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The statistical approach to multihadron production processes assumes that the relative
probability for different inclusive final states is determined by the corresponding level densi-
ties. The proposed statistical descriptions can be divided into two classes: purely statistical
models (Fermi model, Pomeranchuk model, uncorrelated jet model, statistical bootstrap
model), and hybrid models, which combine non-statistical cluster formation with statisti-
cal cluster decay (two- and multi-center models, thermodynamical model, nova and
multinova models, diffraction fragmentation models).

After a survey of the various models with comments on their interrelation, we discuss in
particular asymptotic phase space behaviour, the solution of the statistical bootstrap equa-
tion, the dynamical interpretation of this solution in terms of resonance interactions, and the
connection between the statistical bootstrap approach and aspects of the dual resonance
model.

1. Introduction

The increasing number of secondaries produced with increasing energy in hadron-
-hadron collisions leads quite naturally to the hope that from a certain energy on statistical
descriptions of particle production may prove useful. Before studying various proposals
of this type, their interrelations and their connections to dynamical models, let us state
more clearly what we want to say when we refer to something as a statistical descrip-
tion.

In classical statistical mechanics, each macroscopic (thermodynamic) state, character-
ized e. g. by total internal energy E, volume V and particle number N, is compatible with
many microscopic states, namely all configurations

{;i’ ';H [= 1: 2: vovy N} (1.1)

with momenta p; and coordinates Xx; obeying energy conservation and volume restrictions.
The fundamental postulate of statistical mechanics [1] now states that the relative proba-
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bility of two given macroscopic states is determined by the relative number of compatible
microscopic states: denoting by P(E,, V,, N,) the probability of the macroscopic state «
and by ©(E,, V,, N the number of microscopic states associated with a, we have
P(E, Vo N) _ t(E, Vi N)
P(Eg, Vi Ng)  t(Eg, Vi, Np)

(1.2)

Equivalently we could postulate the same weight for each allowed microscopic state —
in this language, (1.2) is the assumption of equal a priori probabilities. As the standard
method to calculate the “level density” 7, in statistical mechanics is through calculation
of the corresponding phase space volume, we can obtain yet another formulation by stating
that phase space integrals with constant weights determine the relative probabilities of
macroscopic final states.

In hadronic production processes one encounters a situation quite analogous to the
one just described. Consider the single particle momentum distribution

- d’o, .
F{p,s) = 2p, s (p;9) (1.3)
p

for the process a+b — c+anything, with p denoting the CMS momentum of particle ¢
and /s the incident CMS energy. To such an inclusive distribution there correspond many
possible exclusive configurations

{;‘; i = 1, 2, ceny N; N = 2, 3; sees Nmax(s)} (1'4)

subject, of course, to energy-momentum conservation. We shall therefore speak of statisti-
cal models or of a statistical description for such a process if the relative proba-
bility of two inclusive final states is, as in statistical mechanics, determined by the correspond-
ing level densities.

Let us emphasize here that in general we do not want to imply by level density that of
an ideal gas — besides energy-momentum conservation there can be other non-kinematical
constraints forbidding certain states or modifying their distribution. So if we think of
level densities in terms of phase space volumes, the latter may well contain “‘geometrized”
dynamics, such as the transverse momentum bound in the uncorrelated jet model. In fact,
if we could reformulate the essential features of production dynamics in terms of phase
space geometry such that inclusive distributions become determined by volumes of a suit-
ably modified phase space, then we would have obtained the statistical limit or closure [2]
of production dynamics.

We now want to indicate briefly general limitations and possibilities of statistical
descriptions. No statistical model can, without further input, provide absolute predictions
for e. g. total or differential cross-sections: the overall normalization of the production
amplitude does not enter in (1.2) and hence is outside the scope of statistical considerations.
The same applies to the phase of a production amplitude, which is of relevance e. g. in the
calculation of the elastic differential cross-section via unitarity (“overlap problem” [3]):
as statistical descriptions always refer to physical transition rates and thus to squared



matrix elements, nothing is said about the phase of the corresponding amplitude. On the
other hand, a statistical description can, in general, give definite (though perhaps incorrect)
answers to all questions about the relative weights of different final states: branching ratios
for various particle numbers, decomposition of og,, into the various N particle number
distributions, spectra (p, and py distributions), correlations — for all these quantities,
statistical models provide predictions subject to experimental test.

The material to be presented in these lectures will be organized as follows: in Section 2
we shall give a review of the main statistical schemes of multihadron production proposed
up to now'. One of the things to be seen from this survey is to what extent statistical con-
cepts have become common, if not essential, in present day high energy hadron physics.

In the following sections we shall then discuss particular aspects in more detail:
in Section 3 the high energy behaviour of the level density given by conventional phase
space is investigated, while in 4 we discuss the level density obtained in the statistical
bootstrap approach. In Section 5 we then formulate the latter in terms of phase space,
in order to show the essential dynamical input of the approach: resonance structure gov-
erned by linear Regge trajectories. Concluding, we discuss in Section 6 the relation between
statistical bootstrap approach and dual resonance description, to illustrate on hand of
a dynamical model the lind of approximation made in the bootstrap picture.

2. Survey of statistical descriptions

As starting point, let us take the perfect gas analogue for particle production, the
FERMI MODEL [7]. If we don’t know anything about the production dynamics deter-
mining the momentum space distribution, the simplest thing to assume is an equidistribu-
tion [7, 8]

N N
1 d3Pi . . ,
on(s) ~ ,'J P 0“’( E Pz"Q) [{py --- PN|S'(1142>I2 2.1
N! A L 2pio
1 1
N N 3 i N
 (TTdm K
~ - 5(4)( i— = — Qs 2.2
N!..L|2Pio p—Q N1 n(S) (2.2)
1 1

with Q = ¢q,+¢,, s = @2, as initial state, and for the case of identical particles of mass m,
obeying Boltzmann statistics. 1f we write k = 2m V,, then V, has the dimensions of
a volume, which we can interpret as expression of the finite interaction region in hadron

collisions:
1 3
Vo ~ <~> . (2.3)
m

! Unfortunately we cannot include here a discussion of Landau’s hydrodynamical model [4]; for
a recent review of this and further references to it, see Ref. [5] and [6].




The quantity V' (2m)¥Q,(s) moreover is a generalization of N-particle phase space
N N
I'(E) ~ j n d3pid3xi5(z wi{x;, p)—E), (24)
1 1

where w;, p;, x; denote energy, momentum and space coordinate of the i-th particle; it
thus counts the number of allowed states for given CMS energy /s and N free hadrons
inside the given interaction volume ¥,. As in statistical mechanics of non-interacting
gases the probability of a given final state in the Fermi model is thus simply determined by
the number of kinematically allowed number of final states (equal a priori probabilities).
The asymptotic predictions of this model, and of others to be discussed subsequently, are
summarized in Table I

TABLE I

The asymptotic results of various statistical decay schemes; M denotes the cluster mass, w the center of
mass energy of the ob:erved secondary

Multiplicity Average secgndary Single particle spectrum
energy w F(w, M)

Statistical modz!, M?23 M3 e— const. (mVo/M)/3w
covariant
Statistical model, M?3i4 MLe 2= const. (Vo/M)H/4w
Fermi
Uncorrelated InM M (1 —x)const.
jet model nM x = 2wM
Statistical bootstrap M const p— const.w
model

Theoretically, there was an almost immediate objection to the Fermi model: Pomer-
anchuk [9] argued that the emitted hadrons could be considered free only once their mutual
separation had exceeded the range of hadronic forces. This led him to propose an overall
coordinate space volume increasing linearly with particle number, so that

3
k=2mV; V=NV~ N(%) 2.5)
in (2.2). This POMERANCHUK MODEL, which subsequently received rather little
attention [10], in faci provides an alterraiive approach [11] to the solution of the
statistical bootstrap condition; we therefore shall briefly return to its implications in
Section 4.
Empirically, the momentum space equidistribution (2.2) soon became untenable,
mainly on three accounts: jet structure, resonance production and leading particle effects.
Let us concentrate for the moment on the first two. The transverse momentum bound



giving rise to the jet structure is easily accommodated (though not explained!) by modifying
the momentum space measure
d*p

d3p
70 EI;;f(PT) (2.6)

to obtain the UNCORRELATED JET MODEL (3, 12]; typically

Mpp) ~ eI, 2.7

The essential effect of the modification (2.6) is to render the single particle momentum
space one- instead of threedimensional [13]; the bounded p; amounts practically to a mass
renormalization.

The asymptotic results of the uncorrelated jet model are also summarized in Table I;
it should be emphasized that scaling and logarithmic multiplicity increase are closely con-
nected and (for bounded p;) both a consequence of the asymptotically dimensionless
longitudinal phase space measure dpy/2p, . It should also be noted that significant differ-
ences between inclusive distribution from the Fermi model and from the uncorrelated jet
model can only be expected at energies high enough so that the average secondary energy
(~ /5/N) is clearly larger than 3 of the average transverse momentum — which in practice
requires Pp,, = 100 GeV/c [14].

The copious, perhaps dominant multiparticle production through intermediate
strongly decaying resonances led to the THERMODYNAMICAL MODEL ([15], which
proposes in a two-step picture the production and subsequent decay of excited centers of
hadronic matter at rest — so-called fireballs, considered as extension of the resonance
concept towards higher masses. While the formation process of fireballs is taken as (non-
statistical) input, their decay is described statistically. The formation process initiated
by the hadron-hadron collision is in the thermodynamical model assumed to give no trans-
verse motion to the created fireballs (“no turbulence™), so that transverse spectra yield
direct information on fireball decay. Different decay modes are again compared by the
relative number of allowed microscopic final states, but the density of states (M) of
a fireball of mass M = ,/p? is now determined by the STATISTICAL BOOTSTRAP
CONDITION [15, 16]: any fireball at any step of the cascade is described by the same
function 7(x). The resulting bootstrap equation [15, 16, 17]

(P?) = O(Py)S(P?—m?) +

BN— . N N
S [T (s e
1 1

©
N=2

leads to a density of states

UM?) ~ M73MTe; T, = Ty(B) (2.9)



increasing linearly exponential with fireball mass. It is this strong increase (stronger, as
we shall see, than any conventional phase space volume) which results in secondaries of
bounded energy in the fireball CMS and thus leads to the transverse momentum bound:
the inclusive single particle momentum distribution at 90° and for incident CMS energy
M = /p? becomes
- . o([P—-p])? . s

[F(p, M)]ooe ~ ([1_7,%]—2 ~ e ToYpirim (2.10)
showing the direct relation between level density and py-bound.

The thermodynamical model provides an example of a “hybrid” model, in which one
combines non-statistical formation with statistical decay; the peripherality of hadronic
production is in such a desc iption introduced through the formation mechanism, while
the statistical decay of the fireball is supposed to lead in its CMS to a more or less isotropic
momentum distribution (fully isotropic for the thermodynamical model). Earlier examples
of a hybrid type were the TWO- or MULTI-CENTER MODELS [18, 19], in which the
decay was described by a level density obtained from conventional phase space rather than
from a bootstrap condition. Later hybrid attempts are found in the nova and the diffrac-
tion fragmentation models (see below), which have the same decay pattern as the thermo-
dynamical model, but propose a different form of fireball production process.

In the longitudinal direction (i. e., along the beam), the thermodynamical model pro-
poses the formation of many fireballs in relative motion, from those at rest in the target
CMS continuously to those at rest in the projectile CMS. The superposition of fireballs
is governed by a velocity distribution not determined by the model, but instead fitted by
experiment. Hence the essential assumptions of the model are: (i) no turbulence (no trans-
verse motion of fireballs) and (i1) the bootstrap condition to determine t(x); the essential
prediction gives the inclusive transverse momentum distribution of the secondaries.

Before continuing, let us comment briefly on the concept of fireball. We shall call
cluster any hadronic system ““at rest”, more specifically, any system whose intrinsic spin j
is much less than its rest mass M

j <M. 2.11)

Of particular interest is often the case M — oo, j/M — 0. If a cluster in this limit decays
in its CMS into secondaries of bounded energy, we call the cluster a fireball. This defini-
tion essentially coincides with that proposed by Migsowicz [19] and also agrees with the
terminology of the statistical bootstrap approach, where fireballs are hadronic systems
decaying isotropically into secondaries of bounded energy. The case j ~ M would lead to
considerable difficulties: the separation between formation and decay then becomes more
or less a matter of .operational definition.

A picture quite similar to the thermodynamical model is proposed in the NOVA [20]
and the DIFFRACTION FRAGMENTATION [21] MODEL. The decay scheme is that
of the statistical bootstrap approach (fireball = nova). The formation process, however,
4s somewhat modified. Let us consider the nova model in the case of proton-proton inter-



actions (¢f. Fig. 1) at incident CMS energy ./s; denote with m the proton mass. The dif-
ferential cross-section for the production of a fireball (nova) of mass M at fixed proton-
-proton momentum transfer ¢ = (k,—k,)?* is then written

—— ~ B(t, M, m)g(M)B(t, m, m)S*r® 11, 2.12
e~ B M, myg (MR, m, m) 2.12)
Here f(t, M, m) and B(t, m, m) denote the squared proton-fireball-Pomeron and proton-
-proton-Pomeron form factors, respectively, g(M) the fireball production distribution in

F(t,M,m) decay

gim)

F(t,m,m)
Fig. 1. Nova Model

mass and ox(f) the Pomeron trajectory. If we allow fireball excitgtion of both incident
protons, we obtain analogously the diffraction fragmentation model.

The essential differences between the thermodynamical model and the nova or diffrac-
tion fragmentation picture are the following: in the latter we always have a two “body”
final state, so that the rest system of a fireball is determined by its mass; in the thermo-
dynamical model any number of fireballs can be produced, allowing — apart from energy —
momentum conservation — any mass fireball in any reference system between target
and projectile rest frame. On the other hand, the “no turbulence” assumption is
weakened in the nova/diffraction fragmentation picture: with B(z, M, m) as determined
e. g. from exclusive data (~ exp A(M)t), fireballs with transverse motion are suppressed,
but not excluded.

A more general model can thus be obtained by allowing the production of many
fireballs in a multiperipheral picture, i. e. with Regge propagators and form factors instead
of the no turbulence assumption. Such considerations were in fact proposed [22] before
the advent of the nova and the diffraction fragmentation model and have recently attracted
renewed interest [23].

For all hybrid models large transverse momenta become problematic: the “‘no tur-
bulence” assumption as well as all form factor pictures are abstractions from the world
of small 7 (or close poles) and should not be expected to work indefinitely (deviations in
fact seem arleady indicated by present CERN-ISR data [24.]) A possible modification
[25] can be obtained by considering the analogous case in deep inelastic e—p scattering,
where orthodox vector meson dominance (disjoint ¢ and M dependence) also has to be
replaced by scaling vertices (functions of #/M?).

Concluding our survey, we give in Table I a summary of the most important results
from the different statistical decay schemes (some of these results will be derived in sub-
sequent sections), and in Table II a schematic compendium of various possible statistical
descriptions of multiparticle production.
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TABLE 11
Schematic display of the main statistical approaches to multihadron production
3
5 C = Phase Space (PS):: Fermi Model
i 9fs) = Longitud. PS (LPS): Uncorrelited Jet Model
2 m = Fireball (FB): Statistical Bootstrap
R Model
58
2 &
s C =PS: One Center Model (with leading particle)
giM) = LPS: Longitudinal Cluster Model
= FB: Nova Model
Fl(t,m]
C =PS: Two Center Model
- = LPS: Longitudinal Diffraction Excitation
2 Model
£ = FB: Diffraction Fragmentation Model
=
£
Z
C = PS: Multi-Center Model
PS+cut in cluster mass:
i Chan-Loskiewicz-Allison Model
FB: Multi-Nova Model
FB+(t = 0) condition:
Thermodynamical Model

3. The calculation of phase space volumes

This section will constitute an interlude of a more technical nature: the evaluation
of N particle phase space integrals and of the sum of such integrals over all N. Our aim
here will be to provide an intuitive idea of how such calculations are performed; details
and more rigorous argumentation can be found in an extensive literature [26].

We begin with a greatly simplified case, which however contains already most signi-
ficant features of phase space volumes. Consider the integral

o N N
QuE) = J H dqié(zl', 4:—E) (3.1)



11

which can be interpreted as the momentum space of one-dimensional mass zero particles

with only energy conservation. It is easily solvable in closed form by writing

o
ak

QNE) = —;ﬂ [ dye " [ p(a+iy)]",

o
—w

o]

. 1
w(z) = j(lqe“'z" =-(Imz < 0),
J z
which yields

aq
xE I

€

B = - j dye ™ a+ip)Y = ENTUN =)L,

-

The corresponding sum over all N

o

G(E) = Z 1 On(E)

2

can also easily be performed and gives

C .
G(E) = \/E (1,2 JCE)—1]

which behaves for £ — oo as

C 1 -
G(E) ~ \/~ R, VCE,
E J4ar JCE

3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

Thus the total phase space volume (assuming Boltzmann statistics) in this simplified case

increases exponentially in E'/2 [27].

Let us rewrite the above results in a somewhat different form. Applying the Stirling

formula to (3.4) gives together with (3.3)

1 /N
QWE) =~ i \/5_; L p)]"

if o is fixed through
0 In ¢(x) E
da N
Formula (3.9) gives, once (3.3) is substituted,

E = Na™!

(3.8)

(3.9)

(3.10)
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which with a~! = kT represents the Stefan-Boltzmann equation for a system defined
through (3.1). Thus (3.8) essentially is the canonical approximation of the microcanonical
form (3.1), expressed in terms of a temperature o~' = kT defined by (3.9). It can be shown
by applying techniques from probability theory [28] that these results in fact are very
general and can be used for the evaluation of most phase space integrals [28, 29, 30].
We shall not attempt to prove this here, but rather illustrate the point by looking at another
example solvable in closed form, the covariant N-particle phase space [8] for zero mass

particles
N N N
» d3 ; ‘7 N1 WZN—4
QW) = ch 5(4’( ; pi—P)= (~) — o, G
2pio ) 2 (N—DEN -
1 1

w? = p?
In this case we have
md? 2n
() = J L i (3.12)
2po «

which after substitution into (3.8) and (3.9) gives the Stirling approximation of (3.11).
if m # 0, one finds
2n

(o) = 7? K (m2) (3.13)

which requires a numerical solution of (3.9) to evaluate (3.11) via the approximation
3.8) [291
Consider now the general form
N N
) | Epi ] s
QV(W) = J —— Pio O pi—P), v> =2 (3.14)
2pio

1 1

which gives for m = 0

3

a’p ., Co ,
p) = ge Ps = cx“—” s Co = Co(v). (3.15)
o

Substituting this in (3.8) gives us, up to correction terms of order Stirling approximation
eW (v+ 2N w(v+2)N

Q(V) WY ~ ~

V(W) [(v+2)N] (N1y+2

which of course reduces to (3.11) for v = 0. To obtain an idea of the behaviour of the result-
ing sum over N

(3.16)

C(v+Z)N
G(W) = g N7 QYw) (3.17)

2



13

we write, using (2.16),

v+ 2

GO(W Z[“_CW___)M](MW 3.18
W) ~ (v+3)N (3.18)

N
which brings us to expect

G(V)(W) ~ e[CW](V+2)/(V+3)‘ (3.19)

The argumentation leading up to (3.19) can be made rigorous, again by using tech-
niques from probability theory [27, 31]. We note here in particular the special casesv = 0
(covariant statistical model) and v = 1 (Fermi model), which lead to level densities in-
creasing exponentially in W2/ and W3 respectively. As evident from (3.19), the level den-
sity for any v > —2 increases exponentially but less than linear in W. The resulting aver-
age particle number

oo}

\ C(v+ 2)N
gNN,WW)

NOw) = 2 = (3.20)

C(v+2)N
E"w avw)

2

d log GOY(W) 1-—

v+3

T ey T .

hence also increases always less than linear in W.

The case v = —2 in equation (3.14) results in a form very reminiscent of the uncor-
related jet model: the level density increases as a power of W, and the multiplicity behaves as

N~InW. (3.22)

For v < -2, the multiplicity becomes asymptotically constant, since now the momen-
N

tum space restriction H Plo leads to a convergent integral even without the energy conser-
1

vation condition.
In summary we can say:

(1) The level density obtained from conventional phase space (with Boltzmann statis-
tics) increases at most as

(W) ~ e, r<i1. (3.23)
(2) The resulting multiplicity increases at most as a power less than unity in W
NW)~W, r<l.

(3) The resulting average energy per secondary increases with total incident energy
without bound.
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Having seen what asymptotic behaviour we obtain for level densities from conven-
tional phase space volumes, let us now consider in more detail the calculation of level
densities in the bootstrap approach.

5. The statistical bootstrap condition and its solution

We again begin by considering a somewhat simplified case to illustrdate most clearly
the essential points. The linear chain model [32] allows each fireball to decay into one
stable secondary (“pion”) and one further fireball (¢f. Fig. 2); the resulting bootstrap
equation is

D2 2 2y, d’p 4 2y 5(4)
©(P*) = O(Py,)d(P*—m )+AJ27 d*kt(k*yo'(p+k—P) 4.1
0

with A denoting the fireball-fireball-pion coupling constant. The solution to the problem
defined by (4.1) has in fact been shown [16, 32, 33] to yield the dominant decay mode
also of fireballs defined by the full bootstrap equation (2.8).

The four-dimensional Laplace transform of (4.1), defined by

Z(B, 2) = [ d*Pe” PP[1(P?*)— O(Po)d(P; — m*)] (4.2)
is found to be
. A9*(B)
Z(B, 1) = ——-2 4.3
B, 4) = 70(h) 4.3)

Here we require f, > 0, > = B2—p> > 0, and the single particle distribution @(f) is
defined as

d*p 2nm

p(B) = | = e " = — K (mp), (4.4)
2po B
B=Bb
which for m = 0 has the particularly simple form
2z
Po(f) = e (4.5)
We note that Z(B, 1) at fixed A becomes singular at that value of § for which
Ap(f) = 1. (4.6)

It will shortly become clear that (4.6) in fact defines the “maximum temperature” T,
which governs the exponential increase (2.9) of the bootstrap level density.
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To solve equation (4.1) directly, we consider the corresponding equation at fixed N

T7(P?) = 1\(P?)— O(Po)5(P* —m?) =

a? ~
=4 'z}}g d*ky Ty (kD)8 (py + ky — P). (4.7)
i0

By simply iterating this, we find

3
TP = ANt f Hd Pi 5“*’(2 pi—P> (4.8)
2P10

and hence the Yellin form [17] of the bootstrap solution

3
S Y} | 3
Pio

As a check, it is easily verified that (4.9) satisfies (4.3).
For the case m = 0, the momentum space integral is, as we know, solvable in closed
form (c¢f. (3.11)); substituting this in (4.9) gives

1o(P?) = £1W Vomi L(N2mi W), W = P? (4.10)

as the exact solution of the linear chain bootstrap condition (4.1). For W — oo we regain
the familiar linearly exponential increase

(271/1)1/ 4
\/82:W3

7o(P?) = AL (4.11)

From this we see that the Laplace transform (4.2) must in fact diverge unless

B> By =2mA. (4.12)

This value By is, however, just that for which Z(B, 1) becomes singular, as seen by sub-
stituting (4.5) in (4.6). In thermodynamics, the temperature is defined as g-! = kT with &
denoting the Boltzmann constant; hence (4.12) requires with

T < Ty = 1/k /274 (4.13)

the existence of a highest possible temperature [15, 34].

The result that the singularity of the Laplace transformed level density, i.e. of the
partition function Z(f, 1), determines the maximum temperature and hence the exponent
in the level density increase, is in fact very general [33]. We have just shown it for the
linear chain case [32], but it holds as well [35] for the full bootstrap equation (2.8) and
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even for the case [11] of a Pomeranchuk type volume parameter
B - NB, 4.14)

in the full bootstrap.
Let us briefly indicate here the corresponding results for the full bootstrap. From
(2.8) we find by Laplace transform

26, 1) = pB)+ 5 [N ~1-BZ(, D], 4.15)

This relation no longer yields the simple pole structure of (4.3); instead we have a square
root branch point singularity [33, 35] at

1
¢u) = 5 [2log2-1] = =

5 (4.16)

which now determines B;. The corresponding Yellin form becomes

2 N d pz (4)
-3 a@ ([ o

with expansion coefficients which satisfy [36]
k

—1
Civr = k+ l[kck Z ICle-{-x—l] > (4.18)

I=1
C, =1

and which asymptotically in k become [33]

z
C, ~ k™32 \/—°. (4.19)

The only difference between full bootstrap and linear chain thus lies in the presence of
the factor k~3/2 in (4.19) for the former. It leads to the asymptotic result

(P?) ~ WeMiTo (4.20)

with v = —3 for the full bootstrap, v = —3 for the linear chain. It is thus only on the
non-exponential level (for terms small of order W-1log W) that differences occur between
the two bootstrap forms (2.8) and (4.1).

In summary, we have as a result of the statistical bootstrap approach a level density
increasing linearly exponential in fireball mass, i.e., much stronger than in the case of
level densities from conventional phase space. The resulting bootstrap multiplicity increases
linearly with N

N ~ W/w, 4.21)
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while average energy w per secondary approaches the constant value

W, = 0 log (P(BH) 2 ‘m Fo(’"ﬂy) 4.22)
5/311 ﬁu K(mBy)

as W — . An increase of fireball mass just leads to more secondaries, not faster ones.
Before studying possible dynamical schemes leading to such a behaviour, let us briefly
return to the Pomeranchuk model [4]. It had there been suggested that the concept
of a free gas should be applicable only once all constituents are separated by distances
equal to a greater than the range of hadronic forces, leading to an interaction volume

V = NV,, as in (2.5). The resulting level density

N N

@mNVy)Y &*p )
2y = = — 2 5@® —P )
(P?) N 0 D (4.23)
N 1 1
can be written
o(P?) = g C 2meVy)" f l l 5 p : 5“"’( E p,-~—P> (4.29)
plO

with

cos L(NY __ 1 4.25
“=Ni\e) T “2)

From (4.17)/(4.19) we see that this in fact is essentially the solution of the full bootstrap
equation. Hence we may consider a thermodynamic picture of hadronic matter, expanding
until with ¥V = NV, it has reached a free gas stage, as an alternative road to the fireball
description derived above from the bootstrap requirement.

5. Geometrized resonance structure and exponential level degeneracy

In this section we want to investigate further the question of what form of dynamics
can lead to a level density increasing linearly exponential in fireball mass [37]. We have
already seen in Section 3 that a gas without mutual interaction between the constituents
cannot provide such behaviour. To see what has to be changed, consider a world of identical
one-dimensional particles capable of taking on discrete energies.

g=n; n=01,..; i=12,..,N. 5.1

The total number of all allowed N particle states at a given over-all energy M then is

wo-SH[I ST en] e
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with A denoting a “volume” parameter. The invariant sub-energies or cluster masses
wi=Ygq; i=12_,N (5.3)

of course also have discrete values
w,=n;, n=01..; i=12,..,N. (5.9
Using (5.3), the level density d(M) becomes

ERDIPIDINE

wi=0 wz=w; WH - FWN -2
"wﬂ MN 1, \ \/7 o
= = |—[,2JMA—-1 5.5
> w=n~ N e VMD-1] 5.5)
N=2
which asymptotically gives with
d(M) ~ const M ™32 VM2 (5.6)

a from increasing exponentially in M!/2, Replacing the quantization of subenergies (5.4)
by one in squared subenergies in accord with the usual Regge description (for intercept
zero and slope x)

aw) =rkw?=n; n=0,1,..; i=1,..,N (5.7

yields in a similar fashion

M2 M2 M2

N=2 wi2=0 wyZ=w;? win-1=wiN-2
JK }
= Y112 VR M)—1] (5.8)
and hence with
d(M) ~ const M~ 3/2p2VrM (5.9)

a level degeneracy increasing linearly exponential in energy M. It is thus an equidistribution
over squared cluster energies, 5; = wf, as required by a Regge description of all sub-
systems, which leads to the desired level density.

Let us now extend these arguments to the real world of three space dimensions. Con-
sider a cascade decay of a hadronic cluster (¢f. Fig. 2); we introduce cluster variables

i

M;=\P}; P,=Yp; i=1,.,N (5.10)
I=1
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by iterating the relation

&3p, &2 43P K
PrePr_ amE o, (5.11)
2P10 2P20 2P, 2

where M and P denote rest mass and three-momentum of the compound system, while ©
and K describe orientation and magnitude of one of the two momenta in the compound
CMS. In terms of these variables the covariant momentum space integral ((3.14) with
v = 0) becomes

N
Qu(P?) = [ [] {dMd*Po(P} —~ M)O(P o)}6(Py — P), (5.12)
1

where the cluster masses are restricted by

Mi+m <M, S M—(N—k—1m,

k=12, N—-1, M;=m. (5.13)
- P
Py PN-1 P/N 2 ’jg /2
// // // s 7
s rd // // //
> i pd PAREN Vd VA
P Pyr Pn-2 P2 P
M My, My M, m

Fig. 2. Linear Chain Decay

From (5.12) we see that the Fermi model in fact assumes an equidistribution also in terms
of invariant cluster masses. We would like to replace this assumption by a picture of
resonances distributed according to Regge trajectories linear in s; = M}

af(s) = og+o's. (5.14)

It is clear that in comparison to an equidistribution in M; this will greatly increase the
number of states per unit mass interval. To obtain the resulting Regge space level density,
we write

()N

(M?) =

N=2

f H{ds d*P (P} —5)O(P;)}6™(Py—P) (5.15)

with &’ as in (5.14). The evaluation of (5.15)for large P? yields [37] (assuming for simplicity
zero mass secondaries)

(M?) ~ const M ™ %/%¢? VIm M (5.16)

giving us the expected linear exponential increase in M. It should be emphasized that the
agreement between fireball behaviour from bootstrap arguments (or a Pomeranchuk
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picture) and the level density of Regge space only holds if the trajectories are linear in s;
any other power would not lead to (5.16). We can therefore interpret the linearly expo-
nential increase of the level density as a statistical statement of hadron production through
resonance cascade with underlying Regge dynamics an in (5.14).

6. DRM features and statistical bootstrap results

The essential outcome of the statistical bootstrap approach is, as we have seen, the-
linearly exponential increase of the level degeneracy and the resulting asymptoticaily
bounded energy per emitted secondary. In the last section we showed the form of the
level degeneracy to be intimately connected with hadron production through intermediate
resonances. It is therefore natural to see if fireball behaviour can be found also in dynamical
models incorporating resonance production.

The most complete formulation of a dynamical description in this vein is the dual
resonance model [38, 39] (DRM), which combines low energy resonance production with
high energy Regge exchange in a crossing-symmetric fashion. The resulting N-particle
dual resonance amplitude [40] By provides a description rather similar to the cascade
decay discussed above: one can indeed expand the decay amplitude of a heavy resonance
as a sum over intermediate resonances, as in Fig. 2. One of the first properties to be establish-
ed for By in this context was the high degree of degeneracy (M) exhibited by heavy
resonances, and it was shown [41] that this increases with increasing resonance mass

8n? |
(M) ~ exp (\/Ta M> (6.1)

in precisely the same way as had been found previously in bootstrap considerations. We
have seen in the last section that this result is not so surprising: the number of states (6.1)
is necessary simply to accommodate all kinematically possible configurations, if we require
the additional (dynamical) condition of resonance distribution governed by linear Regge
trajectories.

The level density itself has, however, no direct predictive power in a dynamical theory.
We have defined statistical descriptions as those where the level density defines the decay
probability. In a dynamical description such as the DRM, one has an amplitude different
from zero for precisely all states counted in 7(M); the amplitude, however, will generally
not be constant over all these states, but attribute different weights to their importance
in the decay both by modulus and phase.

To make this role more transparent, consider the Regge space # = {s,, f),} in (5.15)
as the relevant momentum space for hadronic cluster decay. The statistical bootstrap
model then is a Fermi approach in this space: decay probabilities are compared simply
by comparing Z-space volumes. The DRM amplitude By is defined in precisely the same
space, but it varies both in magnitude and phase for different regions of #-space. Thus
the agreement in level density in the two approaches in no way implies that e.g. the decay
spectra should also be the same.
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There thus remains the question if it is possible to find fireball behaviour in a DRM
description. It can be shown [42] that to some extent this is indeed the case, although
the presence of selection rules and other inherent non-statistical effects can considerably
modify the resulting production properties. This problem will be treated in detail in a forth-
coming paper [43].

It is a pleasure to thank R. Hagedorn and I. Montvay for helpful discussions on the
statistical bootstrap approach. While completing the written version of this survey, the
early work of I. Ya. Pomeranchuk was brought to my attention by E. L. Feinberg. I would
like to thank him as well as M. I. Gorenstein, V. A. Miransky, V. P. Shelest and B. M.
Zinovjev for stimulating conversations on relevance and implications of this work.
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