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DUALITY AND REGGE ANALYSIS OF INCLUSIVE
REACTIONS. PART I*

By D. P. Roy
Rutherford High Energy Laboratory, Chilton**
(Presented at the XIII Cracow School of Theoretical Physics, Zakopane, June 1-12, 1973)

The application of duality to analysis of inclusive spectra in fragmentation and central
regions is discussed.

1. Introduction

These talks will be restricted mostly to single particle inclusive processes. For this
is where most of the data and consequently most of the phenomenological analyses has
been concentrated so far. However, during the last talk I shall briefly discuss the two-
-particle inclusive processes, on which some very interesting results have started coming
out of the ISR.

The first lecture will cover the following formal aspects:

1. The Kinematics for the single particle inclusive process — Fragmentation and
Central Regions.

2. Mueller’s Optical Theorem connecting the single particle Inclusive cross-section
to 3-body amplitude.

3. Regge Expansion of the 3-body amplitude in the Fragmentation and Central
Regions — Single Regge and Double Regge Expansion.

4. Dual Properties of the 3-body amplitude — the 7-Component Picture.

5. The dominant components and the exoticity criteria in the Fragmentation and
Central Regions.

The second lecture will cover the duality and Regge phenomenology in the Fragmenta-
tion Region. The last one will describe the duality and Regge phenomenology in the
central region and for two-particle inclusive processes.

* To speed up publication, proofs of this paper were read by K. Fialkowskiand A. Staruszkiewicz.
** Address: High Energy Physics Div., Rutherford High Energy Lab., Chilton, Didcot, Berkshire,
England.
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2. Formalism
Kinematics
Consider the process ab — cX.

o NS D+

We have here 4 invariants — the energy square of ab(s), the momentum transfer squares
between be(t) and between ac(u), and the missing mass (M?). Only 3 of these 4 are inde-
pendent, since

s+t+u = mi+mi+m?+ M2 6))

Asymptotically in s, the phase space of the final particle ¢ can be divided into 2 parts —
the Fragmentation and Central Regions.

Fragmentation regions correspond to regions of finite ¢ (b-fragmentation region)
and finite u(a-fragmentation region) as s — co. Intuitively, of course, ¢ can be looked
upon as a fragment of b(a) when the momentum transfer between the two remains finite
at large s. Since one can apply identical considerations to the 2 fragmentation regions, we
shall save time by discussing the fragmentation of b only.

Central Region corresponds to the remainder i.e. where ¢ and u are both large.

For Regge analysis, the most suitable variables for the Fragmentation region of b are
s, t and M?, and those for the central region are s, t and u. However, the experimenters
mostly give their data in terms of the directly measurable quantities s and py, py — the
longitudinal and transverse momenta of ¢. Let us discuss briefly the connection of py, pr
with the invariant quantities. The longitudinal momentum p; occurs in 3 alternative
forms — each form has some advantage over the others.

Firstly, the Feynman variable

x = 2pSM)5; 0
we have
t,u = m?,’,,,+ m? —E, E.+ Py aPrs 3
ut

N

where all the quantities on the right are in the CM system. The k is referred to by some as
the transverse mass and by others as the longitudinal mass. For small x, Eq. (3) reduces to

2.\% +
x“s xs ,
tux~ —s¥E,Fp)~ —st [(mf—}-p%%— T) F —2—:! 3"
We shall be interested only in the small p; region, where most of the
events lie anyway. Then for large s, x has a range —1 to +1 as shown in Fig. 1. The
central region, where both 7 and u are large, corresponds to a small interval near x = 0,
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where 1, u ~ —s* by Eq. (3). Strictly speaking, it goes to co only in the interval

4xt 4x*
_——ex < —.
s s

Of course, a Reggeist’s definition of asymptotic is |¢], [u| > 5 GeV?, say. Typically it
corresponds to —0.1 < x < 0.1 for k¥ > 0.5 GeV? and large s. The region x > 0.1
corresponds to finite ¢ and hence b-fragmentation, and similarly x < —0.1 corresponds

to finite # and hence to a-fragmentation. One can check these simply by making a binomial
expansion of Eq. (3'). Over the b-fragmentation region we have

M2
— = l_xa 5
- )
2 2
pr+m,
t =mi+mi- ks —mgx. (6)
x

Evidently x is not very suitable for analysing the central region, as the entire region
is mapped into a very small segment of x. For this purpose one uses a new variable — the

CM rapidity Y.
+ x2s\*  xst
K —— — —
1 t small x 1 4 2
Y=-In
2

u 'iln x2s\t  xs¥]’ @
(=) + 5]

For x ~ 0.1 we get, using the binomial expansion

Y o 1 1 x3s N 1 I s 2 7
== n - = n " +2, )
Now, the maximum rapidity is ~ % ln (s/x), which is typically 4 in the ISR energy range.
Thus the region 0 < x < 0.1 covers 2 units of rapidity at the ISR energies, which is as
big as the rapidity length covered by the entire region 0.1 < x < 1. This is illustrated
in Fig. 1.

Finally for the b-fragmentation region, p, is often given in the rest frame of b (i.e.

in the lab frame for target fragmentation). One has for large s

t = mp+mI=2my(pE> + pi+m2) = mp+m?—2m,EL®, (8)
M2 lab lab2+ 2+m2 4+ Iab_Elab
_=1+I£,__(PL Pr c)=1+pL e ©)

s m my n,

Note that finite # corresponds to finite p}*°.

The invariant cross-section is given in the following terms, which are all equal at
large s:
do 1 do s do 2E, 1 do

g2 g % _ 5 %0 % 49 10
‘d’p, =n “dpdpr n dxdpi /s = dYdp% (10)
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One more comment about the kinematics. The fragmentation region can be further
divided into two parts — large M? and large s/M? as we see from (5). Since different
quantities are becoming large in the two parts, naturally the Regge expansions would
be different. For instance, the single Regge Expansion applies only to the large M? part.

TRIPLE REGGE

S
LARGE M? \ LARGE »or

A N~ A

e \
CENTRAL REGION

a -FRAGMENTATION b - FRAGMENTATION

Fig. 1. The Fragmentation and Central regions on the x-plot and their mappings on to the Y-plot

| shall discuss only this part of the fragmentation region. Dick Roberts is going to discuss
the large s/M? part and the overlap region between the 2 parts which is the so called triple
Regge region.

Mueller’s Optical Theorem
Let us recall the standard optical theorem connecting the total cross-section to the
discontinuity of the forward elastic amplitude

a1 oc Disc. T,(s), (11

which follows essentially from unitarity. Mueller [1] has suggested an extension of this
relation connecting the inclusive cross-section to a discontinuity of a 3-body elastic
amplitude

3

d
E. ;I—I;‘i = Disc. T,i(M?) = J. (12)

c|?
b
2 =5<C:r{( >MZ
M a
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There are, of course, some additional complications for the 3-body case. On the formal
side the 3-body amplitude T, is unphysical since the sub-energies 7 and u are negative,
Moreover, two independent variables M? and s have overlappmg cuts, which complicates
the definition of the discontinuity.

Due to these complications the Mueller theorem lacks a rigorous proof. It has been
checked, however, in some field theoretic models and generally accepted as a very plausible
hypothesis. The appropriate discontinuity, I am told, refers to

f = Tps+ie, M* +ie, s'—ie) — Tp(s+ie, M> —ig, s — ig). (13)

On the practical side the 3-body amplitude is not a measurable quantity unlike the
2-body case. However, we can predict many features of the 3-body amplitude from Regge
theory and Duality, and test them against the inclusive cross-section using Mueller’s
theorem. This is very similar to testing the exchange degeneracy and the Regge behaviour
of a 2-body elastic amplitude with the total cross-section data.

Regge Expansion of the 3-Body Amplitude. b-Fragmentation Region (Single
Regge Region)

The criterion for Regge expansion of a multiparticle amplitude is that all the invariants
spanning across the Regge exchange be large compared to those lying on either end of it.
Thus for s, u, M? > ¢, mf,,,,c the 3-body amplitude can be approximated by the leading
Regge exchanges in aa:

b
suM’ >>{mﬂbc c ﬂ:z ) M2
uf{ ¢PR
g —S—————

f — Fp(f, SIIMZ)Sap(O)—l + Z FR(I, S/MZ)SOIR(O)"I’

R=¢,0,f,42

ap(0) = 1, x(0) = 4. (14)

Here P and R refer to the Pomeron and the leading meson trajectories (o, w, f, 4,), which
we shall simply refer as the Reggeons. Asymptetically the Ist term goes to a constant and
the 2nd goes down as s~ %. Thus the Regge model makes specific predictions about the scaling
and the non-scaling parts of the inclusive cross-section, similar to those of the total cross-
-section. Moreover we shall see that the duality considerations require the Reggeon contri-
bution to vanish for some “exotic” inclusive reactions, analogous to the K+p total cross-
-section case. Therefore the inclusive cross-section data here provides a rich field to test
the duality and Regge hypotheses.

Central Region (Double Regge Region); Here both « and ¢ become large along with s.
Only the ratio

K =—=ml+p> 4)
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is held finite. The 3-body amplitude can be approximated here by the double Regge
contribution shown below.

b—> b
tH ( i s,t,u»ﬂ,mgrbyc g PR
s{ ¢ 3 c
uf i AR
a q -3

0)—1 0)—1 .
I = BracBespvop()u®® 117 Scaling

+ ; BraaBrosyap(r)u RO ™ 1@~

Leading

+ Z BeaaBrosyre(K)uP® = 1RO 7! Non-scaling
aa
R

4 ymROT1 RO Tertiary (15)

The scaling and the leading non-scaling terms correspond to Pomeron-Pomeron
and Pomeron-Reggeon exchanges. The Reggeon-Reggeon exchanges constitute the
tertiary terms, which could be neglected. We shall again see that duality predicts the
non-scaling contributions to vanish for certain “exotic” reactions.

Dual Properties of the 3-Body Amplitude

Let us analyse the duality properties of a 3-body amplitude. The Harari-Freund
2-component duality for the 2-body amplitude, extends quite naturally in to a 7-component
picture for the 3-body amplitude [2, 3]. To see this let us first recall how the two compo-
nents (Regge and Pomeron) arise in a two-body amplitude

B

LHS is the shorthand notation. For mesonic amplitudes it amounts to denoting the external
diquark lines by single lines. (a, b lie on the same quark loop, representing resonances
(ry) in s-channel. It vanishes if the system ab has exotic quantum numbers.)

b I D 2
Vanre g

(a, b liec on separate quark loops, representing two-body intermediate states).

For the sake of experts, I should clarify that we interpret duality in the original spirit
of small width I approximation. The 1st component goes like I'> whereas the 2nd goes
like I'*. Thus although in principle the 2nd component has the normal Regge poles (in
addition to the Pomeron), their effect will be small compared to the 1st. This will be our
interpretation of the flatness of the K*p cross-section, for instance.

2
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In the same spirit, we shall assume that even the Pomeron part is small compared
to the 1st component, when the energies involved are extremely small.

Turning to the 3-body amplitude now we see that there can be 3 independent configura-
tions for single resonance intermediate states, 3 configurations for two-resonance states

and 1 for a three resonance intermediate state.

ALK
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Here again particles lying on different quark loops are connected by Pomeron and those
lying on the same quark loop are connected by Regge exchanges. We have, for instance

S PR S
D I A

3 6 7

of
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and consequently

1,2,3,4 - Ry

5 N tap—ludR“‘I’
6 - RTIym
—1, ap-1
7 — Ty (16)

so that in a specific kinematic region only some of the 7 components will be dominant.
Note that all the 7 components above are positive as each is a square of a production
amplitude. The prescription neglects 2 types of contributions.
Firstly the interference terms amongst the 7 production amplitudes. Many of them
are seen to go away from the kinematics and quantum number considerations. The rest
are usually assumed away. For instance the interference terms amongst [-2 correspond

to diagrams of the type
c
—(—
a

which are kinematically suppressed for high energy forward scattering. This is analogous
to the suppression of the s—u Veneziano term

g b

(> S T o7

in high energy forward scattering.

The other interference terms require a single particle or 2 particle combination to
have vacuum quantum number. For instance 1-6 requires either @ or bc to have vacuum
quantum number. In many inclusive reactions, the single or 2 particle combinations
would not in fact, have vacuum quantum numbers, thus ruling out interference terms.
In general, however, the absence of interference terms have not been proved.

The second effect neglected, is the diffractive contribution to the production amplitudes.
The production amplitudes 1-7 all correspond to tree diagrams and thus have no Pomeron.
This is due to the perturbative approach to Unitarity employed here or in the 2-body
case discussed earlier. Inclusion of Pomeron in the production amplitude is supposed
to generate cuts in the elastic amplitude after unitarity summation, which were neglected
in the two-component model. Nonetheless there are significant diffractive contributions
in the production amplitude | if 5 and ¢ have identical quantum numbers, which must
be added as extra components. However, the diffractive components are significant only
for small missing mass. Therefore, they would not be relevant for my purpose.
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Dominant Components and Exoticity Criterion in the Fragmentation and
Central Regions

We see from Eq. (16) that only a few of the 7 components are dominant in a specific
kinematic region.

Central Region. Here both ¢ and u become large. Thus 7 constitutes the scaling term
whereas 5 and 6 constitute the leading non-scaling terms. Components 1-4 give the tertiary
terms, and shall be neglected. The criterion for an energy independent cross-section (early
scaling or Exoticity) in this region is that 5 and 6 be suppressed relative to 7 — i.e. the
channels ac and bc be exotic.

b-Fragmentation Region (small ¢). We shall restrict to small values of ¢ for which
the situation simplifies very much. Kinematically the small ¢ criterion holds over a large
part of the fragmentation region, when the outgoing particle is light, i.e. ¢ = &, as seen
from (6).

Narrow width duality suggests that for very small 7, the Pomeron exchange between b¢
will be suppressed relative to the Reggeon exchange (e.g. 4 < 1,7 < 6). Thus the diagrams,
where bc lie on the same quark loop, will be the dominant ones. The same result also
follows from the resonance production diagrams described earlier. When the momentum
transfer between 6 and ¢ becomes small the diagrams 2, 4, 5, 7, with an intercepting
resonance, are going to vanish. This has been checked quantitatively in a model calcula-
tion [4]. Therefore the surviving components are 6 and (1+3)

b c ,.b
&\ borE
a a
6 Tor3
ag-! ap-1 ag-! ag-!
trRT "R toRT R

which define the scaling and the non-scaling pieces in this region (as s or equivalently
u = ). Thus we have here the good old two-component model where .the resonances
and background in the missing mass channel (abc) are dual to Reggeon and Pomeron
in aa. The criteria for energy independent cross-section or ‘‘exoticity” is suppression of
the Regge component relative to the Pomeron — i.e. abc be exot ¢ and bc non exotic.
This criterion was suggested by Chan et al. [5].

I should comment upon some alternative criteria for “‘exoticity”’, which were put
forward [2, 6], following the suggestion of the above criterion. They generally refer to
the components 4 and 5, which would give non-scaling contributions ~ #**~!; and which
may be comparable to 1 except at very small #. They suggest, therefore, that the combina-
tions ab and ac should be exotic in addition to abc so that all the non-scaling go away.
These criteria have formed significant steps in the historical development of the subject.
In the final analysis, however, there does not seem to be much theoretical or experimental
support in their favour. For the component 6 is also expected have a nonleading term
~ w®~1 which would not be affected by these exoticity criteria. And this term is not
suppressed relative to 4 and 5 by the duality arguments, as they occur in the same order
of the coupling strength. A significant distinction is that 4 and 5 are positive whereas the
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non-leading term of 6 could have either sign. Experimentally, the reactions with abc
exotic and bc non-exotic show either very good scaling or sometimes a negative non-
-scaling piece. There is, however, no evidence so far of a positive non-scaling piece for
any of these reactions.

3. Duality and Regge analyses in the fragmentation region

Standard Exchange Degeneracy Tests

b
4

cxPIO), (43 {0)
a

z N
f = FP (t, HSZ_) SQ:P(O)_1 + FR (t, M_2> SaR(o)_i =

R=¢,0,f;42

N N
= Fp(f, ]\?) -+ Z FR <t, ]TJ—Z—> S-t, R =g, waf, Az' (18)
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Fig. 2. Comparison of the “exotic” cross-sections (p,#*, K+)p —» 7~ X with the “non-exotic” ones
@, Kny)p o> X
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Let us compare the set of “‘exotic” fragmentations K*p — n~X, n*p = nX, pp = ==X
with the “non-exotic” ones Kp —» n-X, n7p = n=X, yp — n~X. Assuming the Pomeron
to factorise, the 6 asymptotic  cross-sections- should have a common limit, when divided
by the corresponding d1.{ap) say. The two-component duality predicts the “exotic”
cross-sections to have reached this limiting value at small s, whereas the ‘‘non-exotic”
ones are predicted to approach this from above.

10F
F s = 1995 (GeV)?
o pr= 0.8 Gevic
1+ A
s
4> -
> r
3 o
NG "
Q .
E -
i pp —m ot X
-2
0°
0 F 4 Ratner et al.
C ¢ Albrow et al.
3 __ Allaby et al.
N s=47(Gev)?
3
0 1 L i t t
0 02 04 06 0.8 10

¥
/

Fig. 3. Comparison of the accelerator and ISR cross-sections for the “exotic” reaction pp —» %*X, as a
function of x

The experimental cross-sections (integrated over py) are plotted against s~* in Fig 2.
The data points agree with all the above features, thus supporting both duality and Pomeron
factorisation. I shall come to Pomeron factorisation in a while. For the moment, however,
let us concentrate on the duality part.

The Fig. 2 is the analogue of the standard EXD result with the exotic and non-exotic
total cross-sections. There are however 3 significant advantages in testing EXD with the
inclusive data, in comparison with the total cross-section case. Firstly, the non-scaling
term in Fig. 2 is typically a 50-609%;, effect, in contrast with the 15-209% effect in 2-body
scattering (e.g. the difference of K*p total cross-sections). In view of this, the observed
flatness of the “exotic” cross-sections here is a remarkable achievement for two-component
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duality. Also in contrast with the 2-body case, we have more freedom with the quantum
numbers here. Consequently a large number of “exotic” channels are experimentally
accessible here, whereas we had only o1, (KN) and o1, (NN) in the 2-body case. The
table lists the “‘exotic” inclusive cross-sections, where the s-independence has been checked —
either by comparing data at different energies (when available) or through Pomeron
factorisation. On the whole it is an impressive list. Thirdly, in contrast with the 2-body
case, the s-independence for the inclusive cross-section can be checked as a function of
two variables — ¢ and s/M? (or equivalently py, x). The Fig. 3 demonstrates the equality
between the 24 and 1000 GeV cross-sections for the exotic process pp — 7~ X as a function
of x.

TABLE

List of “Exotic” reactions, wheie s-independence has been verified — either by comparing data [7] at
different energies or through factorisation*

5)) atp - X @ Kip - aX 3) pp » X
4 K+p = atX ) pp - X

(6) arp - AX ) K+p » AX

8 wtp > KX ©® pp — AX

* The only “‘exotic” reactions, which seem to show appreciable s-dependence are pp — K°X and
pp — K*X. They show a negative non-scaling component (compare rising aror (K*p) ). There is no satis-
factory explanation for this, to my knowledge. The sign suggests, however, that their origin may be
different from the non-scaling components of a “non-exotic” reaction, which are positive.

Additional Exchange Degeneracy Tests

So much about the standard EXD prediction for exotic processes. There are also
EXD predictions for non-exotic processes. More precisely these predictions follow from
EXD, SU(3) and factorisation; factorisation for Reggeons is, of course, a relatively clean
assumption.

In two-body scattering the best known examples are the equalities between non-
-Pomeron K-p and n~p cross-sections

N-P N-P
Ok-p(k-n) = Tn-p(z*py (19)

K -
§e*w+f+A2 = Q*f
12 P

EXD giVCS ggpp = gA;pps gwpp = gfp;}s gQKK = ngK = ngK = gAzKK, gmut = gfm: and SU(3)
gives g, = 28,xx- Therefore the factor of 2 advantage for the coupling on RHS compen-
sates having twice as many trajectories on the left. Experimentally, of course, the equalities
are very well satisfied.
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These predictions can again be extended to the inclusive case. One derives, for instance,
non-scaling non-scaling
JK p—n=X T Jr"porn~ X~ (20)

K™ -
Q +w+fehy g+t
at ar.
P p
The prt system has the quantum numbers of a 4+*. Thus its couplings obey the same EXD
s
“1{4,"5' s,

relations as 4, i.e
s
F‘, 2,t =FA2 -—'—2“,1 N Fco “——2',1 =Ff
analogous to the proton case. Therefore the equality follows.
In addition one has the equality between ¢ and f couplings to 4, i.e. F(s/M? t) =
= F,(s/M?,t) which was not true for the proton case. This follows from having an addi-
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Fig. 4. The a-p — 7~ X cross-section data compared against the prediction from the K—p — 7~X cross-
section. The crosses denote the uncertainty in the predicted value, due to the error bars in the K—p » n=X
data

tional exotic channel for A, namely n+A*+, Thus all the 4 fragmentation vertices are equal.
Thus starting with the non-scaling contribution for K~p — n~X one can predict not only
n~p — n~X, but other non-exotic processes like yp — n~X too; that is using the couplings
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at the top from 2-body data. The prediction for 7p — 7~X has been tested by Miettinen [8].
And Chan, Lam and Miettinen [9] have checked the prediction for yp — 7 X: The results
are shown in Figs 4 and 5.

What is plotted in fact is the net fragmentation cross-section — that is the predicted
non-scaling part plus the scaling part obtained from the exotic process K+p —» n~X. It

100} a8
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\

C‘O

P
oo

g
/ /
Q '/
/ y
p— T
/ e 28 Gel/c

a 4.7 GeV/ic
n 9.3 GeV/c
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Fig. 5. The yp —» a~X data compared against the prediction from the K—p — 7 X cross-section

should be remembered, of course, that the non-scaling part is roughly as big as the scaling
part. Therefore the agreement for the net cross-section reflects a fairly good agreement for
the non-scaling part itself. Again the relation holds over a range of py and py values. The
comparison as a function of pr has been done for the yp — n~X case [10].

Pomeron Factorisation

Factorisation is an important test for the nature of Pomeron singularity Z. e. if it is
a pole or a more complicated object. There are many compelling reasons against the Po-
meron being exactly a factorising pole as we have heard from Prof. Le Bellac. There are in
fact few reasons why it should even be dominantly a pole, except in the multiperipheral
model. Many people hope, nonetheless, that it is so, as otherwise the Regge description



of elastic scattering will be a pretty hopeless exercise. And besides, the multiperipheral
model is perhaps the best hope we have to understand unitarity.

In 2-body scattering, the total cross-sections related by factorisation, like pp, np, =,
are not all directly measurable. Therefore one can only hope to test Pomeron factorisation
for processes like diffraction dissociation. But again one does not know if the Pomeron
in elastic scattering and diffraction dissociation is the same object
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Fig. 6. Test of Pomeron factorisation between the “exotic” reactions K*p —» 7~X and pp — 7= X. Note
that, in contrast, the “non-exotic” cross-section yp — s~ X is typically 509, higher. The dashed lines denote
the boundary of the single Regge region

Now, the inclusive data provides many 3-body elastic amplitudes, which are related by
factorisation. One can even afford the luxury of picking up only the exotic processes to
ensure Pomeron dominance even at finite energy. We have seen the comparison amongst
ntp - X, K*p —» n~X and pp — n~X. The comparison between the last two has in fact
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been done as a function of p; and py by Swanson ez al. [11] (Fig. 6). In all these cases there
seems to be good evidence of Pomeron factorisation, that is within the experimental
accuracy of 10-20%.

4. Duality and Regge analyses in the central region

For double Regge analysis we should have large s, t and u compared to mf,,,,c and x.
Let us optimistically interpret large ¢, u as #, ¥ > 5 GeV?Z. Then this criterion is satisfied at
ISR ; and also at some accelerator energies, particularly for an outgoing heavy particle
{e. g. ¢ = proton).

The “scaling” and the “leading non-scaling” terms are from components 7 and

(5+6).

b b b

3 c c

a a a

7 5 6
ttxp—Iu'cer tO’-‘p"7uaR‘7 taR—’udp—l
=const
! -
’U-Y ='t %

It is instructive to discuss the components 7 and (5+ 6) separately, since the data seems
to agree with the prediction of the simplest dual Regge model for the latter case, but not
the former.

The processes pp — pX and pp — K-X have all the pairs ac, bc and ab exotic. Conse-
quently @, b and ¢ must lie on separate quark loops. Thus these cross-sections provide
a direct measure of the component 7. On the other hand, the difference

4, = flab - cX)—f(ab - cX) 21

corresponds to the component (5+6), since the ¢ and ¢ have identical 7th component,
via Pomeranchuk theorem.

Non Scaling Component from Cross-Section Difference

We shall be concerned mainly with the pp data. Here a and b are identical. Thus
(5+6) takes the simple form

-~
A, =546 ~u 417 ~ (ut)'*{(—;«) + (5) } ~ B(x)s™* cosh% Y, (22)

where Y is the rapidity variable. Let us compare the ISR and accelerator data on 4, and 4,
with this prediction [12].

The 4, and 4, are shown on a s7* plot, at constant ¥ = 0 (i. e. x = 0) in Figs. 7 and 8.
The data points are, indeed, suggestive of a s~ ¥ behaviour, although any other power
between —0.1 and —0.5 (corresponding to ax(0) = 0.8 & 0) cannot be ruled out. Next the
ISR data in 4, is shown on cosh (¥/2) plot in Fig. 9. The energy variation within ISR is
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Fig. 7. The cross-section difference 4, on a s~% plot. The straight line prediction corresponds to Eg. (22).
The power behaviours s~°-! and s, corresponding to #g(0) = 0.8 and 0, are also shown for comparison
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Fig. 8. Same as Fig. 7, for the cross-section difference 4,

taken into account by dividing 4, by s~* The data points agree well with the suggested
cosh (¥]2) behaviour, although again the accuracy is rather poor.

Pomeron factorisation can be tested by comparing 4. in pp, n*p and K*p collision.
For instance, 4, gets contribution only from the o~p terms shown below.
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Both P-P and f~P terms drop out from the difference. Now factorisation implies
Q‘l;"(x) = yobFaPn(K)YPa’ PZ"(K) = YPbran(K)YQa' (23)

Thus the relative amount of 4, can be predicted for various incident particles, taking y’s
from 2-body data. One gets, for instance [12], 4,(pp): 4. (n*p): 4, (mwp) =2:3: =2
Data around 20 GeV (0.4 < p; < 0.6) give 1.0: 2.1 : —1.0 mb/GeV?. A large number of

Pr =4
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5 + RATNER TI00 GeV/c $ BRITISH-SCANDINAVIAN 500 GeV/c
~lee cos h (0.2y)
>
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aR= 3’*
1 1 1 )]
0 S 1 15 2
cos h y/2

Fig. 9. The quantity s‘*Ap on a cosh ¥72 plot. The straight line corresponds to Eq. (22). The behaviours
cosh (0.2Y) and cosh (¥), corresponding to 2g(0) = 0.8 and 0 are also shown for comparison

predictions of this type have been obtained [12], using the EXD relations for the central
couplings I'. They are expected to hold quantitatively, however, only at the NAL or
Serpukhov energies.

Scaling Component (!) from Exotic Cross-Sections

Finally let us compare the data of f(pp — pX) and f(pp — K~X) with the prediction
of component 7. The two cross-sections increase by factors of 100 and 10 respectively
between accelerator and ISR, suggesting a hugé negative non-scaling piece. In dual pertur-
bation theory there can be a Regge component in 7 in addition to the Pomeron, and it
could have either sign. But the magnitude is required by the narrow width hypothesis,
to be small compared to the components (5+6), i. e.

non-scaling non-scaling
J ppKX) < Jop-<piknyxy
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Experimentally, however, the non-scaling pieces — as measured by the difference between
the accelerator and ISR cross-sections — show
Faaisy, > famssat,

How to interpret this huge non-scaling piece in the component 7? There have been 2 sug-
gestions.

(1) Tye and Veneziano [3] ascribe it to the Regge term in component 7, disregarding
the narrow width duality constraint.

(2) Alternatively it has been ascribed by many authors to some kind of a threshold
effect, which would not have a simple singularity structure in the Regge language.

ﬁ pp—e-BX,x=0,p;= .4
¥ BRITISH— SCANDINAVIAN
\ o ALLABY, AKERLOF

mb

) \§

o3

1
0 ; .2 ‘/3‘ 4
s=100

Fig. 10. The cross-section for pp — pX on a s~% plot

Both the alternatives are outside the scope of the simplest dual Regge approach.
But one can compare the Tye-Veneziano suggestion with the energy dependence of
flpp — p(K)X), as it predicts a s~* behaviour for the non-scaling piece. The data seems to
contradict a simple s~* behaviour. Firstly, such a behaviour would suggest

f(s = 2800)—£f(960) (o — BX) = f(2800) f(960_) (op = KX, 24)
f(960)—£(45) f(960)—f(45)

where each denominator is dominated by the ISR cross-section f(960). The British-Scandin-

avian experiment suggests a 409 increase for f(pp — pX) within ISR (LHS), but a 109,

upper bound for f(pp — K-X) (RHS). Secondly, plotting experimental f(pp — pX) against

s™% one sees that a linear extrapolation from the ISR point would make the cross-section

negative even at s > 100 GeV? (see Fig. 10).
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Even for pp —» nX we now know that
Jemo # a=bs"? (25)

contrary to some earlier claims [13]. This is seen by comparing the n* and =~ data on
a s~ % plot [14] Fig. 11. Linear extrapolation would make the 2-cross-sections asymptotically
unequal. A much better fit is, in fact, obtained on a s™* plot. I feel there is no physics in
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Fig. 11. The cross-sections for pp — 7£X on the s~ % and s~ % plots. The two cross-sections should be equal
asymptotically, which disfavours the s~% behaviour

this plot. Only the rise in these cross-sections is so small compared to the error bars that
a power law cannot be ruled out as long as the power is left free. The s~ % behaviour seems
to be ruled out, however.

The alternative interpretation in terms of a threshold rise, seems to be more realistic. Itis
analogous to the 2-body total cross-section case which shows a threshold rise before flattening

exclusive s- channel
contributions
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up. The flat cross-section is simple to interpret in terms of the r-channel Regge exchange,
but hard in terms of the contributing s-channel states. The threshold rise, on the other hand,
is very natural in the s-channel formulation, but hard to interpret in terms of Regge ex-
changes.

There has been several model calculations to reproduce the rise in the inclusive p
cross-section, in terms of exclusive s-channels contributions of the type shown below.

)

The detected particle comes from the decay of a centrally produced cluster and for p
or a high p; pion the cluster has to be heavy. With a reasonable cluster mass (~ 5 GeV,

pp— e anything
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w225 —u— 1
L 2% J
21 17 1
0 1 I I i
T 1 0 2 3
N Longitudinal ,lab" rapidity y’“b
S T T T T T T T
s r 1500 GeV/e
ok 7100
= 24
2l 2
O 1 | 1

4 2
Longitudinal C.M.S. rap/d/ty y

Fig. 12. The ISR cross-section for pp — #X showing the central plateau on a rapidity plot

say) and reasonable t-dependence for the Pomeron couplings it is possible to sustain a rise
of the production cross-section up to ISR energies [15]. In this picture the rise is a kine-
matic effect in the sense that it depends more on the transverse mass of the detected particle
than on its quantum numbers. This qualitatively agrees with the fact that ISR cross-section
show a rise not only for the p but for large pr pions as well.

Of course, this late onset of the leading Regge behaviour is a big surprise, in view of
our experience with 2-body phenomenology. The large variable for double Regge expan-
sion is u (or #)/k. As u = \/ks at x = 0, it is, of course, expected that the larger the «,
the higher will be the s for Regge behaviour to set in, what is surprising however is the
magnitude of this scale. It has not yet set in for the p cross-section at ISR, for which
ufi ~ 20.
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Let me indulge in a little bit of platitude. It is always possible to formally express
a threshold rise in terms of r-channel Regge singularities. For instance, a cross-section
of the type

f=-—C (26)

which shows a threshold rise can be expanded in power series of s. As a result we get a Po-
meron accompanied by an infinite sequence of daughters. Caneschi [16] was perhaps the
first to suggest an exclusive s-channel model for the rise of the pp — pX cross-section,
of the type discussed above, and to express the threshold rise in terms of the Pomeron
daughters. Such a daughter structure, of course, has no predictive value. The reason I
brought this up is the following. In the double Regge analysis of the central region by Chan
et al. (Ref. [12]), we had expressed the rise in p in terms of an undefined Regge singul-
arity Q. This has been unfortunately interpreted by some as suggesting some new dyna-
mical singularity in the complex /-plane. We believe, however, that @ is nothing more
than this non interesting daughter structure.

Let me finish with a happy note for the Mueller-Regge approach. The threshold effects
are expected to be small for the ISR cross-sections. for small p; pion. They do show the
energy and rapidity independence predicted by the P-P term. This is the famous central
plateau in the rapidity plot (Fig. 12).

5. 2-Particle inclusive reactions

For the 2-particle Inclusive Process ab — c¢dX the invariant cross-section is related
by Mueller’s optical theorem to a 4-body amplitude

do
EcEd
dp.

==

When all the sub-energies are large, one can do the Regge Expansion

dpd = fcd . (27)

QoQuo

Q 0 Q o

fcd = Z BIJK(KU Kd)sa‘ ! :{1 ! Z: 1, (28)

i,j,x

where one has specifically taken the limit 5., 5,7 and s, large and the transverse masses

Ke = (S525:4)/a3> Ka = (S4c5pa)/5pz fixed.
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Both ¢ and d in the Central Region

A particularly interesting situation is when both ¢ and d are in the central region,
so that Pomeron dominates the links / and j. Then

fea = Berp(Ke, K2) + Porpliccs k)5, 29

Y, = Yin(spefses), Yo = +In(sp3/s.9),

Saésbc * Yo~Y,
Scd = | KKy = (chd)%e( ° d)' (30)
a;sbt}
Thus
Sed = Bepp(ic,s Kg)+ Borp(rc,, r)e 3Te™¥a), (31

The 2-particle inclusive cross-section will be translational invariant — i. e. independent
of their individual rapidities, but only a function of the difference. This is analogous to
the prediction of the central plateau in the single particle distribution.

If we assume Pomeron factorisation then

orXfoa—fexfy = ?lz'a}'gbr rrelK ) pra(K2)e THle~Ya), 32

b b
b def b= o—1m b d—AP
x PR _ C x d = P x R
P Xc R P c
a P a a a P
a a

This is the correlation function G.;. Alternatively it is defined as

Gy 01 Sea g Tpg (K ) pra(Ks) o~ H¥e=Ya)

= = = — 33
< fefa Jefa L'pp (k) Tppy(rcy) (33)

Thus, in this model the 2-body correlation function in the central region has the following
properties: (1) Energy Independence, (2) Translational Invariance, (3) Exponential fall
off with rapidity difference (SRC) with range 2.

All the above features seem to agree roughly with the Pisa-Stony Brook and the
CERN-Hamburg-Vienna ISR data. We have seen these data already during the talks
of Prof. Le Bellac and Prof. Schmitz. One can in fact predict the magnitude of the correla-
tion functions for 2-pions, taking the I'pg,(x) terms from the data of Fig. 7, for instance.
But I do not know if both single pion and 2-pion data are available for identical p; cuts.

One should bear in mind that in this model the correlations are normalised with
respect to the total cross-sections, whereas in the data they are mostly normalised with
respect to the inelastic cross-sections.

1t will be interesting to have data on n~7n~ or ntr* correlation, which is predicted to
be zero or small due to exoticity.
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¢ in the Fragmentation and 4 in the Central Region

Here /., is given by the following graph:

&> Qoo

For a factorising Pomeron there should be zero correlation. The Pisa-Stony Brook
and CERN-Holland-Lancaster-Manchester data are consistent with this. In both cases
the central particle is a pion. Similar measurements for a central p may be useful in deter-
mining the nature of the secondary contributions responsible for the rise in pp — pX.

¢ and d in the Fragmentation Regions of ¢ and b

Now f,4 is given by:

d
b

Again one expects zero correlation for a factorising Pomeron. Unfortunately there are no
ISR data yet. But the 20 GeV data on pp — n-n~X seem to be consistent with this [17],
although at this energy there is not very much space available for double fragmentation.
Note that there is no secondary trajectory contribution here, as the 4-body system is
exotic.
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