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The properties of the inclusive single-particle distribution in the bremsstrahlung model
are studied for the general form of the point-like current.

In the bremsstrahlung model of particle production! the particles are emitted by
a classical current j(x"). The spectra of the emitted particles? are determined by the function

o(k") = [ d*z exp (ik72,)j(2"), ey
i.e. the Fourier transform of the current. In particular, the single-particle distribution

is given by

& s
m = |o(k)i"Q, )

where Q describes the phase-space corrections. In the central region of the x-plot, where

x=—, 3
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! For an extensive list of references see, e.g., Ref. [3].
2 In the following we will call the produced particles “pions” and the radiating particle a “nucleon”.
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¢ approaches constant and the single-particle distribution is simply proportional to
o) 2.

Thus the form of the nucleon current j(x") determines the shape of particle spectra.
The attractive feature of the model is that, if the nucleon current is Lorentz invariant,
the single-particle distribution scales, i.e. in high-energy limit

o(K", s) ———olk |, x), @

where x is given by Eq. (3) [2]

In the existing models of particle production by the bremsstrahlung mechanism
the current was assumed® [3-5] in the simplest form, representing the moving point-
-particle

J(2") = g ded® [z —s"(1)], 5)

where g is the coupling constant, s*(z) is the trajectory of the particle and 7 is the proper
time along the trajectory.

However, as was shown by several authors [4, 5], the bremsstrahlung model with
the simple current given by Eq. (5) predicts the dip in the x-distribution of the produced
particles:

olk,,x) o x
=0 x=0

» 0. 6)

Such a dip has not been observed in recent experiments at ISR.

The purpose of the present note is to show that the conclusion (6) can be avoided
if a more general form of the nucleon current is used®.

The most general form of the scalar current of the point-like particle can be written
in the form [6]

(2D =Y ja(2), Q)
where
Jjn(2) = gf dtD}’,,‘""""('c)By,...vmé('”[z"—s”(r)}. (8)
Here
é
0, = — )]
0z

and D, is the completely symmetric tensor describing the m-th muitipole moment
of the source. The multipole tensors D'’ satisfy the additional condition

D;:.“vm“vx - D::u.vmuvz = ... = D:nl...vmuvm — 0’ (10)

3 We do not discuss the bremsstrahlung models of the type proposed by Feynman {7} where the meson
field is coupled to some kind of exchange current.
4 This problem was considered also in Ref. [1].
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where u, = ds,/dt is the four-velocity of the nucleon. This last condition follows from the
observation that, since we have

d
o, 09" —s"(1)] = - - SN[z —5"(D)], an
any term of the form
| Auw’6,6[2"—5"(x)]dr (12)

can be (using integration by parts) written in the form
dA
J AL CtO) (13)

and thus reduced to the one of lower m.
Using Egs (1), (7) and (8) we find

o(k*) = 3. en(k"):. (14)

where
oc

d [F.(z, k"
oK) = i f dt exp(ik“s,(r));;( 1:(: (T))] (15)

-
Here

Fo(z, k) = DE(0)k,, ... k (16)

The standard way of calculating the integral (15) is by the sudden approximation method
[S). This can be justified if the functions F,(1, k") are not singular along the path of the
particle. The result is

Vm"

Fm(,(’ kV) t=+x

oK) =i ik*s (1 =.0)) =7
en(K) = iexp (ik’s(t =0)) Ok, |

an
To investigate the behaviour of g(k") at high energies, it is therefore enough to calculate
the function F,(t, k*)/u’k, before and after the collision. At high energies we have
(K2 +p* X M x

M ; + _2- 3{“ for ]c,,/u” > 0,

ko /s X

M
sX

\— Z—M-x for kyfu, <0,

i
A

u'k, for ky~0, (18)
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where k is the transverse momentum of the pion with respect to the direction of the
nucleon in the c.m. system of the collision. M is the mass of the nucleon and u that of the
pion. x is the scaled longitudinal momentum k|, of the pion (again) with respect to the
nucleon directior in the c.m. system. X is the ratio of the nucleon momentum to the
initial momentum. s is the total c.m.s. energy square.

Te evaluate the numerator in formula (17) we denote by

Dzyom (19)

the values of the multipole tensor in the rest system of the nucleon. The z-axis is chosen
along the direction of the momentum of the nucleon in the c.m. system. Since the
scalar product

DLk Lk (20)

is an invariant, it can be calculated in any frame of reference. We choose the rest frame of
the nucleon. In this frame, only the three-momentum of the pion is needed in order to
evaluate the product (20). Its transverse component is, of course, the same as in the c.m.
system of the collision. The longitudinal component is given by

k2l+u2 X Mx
_2”AT 'x— - “2_ } for kH/u” > 0,
ko /5 X
E” = 4 — "—2—1{4— for k“ =~ 0, (21)
sX
\— Z’l\—/;x for 3{“]&!” < O.
Consequently, for x — 0 and k,/u; < 0 we have
E“ >~ kvuy. (22)

Thus for particles produced with small x or backwards to the direction or motion of the
source (in c.m.s.) the formula (17) gives

o(k”) = iexp (ik’s(t = 0)) [d(t = + ) (k“uf})’"'l——-
—d(t = —o0) (kul)""'], (23)

where d,, = D*=3#m=3 Eorm = 0 we recover the old formula, and indeed we see that
it scales (non-scaling terms vanish like 1/s) and vanishes for x = 0.

However, for m # 0 the sitnation is different. The case m = 1 provides the most
interesting situation: g,(k’) has a finite value at x = 0 unless the two terms in (23) cancel
exactly.

The radiation of higher multipoles gives the single particle density which is singular
for x = 0 and consists of non-scaling terms. Since such behaviour is in disagreement
with the experiments at ISR, we conclude that either the multipole terms with m > 2
are not present or that there are indeed some very characteristic cancellations. The possible
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physical meaning of the absence of such singular terms remains, however, an entirely
open and interesting guestion.

Up to now we have discussed only the radiation of isolated poles. The formalism
presented can be used for investigation of the radiation from the source with any spatial
distribution, by means of the usual multipole expansion. In this way we find the density
of particles radiated from the spatially distributed m-poles in the following form

en(k") = i exp (ik’s,(z = 0)) [o(kp)d,(T = +00) (kup)™ ™" —0o(k)d(t = —c0)x
x (k)" '], 29

where k is the momentum of the particle in the rest system of the source and o(k) is the
Fourier transform of the spatial distribution of the source. Provided that the dimensions
of the source are finite, 6(k) vanishes in the limit of infinite |k| faster than any inverse
power of {k!. Thus any source with finite spatial dimensions and density which can be
represented as a pole of finite order, gives one-particle density which scales and vanishes
at x = 0. It is also obvious that one can get any one-particle density (k") by combining
appropriately radiations from an infinite set of continuously distributed poles.

To conclude, we have shown that the single particle distributions in high-energy col-
lisions can be described by a bremsstrahlung model in which the source has a pole-dipole
structure. The experimental data seem to exclude the multipole radiation of higher order.

The presented formalism can also be used in more realistic situations when the source
has some spatial distribution.
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