shift of even–even Pb isotopes compared with the experimental data [123].
The evolution of the nuclear charge radii relative to that of the N = 126 iso-
tope, δ〈rc2〉 = 〈rc2〉N − 〈rc2〉126, is presented as a function of mass number.
From the figure, we can see that the calculations follow nicely the measure-
ments. There is a smooth increase of δ〈rc2〉 up to A = 206, then a kink
appears at A = 208 and the increase is smooth for heavier isotopes. The
agreement improves substantially for heavier isotopes from A = 194.
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Fig. 11. Calculated charge isotopic shift in even–even Pb isotopes. The results of
RHB calculations with the DD-ME2, DD-PC1, and NL3* effective interactions,
and with the separable pairing, are compared with the experimental data from
Refs. [123, 125].

3.3. Superdeformed states

In this section, we will report the systematic investigation of superde-
formed (SD) states for even–even Pb isotopes in the axially constrained RHB
framework for the interactions DD-ME2, DD-PC1, and NL3* with pairing
treated by the separable model. The present RHB calculations show an
excellent manifestation of this SD structure in Pb isotopes including the
evolution of the excitation energy, depth of the well, deformation, and the
comparison with the ND states.

Theoretical studies of Satula et al. [73] and Krieger et al. [74] dedicated to
the properties of the SD states based on the nuclear potential energy surfaces
have indicated that in the case of Pb isotopes, the stable SD minimum is
expected at spin I = 0. These studies have also predicted that in the
neutron-deficient Pb isotopes, nuclide with N = 108 will be the lightest
Pb isotope in which a distinct SD minimum can be observed. They have
predicted the depth of well to be 90 keV for 190Pb. Further, Bender et al.
[75] have suggested the well depth to be 1 MeV and deformation to be β2 ≥
0.7 in his approach with Sly6 Skyrme interaction with a density-dependent
zero range pairing force. But this deformation is much higher than the
experimentally observed quadrupole moment β2 ∼ 0.47, and also with other
theoretical model predictions. It is also suggested to search for SD states
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in the N = 106 isotope 188Pb. Experimentally [72], a superdeformed band
has been observed in the most neutron-deficient isotope of Pb i.e. in the
N = 108 isotope 190Pb. Further, it is suggested that the excitation energy
for SD band in 190Pb may be similar to that of its neighboring nucleus 192Pb.

In Fig. 1, we can see that in the present RHB calculations, the superde-
formed (SD) states have started to appear from the 188Pb nucleus except
for NL3* parameter set. However, from 190Pb onward, a clear SD minimum
is there till 220Pb for all the effective interactions. The excitation energy
ESD and the depth of well V of the SD minimum are calculated with re-
spect to the ground state of the respective isotopes as shown in Fig. 1 for
196Pb. We can see that it is difficult to observe the stable SD state for
188Pb isotope in comparison to its neighboring 190Pb nucleus. This is due
to the significantly high-excitation energy relative to the ground of SD min-
imum with very stiff barrier. In Fig. 12, we are presenting the calculated
excitation energies ESD of Pb isotopes for SD minimum as the functions of
neutron number, compared with the experimental data available [71]. For
188,190,192Pb isotopes, the excitation energy decreases, and starts to increase
with increasing neutron numbers from N = 112. It reaches a maximum
at N = 126, then starts decreasing gradually approaching to a minimum.
However, it is difficult to observe SD bands in Pb isotopes with N > 118,
as the excitation energy is too high to approach these SD states. This fact
is also reflected in the experimental observations, as why we observe SD
states between N = 110 and N = 116. From Fig. 12, we observe that differ-
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Fig. 12. Experimental and theoretical SD bandhead energies. Present results with
the DD-ME2, DD-PC1, and NL3* effective interactions, and with the separable
pairing, are compared with other model predictions and the experimental data [71]
(insight of the figure). Strutinsky method using a Woods–Saxon potential [73];
HF-Skyrme, HF-SLy4, HF-SkP, and HF-Gogny: HFB using density-dependent
Skyrme [74], SLy4 [76], SkP [76], and Gogny [77] interactions; cluster model [78].
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ent theoretical approaches [73, 74, 76–78] including the present calculations
reproduce the experimental finding of an increasing trend for the excita-
tion energy with increasing neutron numbers. They are, however, not able
to reproduce consistently the absolute energies as well as their differences.
The present RHB calculation with NL3* parameterization does very well for
all the three nuclei. Further, DD-ME2 parameterization reproduces it well
for 192Pb and 194Pb, but, DD-PC1 underestimate except slightly for 196Pb
isotope.

If we look into the depth of the well given Table I, it follows almost
the same trend as the excitation energy. This is an important parameter
which affects the lifetime of the superdeformed states. There is a dip at
N = 112 except with NL3*, and increase with the neutron number increase.
It increases up to N = 134, but suddenly decreases at N = 136. Another
fundamental property of the SD state is the quadrupole deformation pa-
rameter β2, tabulated in Table II. It lies systematically between 0.6 and 0.7
for all the effective interactions. The finding agrees with the observation of
superdeformed nuclei for excited states adopting ellipsoidal shapes with an
axis ratio around 2:1 [60].

TABLE I

The depth of well of the superdeformed minimum V in the superdeformed states
of 188−220Pb isotopes calculated with the DD-ME2, DD-PC1, and NL3* effective
interactions.

Nuclei DD-ME2 DD-PC1 NL3*
188Pb 0.58 0.88 —
190Pb 1.19 1.04 0.30
192Pb 2.47 2.05 0.83
194Pb 2.06 2.21 1.11
196Pb 1.78 2.03 1.18
198Pb 2.07 2.47 1.54
200Pb 3.07 3.49 2.25
202Pb 3.69 4.04 2.83
204Pb 4.10 4.27 3.52
206Pb 4.43 5.63 3.98
208Pb 4.95 5.25 4.50
210Pb 5.48 5.55 4.69
212Pb 5.68 6.11 4.73
214Pb 5.95 6.32 4.69
216Pb 6.20 6.51 4.54
218Pb 4.65 5.48 3.39
220Pb 3.26 2.96 1.93
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TABLE II

The quadruple deformation β2 of the superdeformed states of 188−220Pb isotopes
calculated with the DD-ME2, DD-PC1, and NL3* effective interactions.

Nuclei DD-ME2 DD-PC1 NL3*
188Pb 0.72 0.73 —
190Pb 0.71 0.73 0.71
192Pb 0.71 0.71 0.71
194Pb 0.65 0.66 0.66
196Pb 0.62 0.62 0.61
198Pb 0.58 0.58 0.57
200Pb 0.59 0.60 0.59
202Pb 0.57 0.58 0.58
204Pb 0.56 0.56 0.58
206Pb 0.59 0.59 0.58
208Pb 0.60 0.59 0.57
210Pb 0.60 0.58 0.58
212Pb 0.63 0.63 0.63
214Pb 0.65 0.65 0.65
216Pb 0.67 0.67 0.67
218Pb 0.67 0.66 0.67
220Pb 0.72 0.70 0.70

Figure 13 shows the binding energy per nucleon of the SD states, com-
pared with the experimental SD energies [71]. There is a good agreement
with experimental data for both the density-dependent DD-ME2 and DD-
PC1 interactions. RHB with NL3* overestimate the experimental value for
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Fig. 13. Binding energy per nucleon for SD states, compared with the experimental
data [71].
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192,194Pb isotopes. We can see that there is a jump at N = 110, and maxi-
mum appears at N = 112. This is in accordance with the suggestion made
that N = 112 and N = 114 may appear as the semi-magic numbers at
superdeformation [71].

In Fig. 14, we show two more sensitive parameters, two-neutron sepa-
ration energy (S2n) and its differential ∆S2n for the superdeformed states.
These are sensitive to the shell closure location within the isotopes. In
Fig. 14 (a), agreement with the available data for N = 112 and N = 114 is
quite good within 3–5%. Important are the prominent kinks appearing at
N = 110, 118, 128, and 134. This can be more clearly seen in Fig. 14 (b).
Peaks at N = 110 and 134 are more prominent in the DD-ME2 parameter
set than DD-PC1 and NL3*. Two other peaks at N = 118 and N = 128 are
equally present there with all the three effective interactions. It is known
that the presence of the kinks and peaks in these analyses reflects the loca-
tion of the shell closures. We can see that the presence of a peak or kink at
N = 110 is nearer to the suggested semi-magic numbers (N = 112 or 114) at
superdeformation [71]. Beside these, we also have candidates for semi-magic
numbers N = 118, 128 and 134 at superdeformation. The present ∆S2n
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Fig. 14. (a) Two-neutron separation energy, (b) two-neutron separation energy
difference in the superdeformation minimum obtained with DD-ME2, DD-PC1,
and NL3* effective interactions, compared with the experimental data [63, 69, 71].
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values for N = 112 agree very well with experiment (0.85 MeV) except with
DD-PC1 which overestimate it by 300 keV. The DD-ME2 and NL3* differ
in experimental value by 90 keV and 40 keV, respectively.

4. Conclusion

We have used the self-consistent mean-field model: the Relativistic
Hartree–Bogoliubov (RHB) with density-dependent zero and finite range
N–N interactions and separable pairing to perform a systematic calculation
for the search of axial as well as triaxial ground state properties, triple-
shape coexistence, and the structure of the superdeformed state of neutron-
deficient Pb-isotopes 178−220Pb with neutron number N = 96–138.

In conclusion, we have found a reasonably good qualitative description of
the experimental energies as well as the triple-shape coexistence (spherical,
prolate and oblate) and their evolution with mass number. The discrep-
ancy is not very significant because any tiny changes in the details of the
calculations would lead to a different shape of the ground state due to very
delicate competition between the spherical, axially prolate, oblate and triax-
ial shapes being within the very small degenerate energies. However, pairing
fluctuations may play a role to improve the agreement with the experiment.
We have shown that all the effective interactions consistently describe bind-
ing energies, charge radii, ground state quadrupole deformations and, at
least qualitatively, the relative positions of coexisting minima in Pb isotopic
chains. The different sensitivities of charge radii and δ〈rc2〉, indicate the
structural changes, and more specifically, for shape transitions, changes in
the behavior of the isotopic chains where the energies of the various shapes
are almost degenerate. We know that beyond the mean field, the approach
is appropriate for the quantitative analysis of shape coexistence, however,
the present calculations within the relativistic mean-field model with the
DD-ME2, DD-PC1 and, NL3* interactions in the ph channel, and with the
separable pairing, reproduce in detail the empirical ground-state properties
of neutron-deficient Pb isotopes.

Search for superdeformed states in 178−220Pb isotopes is investigated
within the same framework. We have performed the projected potential
energy surface (PES) calculations with axial symmetry for even–even Pb
nuclei (Z = 82, N = 96 to 138). The present calculations clearly show the
presence of superdeformed (SD) minima other than normal ground states
for the Pb isotopes with neutron numbers N = 106 to 138. This is evident
for all the effective interactions used. SD states start to appear at N = 106
(A = 188) which is earlier than the predicted N = 108 (A = 190). It is
not there with the NL3* effective interaction. The numerical data for the
excitation energy of the SD states are well-reproduced according to the trend
predicted, i.e. the excitation energy increases with neutron number. In the
present calculation, it reaches a maximum value at N = 126, then gradually
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decreases approaching towards another minimum. A comparison with the
predictions of other available models shows that no one correctly reproduces
the excitation energies. However, present calculations with NL3* agree very
well with experiment for N = 112 and 114, and with DD-ME2 for N = 114.
The depth of well follows the increasing trend with neutron number with
fluctuations at N = 114 and a sudden decrease at N = 136. The calculated
quadrupole deformation in SD minima lies systemically between 0.6 and 0.7,
which is consistent with the observation of experiment. The binding energy
per nucleon for SD states is consistent with the standard trend, and agrees
well with the experimental data available for N = 110, 112 and 114. At
N = 112, we get its maximum. Two-neutron separation energies S2n for
SD states at N = 112 and 114 and its differential ∆S2n for SD states at
N = 112 are well-reproduced with kinks and peaks at N = 110, 118, 128,
and 134. Systematics of the analysis indicates that N = 112 and N = 114
may appear as semi-magic numbers for superdeformation as suggested [71].
Other candidates for such semi-magic numbers for superdeformations may be
N = 118, 128 and 134. In general, the separation energies for SD states are
found to be significantly larger than the ground states (ND) of the respective
isotopes, suggesting the lower level density at these SD states.
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