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The two-dimensional BTW model of self-organised criticality (SOC)
with critical height, zc = 8, is studied by computer simulation in the fol-
lowing two different cases. When the value of height variable of a particular
site reaches the critical value, zc = 8, the value of height variable of that
site is reduced by eight units: (i) by distributing eight particles among the
four nearest neighbouring sites and four next nearest neighbouring sites,
each receiving one particle at a time; (ii) by distributing eight particles
among the four nearest neighbouring sites, each receiving two particles at
a time. It is observed that in the SOC state, the average (spatial) value
of height variable, z̄, in the BTW model with next nearest neighbour is
less than that in the BTW model with only nearest neighbour. But in the
SOC state, the distributions of avalanche sizes and durations are identical
in both the cases. The distribution of the size of clusters for different values
of height variable have been studied in both the cases of BTW model.
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1. Introduction

The phenomena of self-organised criticality (SOC) is characterised by
the spontaneous evolution of an extended-driven dynamical system towards
a steady state which shows long-range spatial and temporal correlations.
Bak, Tang and Wiesenfeld [1, 2] introduced the concept of SOC in terms of
a simple cellular automata model. The steady state dynamics of the model
shows a power law behaviour in the probability distributions for the occur-
rence of the relaxation (avalanches) clusters of a certain size, area, lifetime,
etc. The BTW model has been solved exactly using the commutative prop-
erty of the particle addition operator [3]. Several properties of this critical
state, e.g., entropy, height correlation, height probabilities, cluster statistics,
etc. have been studied [4–7]. To study the properties of the model in the
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SOC state and to estimate various critical exponents, extensive numerical
efforts have also been performed [8–14]. The avalanche exponents were esti-
mated using the renormalization scheme [15, 16]. The BTW model in dilute
lattice has also been studied recently [17, 18].

The original BTW model is a so-called ‘sandpile’ model with determinis-
tic and isotropic toppling rule. After the introduction of a stochastic sandpile
model by Manna [19], various studies have been performed on stochastic
sandpile model [10, 20, 21]. The critical behaviour of the sandpile model
with stochasticity in toppling is different from that of deterministic toppling
rules [22]. Recently, continuous transformation of the BTW model to the
Manna model has been studied [23] by introducing an ‘intermediate model’.
The BTW model with probabilistically anisotropic toppling rule has been
studied recently [24].

In the original BTW model, when a height variable of a particular site
reaches the value zc = 4, that particular site becomes unstable and it topples.
As the site topples, the particles of that site are distributed among four of
its nearest neighbouring sites. In this paper, we will study the BTW model,
when particles of the unstable site are distributed not only among the nearest
neighbouring sites but also among the next nearest neighbouring sites. Here,
in this work, we have considered the 2D BTW model with critical height
zc = 8. Thus, when a particular site becomes unstable (i.e., reaches zc =
8), then it topples and eight particles are distributed equally among eight
neighbouring sites which includes four of its nearest neighbouring sites and
four next nearest neighbouring sites. Thus, each of the eight neighbouring
sites receives one particle. However, to study the effects of inclusion of next
nearest neighbour in the BTW model, we have also studied the BTW model
considering only nearest neighbour, having the same critical height, zc = 8.
In this case, when a particular site becomes unstable, eight particles are
equally distributed among its four nearest neighbouring sites only, where
each site receives two particles.

Would it be interesting to know whether the inclusion of next nearest
neighbours in the BTW model changes the behaviour of the critical state?
To address this particular question, we have calculated the average value
of z̄ in the critical state and studied the different statistics of avalanches.
It is important to mention in this context that in [25], Hu and Lin showed
that the toppling of waves of BTW model on different 2D lattices (such as
square, honeycomb, triangular and random lattices having different number
of nearest neighbours) have the same set of critical exponents. Najafi, Saman
and Rouhani [26] studied the statistics of waves and avalanche frontiers of
the dissipative Abelian sandpile model (massive BTW) on honeycomb lattice
(having six nearest neighbour for each site) and showed that the exponents
are the same as the square lattice.
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This paper is organised as follows. In Section 2, the model and simulation
is discussed. In Section 3, the results are described. The paper ends with
the conclusion in Section 4.

2. The model and simulation

The BTW model is a lattice automata model of sandpile growth, which
evolves spontaneously into a critical state. We consider a two-dimensional
square lattice of size L×L. The model is described as follows: Each site (i, j)
of the lattice is associated with a variable (so-called height) z(i, j) which can
take positive integer values varying from 0 to zc. In every time step, one
particle is added to a randomly selected site, which increases the value of
the height of that site by unity, i.e.,

z(i, j) = z(i, j) + 1 . (1)

When the height variable of any site (i, j) exceeds a critical value zc (i.e., if
z(i, j) ≥ zc), then that site becomes unstable and it relaxes by a toppling.
When an unstable site topples, the value of the height variable of that site is
reduced by zc units and zc particles are distributed among the neighbouring
sites (local conservation). In the original BTW model, the critical height,
zc = 4, and when the unstable site topples, the particles are distributed
among only the four of its nearest neighbouring sites. In this work, we
have considered a BTW model with zc = 8. As the unstable site topples,
the particles are distributed in two different ways among the neighbouring
sites. In one case, we have considered the distribution of particles among the
sites which includes four nearest neighbouring sites and four next nearest
neighbouring sites (next nearest neighbour BTW model). In the other case,
the particles are distributed only among the four nearest neighbouring sites
(nearest neighbour BTW model). Thus, in the case of the next nearest
neighbour BTW model, the height variables of unstable site and each of the
eight of its neighbouring sites change according to the following rule (local
conservation), i.e.,

z(i, j) = z(i, j)− zc , (2)
z(i, j ± 1) = z(i, j ± 1) + 1 , (3)
z(i± 1, j) = z(i± 1, j) + 1 , (4)

z(i± 1, j ± 1) = z(i± 1, j ± 1) + 1 (5)

for z(i, j) ≥ zc. Each boundary site is attached to an additional site which
acts as a sink. We use here the open boundary conditions so that the system
can dissipate through the boundary.



1708 A.B. Acharyya

We have studied the nearest neighbour BTW model, having the same
critical height, zc = 8, to compare the effect of inclusion of next nearest
neighbour. In the nearest neighbour BTW model, each of the four near-
est neighbouring sites receives two particles, when the unstable site topples.
Thus, in this case, as the unstable site topples, the particles from the unsta-
ble site will move towards its nearest neighbouring sites as follows:

z(i, j) = z(i, j)− zc , (6)

z(i± 1, j) = z(i± 1, j) + 2 and z(i, j ± 1) = z(i, j ± 1) + 2 . (7)

In this work, we have studied the following observations in the next
nearest neighbour BTW model and nearest neighbour BTW model with
critical height, zc = 8. Here, the system starts to evolve from an initial
condition, where all the sites have values, z = 0.

1. The time evolution of the average (spatial) value of z, i.e.,

z̄ = (1/N)

N∑
i=1

zi ,
(
N = L2

)
.

2. The distribution of the avalanche size, D(s), avalanche time, τ , and
number of distinct sites toppled, D(Nds).

3. The fraction of sites, fz, having the height variable z=0, 1, 2, . . . , zc−1,
in the critical state.

4. The distribution of size of clusters formed by the sites having a par-
ticular value of height variable, z = 0, 1, 2, . . . , zc − 1.

3. Results

In this paper, we have studied the two-dimensional next nearest neigh-
bour BTW model and nearest neighbour BTW model with critical height,
zc = 8. Here, we have considered a square lattice of size of L = 400. We
first studied the time evolution of the average (spatial) value of z (i.e., z̄) for
both the forms of the BTW model which are plotted in figure 1. Figure 1
shows that the value of z̄ in critical state is 4.5 in the next nearest neighbour
BTW model but in the nearest neighbour BTW model, the value of z̄ in the
critical state is 4.75. It is interesting that due to the distribution of parti-
cles among the next nearest neighbouring sites, the value of z̄ is reduced.
Now, to see whether this difference in z̄ is due to the finite size effect or
not, the variation of z̄ is studied for three different values of the system sizes
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Fig. 1. Plot of time variation of the spatial average of height variable z̄ for the
distribution of particles from the unstable site among (a) the four nearest and
four next nearest neighbouring sites (n.n.n.BTW model) and (b) the four nearest
neighbouring sites only (n.n.BTW model).

(e.g., L = 100, L = 200 and L = 400) and plotted in figure 2. The figure
shows that the difference in the values of z̄ (for two kinds of rules mentioned
above) remains unchanged as the system size increases, which reveals that
this observation is free from any finite size effect.
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Fig. 2. Plot of variation of the spatial average of height variable z̄ with lattice
size L for the distribution of particles from the unstable site among (a) the four
nearest and four next nearest neighbouring sites (n.n.n.BTW model) and (b) the
four nearest neighbouring sites only (n.n.BTW model)

We have also calculated the distributions of duration, τ , and size, s, of
the avalanches and the number of distinct sites toppled during avalanches,
D(Nds), at the critical state, for both the cases of BTW model with zc = 8.
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Fig. 3. (a) Log–log plot of distribution of avalanche size (s) for distribution of
particles from the unstable site (i) among the four nearest neighbours (∗) and (ii)
among four nearest neighbours and four next nearest neighbours (•). Both the solid
lines represent y ∼ x−1.05. (b) Log–log plot of distribution of avalanche time (τ)
for distribution of particles from the unstable site (i) among the four nearest neigh-
bours (∗) and (ii) among four nearest neighbours and four next nearest neighbours
(•). Both the solid lines represent y ∼ x−1.15. (c) Log–log plot of distribution
of number of distinct sites toppled during an avalanche (Nds) for distribution of
particles from the unstable site (i) among the four nearest neighbours (∗) and (ii)
among four nearest neighbours and four next nearest neighbours (•). Both the
solid lines represent y ∼ x−1.05.
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The distributions are obtained for 50 000 number of nonzero avalanches,
L = 400. The distribution of avalanche size, D(s), is plotted, on a doubly
logarithmic scale, in figure 3 (a). Similarly, the distribution of avalanche
time, D(τ), is plotted on a doubly logarithmic scale in figure 3 (b), and the
distribution of number of distinct sites toppled during avalanche, D(Nds), is
plotted on a doubly logarithmic scale in figure 3 (c). We have estimated the
value of the exponents within limited accuracy and given by D(s) ∝ s−1.05,
D(τ) ∝ τ−1.15 and D(Nds) ∝ N−1.05

ds . The exponents of the power law,
y ∼ x−p, have been estimated from the slope, −p, of linear best fit of
ln(y) ∼ −p ln(x). However, these y ∼ x−p are shown in log–log plot using
the numerically obtained (from linear best fit) value of p. The power law
variations of the distribution of avalanche size, s, and avalanche time, τ ,
given by D(s) ∝ s−1.05 and D(τ) ∝ τ−1.15 shows that the exponents are the
same as in the original BTW model.

Thus, it is observed that though the average value of height variable in
the critical state is different, the variation of different quantities related to
avalanches in the critical state are identical and these exponents are identical
with those of the original BTW model. To study the effect of inclusion of
next nearest neighbour on the behaviour of critical state, various studies re-
lated to the structure of the lattice at the critical state have been performed.
One such quantity which is used to study the lattice structure in the SOC
state, in original BTW model, is the fraction of the sites having different
values of the height variable, z = 0, 1, 2, 3 [9]. Here, in both the cases of
BTW model, in the critical state, the lattice contains the sites having dif-
ferent values of the height variable, z = 0, 1, 2, . . . , 7. In this work, we have
calculated the fraction of sites, fz, for different values of height variable,
z = 0, 1, 2, . . . , 7, for both the cases. The variation of fz with z has been
plotted in figure 4. Interestingly, it is observed here, that in the next nearest
neighbour BTW model, fz increases linearly with z, whereas in the nearest
neighbour BTW model, f0 = f1, f2 = f3, f4 = f5, and f6 = f7. Thus, the
values of fz and fz+1 are equal for z = 0, 2, 4, 6 and the pairwise values of
fz and fz+1 increase with z.

The sites having a particular value of height variables form clusters con-
nected via the nearest neighbours. These clusters are of different sizes. The
size distribution of the clusters is described by the function ρz(sz), where
ρz(sz) denotes the number of clusters (formed via nearest neighbour con-
nection of sites having the same height variable z) of size sz. In the original
BTW model, the cluster size distribution has been obtained [7] using the
algorithm described in [27, 28]. In this work, we have also calculated the
cluster size distribution, ρz(sz), in the SOC state for both types of BTW
model, for different values of height variable, z = 4, 5, 6, 7. The normalised
cluster size distribution (ns = ρz(sz)

L2 is the number of clusters of size s per
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Fig. 4. Plot of fz against z for distribution of particles from the unstable site among
(i) the four nearest and four next nearest neighbouring sites (•) and (ii) the four
nearest neighbouring sites (∗).

lattice site), for different values of height variable z are plotted on a semi-
log scale in figure 5 (a) and (b) for next nearest neighbour BTW model and
nearest neighbour BTW model, respectively. In both the cases, the cluster
size distribution fits with the curve

ns = A ∗ s−p ∗ exp(−q ∗ s) .

In the case of next nearest neighbour BTWmodel, the value of the exponents
are p = 1.1 for all values of z (z = 7, 6, 5, 4) and the values of exponent q are
0.55, 0.57, 0.63 and 0.76 for z = 7, 6, 5, 4, respectively. Thus, we see that the
value of the exponent q decreases as the value of height variable increases in
the case of the next nearest neighbour BTW model. Whereas in the case of
the nearest neighbour BTW model, the value of the exponent p is 1.0 for all
values of z (z = 7, 6, 5, 4) and the values of exponent q are 0.46, 0.46, 0.68
and 0.68 for z = 7, 6, 5, 4, respectively. Here, the value of the exponent q is
same pairwise. The value of q = 0.46 for z = 7 and 6 and q = 0.68 for z = 5
and 4. The value of exponent q decreases as the height variable z increases.
Thus, the nature of the cluster size distribution is the same as that in the
original 2D BTW model [7].

Knowing the size distribution, ρz(sz), for a particular value of height
variable z, one can calculate the various statistical quantities, the average
size of the cluster (Sz), total number of clusters (Nz), the largest size (smax

z )
of the cluster and the fraction of sites having height variable z (fz). The
interesting feature of this study is pairwise identical values of the exponents,
q, of the distribution of cluster size in the case of nearest neighbour BTW
model. This behaviour also reveals the pairwise equal values of fzs. The
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Fig. 5. Plots of normalised cluster size distribution for four values of height variable,
z = 4 (4), 5 (•), 6 (◦), 7 (∗) for distribution of particles from the unstable site
among (a) the four nearest and four next nearest neighbouring sites and (b) the
four nearest neighbouring sites.

feature of pairwise equality of fzs in the nearest neighbour BTW model
may be due to the fact that the particles are distributed pairwise among the
nearest neighbouring sites from the unstable site.

4. Summary

We studied here both the forms of two-dimensional BTW model (nearest
neighbour and next nearest neighbour) with critical height zc = 8. It is
observed that in the case of nearest neighbour BTW model, the spatial
average value of the height variable, z̄, reaches a steady value, which is more
than the value obtained in the next nearest neighbour BTW model. In both
the forms of the BTW model having critical height zc = 8, the exponents
of the power law distribution of size, s, duration, τ , of the avalanches and
the number of distinct sites toppled during avalanches, Nds, are calculated
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as D(s) ∝ s−1.05, D(τ) ∝ τ−1.15 and D(Nds) ∝ N−1.05
ds . Thus, from the

present study of avalanche statistics (power law with the same set of values
of the exponents as obtained in the original BTW model), it seems that
the proposed model with modification of toppling rules (including the next
nearest neighbours) does not leave the universality class of original BTW
model. The fractions of the lattice sites, fz, having different height variables,
z = 0, 1, 2, . . . , 7, at the critical state have been calculated. The variations of
fz with z in both the cases have also been studied. The normalised cluster
size distribution for height variables, z = 4, 5, 6, 7, has been obtained for
both the cases. It would be interesting to study the dynamical evolution of
the cluster, its nucleation and coalescence etc.

The author would like to thank the anonymous referee for bringing the
reference [26] into her notice.
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