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Any uncorrelated jet model is characterized by the three distributions Py(n), Pi(#n)
and P.(n) for the total number of pions in the final mesonic states with isospin 0, 1 and 2.
It is shown that for each number of protons in the final state there exists a scaling function
for the total number of charged particles.In pp-collisions there are three such functions (when
pair production is disregarded). A measurement of these three functions would be very
important since they completely determine every other distribution and therefore all cor-
relations. It is shown that posititive m~— z°® correlations can be obtained from three Poisson-
distributions Po(n), Py(n) and Py(n), provided their averages No, N; and N are not equal.
This effect is similar to that of the two component model.

1. Introduction

In a previous paper [1]— to be referred to as I — we introduced exact isospin conser-
vation in an uncorrelated jet model (UJM) for inelastic proton-proton collisions. This was
done by constructing pionic states |/m > with definite values of the isospin (/) and its third
component (). These states were then used to write the final state as
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with the normalization condition

|4 +1BI*+|CI*+D* = L. @
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We now extend the definition of the states |/m > and take it as

NGO [
lImy = N; | ) G @10, ©)
n=0 )
The normalization factor is given by
1CarriDI?
N, =4 , 4
’ "zz"k!(zk+2l+1)!! @)
k=0
or, what amounts to the same, by
1
Ny =2=n _j‘l P(y)G(y)dy &)

with
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By not considering the dependence of the states {/m > on the particle momenta we do not
have the possibility of calculating momentum distributions. It can be shown, however,
that the number-distributions and -correlations are not affected by this omission, provided
we have independent particle emision. With this proviso and neglecting the production of
strange particles and pp-pairs, Eq. (1) gives the most general final state after a proton-
-proton collisions. For convenience we will assume that the coefficients 4, B, C and D
are energy independent. The dependence of the coefficients C,(/) on the energy need not
be specified.

In T we took C,(I) = g” for all . This led to a Poisson-like distribution for the total
number of pions with an average n = 4 = |g/2 for high energies.

Another choice is

C (D) = g"vV(n+1)! for all I. 7)

This will be called the “bootstrap-case”, since it gives rise to the same multiplicity distribu-
tion as obtained in the bootstrap model [2].

The important difference with I is that it will not always be assumed that C (/) and
C,(I") are equal. There is also no good reason to assume equality of the relative phase of
these two numbers, so we take it to be a random function of n. Only in the case where
we assume C,(/)! = {C, (/") we also take the phases equal.
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It is now easy to calculate the distribution P(n) of the total number of pions in the
state {/m >. We find

4z ICDI? (n—1 even)
_ N ZHT_I, L) TP IIT
P(n) 2 ®
0 (n—1 odd).

Equation (4) shows that these distributions are properly normalized to one. Since any
observable quantity can be expressed in terms of the coefficients N7HICD)|? it follows
from (8) that everything can be calculated, once we know the distributions Py(n), P,(n)
and P,(n) and of course the weights {4%, {B|?, |C|?> and |D|?. For reasons explained before
we disregard the existence of an interference term between the 4- and C-amplitudes.
In particular we can calculate the probability Pyy. (n, n,) for the occurence in the final
state of two nucleons (NN’) and » mesons, among which », neutrals. This can be done
using the matrix elements which are listed in appendix A of I. For n and n, large enough,
in order that Stirlings formula may be applied to n! and n,!, we obtain the following re-
sults:

o(n) Lee. Bno—n)* Py(n)

P, (n, no) = |Ai®

(n even, n, even),

\/nno 8 n’ \/n_ng
3,1 ng
P,(n,ng) = B" — [— P(n) (n odd, ny, odd),
2 ny\ n
3 3 n—n H
P.(n, ng) = | - iBi*+ = Dj? NN 1£2 (n odd, ny even),
4 2 n NEUN
9 ., h—ng no
P, (n, ny) = - iC 5~ |— Py(n) (n even, n, odd),
4 n n
9 n—ng)® Py(n
P, (n, ng) = = {C}? ~(——;Q)~ —»2—(:) (n even, n, even),
8 n Vnng
P.(n, ng) =0 (ny odd). 9)

Because of the explicitly known and simple n,-dependence we will be able to derive a number
of general properties of correlation coefficients and scaling functions. This will be done
in the next two sections.

2. Averages and correlations

Summing the distributions of Eq. (9) over the nucleons and the neutral pions gives
the distribution of the total number of mesons P(n) with the obvious result

P(n) = [A|*Po(n)+(1Bi* +{D|*)Py(n) +|C*Py(n). (10)
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For the separate distributions the averages and dispersions are defined in the usual way
N; =Y nP{n) and 45 =3 (n—N,)*P/n). (11)
We will use the term “‘uncorrelated production” enly when all three distributions P;(r)

are narrow in the sense that 4 j/JVj — 0 for increasing energy. Otherwise we will speak of
independent emission. The average total number of pions is

n=|4|*No+(1B|>+|D|*)N, +|C’N, (12

and it seems reasonable to assume that with increasing energy all three N ; depend linearly
on n. In this case it is clear that, even for uncorrelated production, the total dispersion

D = [Y (n—n*P(m)}*
is large, meaning that
D~ n. 13)

This is of great importance for the correlations between charged and neutral pions.
With the definitions (x, is the number of charged particles)

fo = n(n—1)—n?
f2c = nc(nc-l)—ﬁfr

fzo = a’;—:ﬁ —F—ig,

ch = ncno—hcﬁm (14)
we have the identity
f2 = fact 20+ 20 (15)

It has been pointed out [1]}, [3] that a small value of £, (like in the usual UJM) and
large f50 and f,. (as found experimentally) imply a negative correlation f,, contradicting
the experimental results. With the present uncorrelated production, however, this is not
necessarily the case as follows from Eq. (13). This is corroborated by an explicit calculation
of the correlation functions. Define v; and y; by

N;=vn and Nj=Y n?P(n) =1}un’ (16)
Using Eq. (9) we then obtain the following formulae
ny = n[¥14%0,+G [BI*+ + IDI*)v; + 5 1CI%0,], amn
ne = n[3 A0+ [B>+ £ D*)vy + 15 |CI%0,], (18)
n? = 3n’[F%5 [ 4Pue+ (35 BIP+ 2 D)y + 5% 1CPual, (19)

nng = ¥n’[F iAo+ B + 3% D), + 1 1Cua ] (20)
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From this it is seen that f., can be made positive by taking u; large enough. This is not
necessary, however. Even with uncorrelated production, for which u; = 2v12-, we have
succeeded in choosing 4, B, C, D, vo, vy and v, such that £, > 0. With |42 = 3, 1B> = 1
IC2 =4 ID*=0, vy =0, v; =3, v, =3 we obtain

n, = 2n,, 1)
foe =512, (22)
foo =50’ (23)
The experimental values at 303 GeV/c are [4]
fae = 0.11n* and f,, = 0.04n. (24)

No serious effort is made to fit these data. It should be remarked, however, that they agree
with the inequality

f2c > 2fc0> (25)
which follows from Eqgs (19), (20) and (21).

3. Scaling functions

In this section we will assume that the functions P {n) scale, meaning that for very large
energy

nPyn) > pv) with n=on. (26)
For uncorrelated production this certainly holds with

From this scaling assumption it can be shown that also the charge particle distribu-
tions satisfty KNO-scaling. Summing the distributions Pyy{(n.+ng, no) over ng = xn,
keeping n, = un fixed and multiplying by n, gives in the limit of high energy a function

Y¥'(u), which can be expressed in terms of the input scaling functions y;(v) as follows:

dx +

) T %('H_i) 3, b VX p(u+x)
S ot Y

PP(1y) ==
pe(u) 3

dax, (28)

r Qx —u)p,(u+x)
+ 16 c?
] J Jx (u+x)>?
]

0

3 3 wi(u+x)
pn - 2 - 2 i
p(u) = (8 {B]"+ 2 | D] >u \/—————§ » x_)3/2 dx+
0
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9 [VEpalutx)
+ ‘8‘ |C| u W dx, (29)
yo'(u) = % 1C*u? pa(tx) (30)

SV u+x)

For uncorrelated production y,(v) is given by Eq. (27) and the functions u}" (1)
show singularities in the points « = v;, which are generalizations of those discussed in I.
With u very close to v; another scaling law holds, for a discussion of which we again refer
to L. For the general case the moments of )" (1) can be expressed in those of y,(v), by

making use of Egs. (28), (29) and (30).
For yiv) we have

6‘ y(v)do = 2; %g vp )y = v;; [ oty (0)do = p, (1)
(4]
where v; and u; are defined by (16). For the first moments of %" (1) we obtain
| wPP(wydu = 2147+ |B*+ LiC}%,
[¥]

Y"(w)du = |B*+ ¥|C|*42|D?, } Total = 2

Y (w)du = ¢ ICP?,

Ceem g ©Ce—8

uypl?(ydu = 4 |A20o+ 2 [B*v, + S [C*0,,

Ctem, 8

ral

guwi"’(u)du = (£ iBI*+ £ 1D %)+ +E|CiPp,,
Juyuwydu = 3% 1C%v,. (32)
0

We list these formulae at full length in order to illustrate the importance, not only of
measuring the charge prong cross-sections, but aiso of identifying the protons in the final
state. If the left hand side of Eq. (32) were known experimentally this would fix the relative
weight of the different components in the state (1) and also the average multiplicities N;
for the different values of the isospin. For uncorrelated production these numbers specify
everything, including the correlations (of Eq. (19} and (20)). A comparison with the experi-
mentally determined correlations would then open the possibility of refuting the UJM.

The equations (28), (29) and (30) are of the type of Abel’s integral equation. They can
be inverted to give p;(v) in terms of u}" (). A full measurement of the three u}" (1)
therefore suffices to fix all other distributions and correlations, in particular the average



141

number of neutral pions for a fixed number of charged particles, i. e., no(n.). For the
function used by Buras and Koba [5] to parametrize the scaling function for the charged
particles, including the protons, this program can be executed completely. They take

pe(u) = aue™ ™, (33)

where o = 48 = 25r/16 is determined by (31). Because y(u = 0) = 0 a comparison
with (28), (29) and (30) shows that |4|2 = |B|*> = |C|* =0 and |D|?> = 1 is the only
possibility. So

o0

a2 3 py{u+x)

Bu z nr e

e i Jx (u+x)*? dx, (34
4]

with the inversion

- - Bu
32 a2 | ue

From this we can calculate ng(n,) with the result that for high energies
no(ng) = ¥ | e P4y, (36)

This is a decreasing function of n, = un with a maximum n4(0) = 35 n. The experimental
high energy data show a quite different behaviour [6]. Also the relative abundance and the
correlations between charged and neutral pions are completely different from the experi-
mental values

n,=2n, and f., = 0.04n> 37
Formula (33) of Buras and Koba leads to the following values of these quantities
n.=4n, and fo = —0024n% (38)

From this we conclude that either the KNO-scaling limit has not yet been reached at
300 GeV/c, or that the total scaling function y.(#) cannot be zero in u = 0. This latter
condition indeed puts very strong constraints on the coefficients ;4}%, {Bi%, iC}? and |D 2,
as can be seen from Egs (28), (29) and (30) and remembering that y;(v) > 0.

It is possible to choose these coefficients and the functions Py(n), P(n) and P,(n)
in such a way that an increasing function ny(7n.) is obtained. An example is the bootstrap
model of Eq. (7). This, however, has the disadvantage that the total scaling function for

the charged pions, although it exists, takes the rather unrealistic form

p(u) = e FK, (’E) (39)

which is singular in ¥ = 0.
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An attempt to fit all existing data, including branching ratios, will be postponed
till later.

We thank the Organizing Committee of the XIII Cracow School of Theoretical
Physics for creating the atmosphere in which the ideas of this paper could be borne.
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