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DUALITY AND REGGE ANALYSIS OF INCLUSIVE
REACTIONS. PART II*

By R. G. ROBERTS
Rutherford High Energy Laboratory, Chilton**
(Presented at the XIII Cracow School of Theoretical Physics, Zakopane, June 1-12, 1973)

Recent developments in triple Regge analysis of inclusive spectra are presented, with:
particular emphasis on application of the finite mass sum rules.

Triple-Regge behaviour and application to data

When discussing the fragmentation region (or single Regge region) we parametrised

the cross-section as
d*c - s _
f= T E Fy (t, A?) SO, »
dtd( )

M

where F, denotes the “blob”
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As far as phenomenology was concerned F, was treated just as a normal factorisable
residue function, no comment being made about its dependence on either ¢ or s/M?2. In
this case we had considered M? to be large; if we go to the particular region of fragmenta-
tion phase space where, in addition, s/M? is large then we can learn what the dependence
on s/{M? should be in this region.

* To speed up publication, proofs of this paper were read by K. Fiatkowski and A. Staruszkiewicz,
** Address: High Energy Physics Div., Rutherford High Energy Lab., Chilton, Didcot, Berkshire..
England.
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If we begin by assuming s/M? large and s > ¢ and keeping M? moderate then we have
essentially the near forward pseudo-two-body process a-+b — ¢+ X for which the appro-
priate graph is

corresponding to exchange of the leading Regge trajectories in the f-channel.
On squaring and summing over all states in X we obtain

summed over / and j

t

f = Z ﬂacé (t)ﬂ cé*sai(t)*‘q(n Im {Aib**jb(Mz’ t)} (2)
dtd ( )

The quantity 4,, , ;,(M?, t) is usually referred to as the forward Reggeon-particle scattering

amplitude; strictly speaking, it is the analytic continuation of the maximum helicity flip
amplitude in the centre-of-mass of the crossed channel bb—aa;. fi; is the coupling of

, 1
the vertex (aca;) and &(¢) is the signature factor (7, + e~ ™) x —= I'(l —«(t)) (this

N
normalisation we choose now, for use later on).

When we allow M2 to become large (but still keeping s/M? large) the asymptotic

behaviour of Ay, is controlled by exchange of Regge poles «,(0) which can couple
to bB and (x,«t’ij

Im {4, (M Lo} = B:ngj(t) (MO —aO a0, )]

(The — [o;+0a;] term in the exponent is connected to the fact that 4, ;, corresponds
to maximal helicity flip of the Reggeon legs.) Combining (2) and (3)

d’c M2\ =) =) i
MR = E Gl (T) sHO =1 4)
did <—*) T
S

where Gy(t) = ﬁfz?ﬁi?fi(t)i;(t)gfj(t ) Bis-
Expression (4) is called the triple-Regge formula since it describes the graph:
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Comparing with (1) we see that the fragmentation residue has been expanded as

M2 M2 @1 (0) ~ as(t) ~a;(t)
()= 2 o) v

i
and we can now see the necessity of — [o;—a;] term in (3) in order to ensure consistency
with the fact that F, has to be a function of the ratio M?/s.

Now let us turn to direct application of equation (4) to experimental data. Immediately
one problem arises, namely that it is very hard to have simultaneously both M? and s/M?
large (i. e. both == 5 say). As we shall see later on the insistence on large M2 can be relaxed
provided we have some reliable procedure for “averaging” the rather fluctuating behav-
iour in this region.

Let us consider cases where a;, ; are not Pomerons. Almost all triple-Regge analyses
proceed by taking M? above the resonance region and assuming then that the dominant
exchange in the bb channel is the Pomeron i. e. o, = 1. This is simply because most analyses
treat data only at one energy — or perhaps a small range in energy. By studying the M2
dependence one can then hope to extract a,(¢) and compare it with the intercept of the
trajectory allowed by the quantum numbers of the reaction.

Rather than attempt any kind of comprehensive survey of triple Regge phenomenology
let us briefly mention just one or two recent results.

The Rutherford-Saclay-Ecole Polytechnique Collaboration have looked at K—p — K°+ X
and K-p - A+ X at 14 GeV/c [1]. In this way they study the o, K* and nucleon exchanges.
Indeed the trajectories obtained from the M? dependence are not at all unreasonable.
Their actual choice for o(0) was below 1 which is reasonable since the missing mass is
not exotic but the qualitative agreement with the expected trajectory in each case was

good. The result for the nucleon trajectory obtained from K~ 3 A is especially interesting

when one compares with nucleon trajectory obtained from p 5 7+ whose intercept had
always turned to be embarrassingly low, around — 1.2. The difference for ay(?) in the two
cases has been suggested by Chan Hong-Mo to follow from the different kinematic situ-
ations. In one case a small negative value of ¢ is close to 7,,,, in the other relatively further
away. If we think of a multiperipheral mechanism, then close to 7, the detected particle
comes out at the top rung:

K~ A .

P
P

Such graphs are “true” contributions to the triple-Regge limit. However, in the second
case when ¢ is not close to #,;,, the nt would tend to come out lower down the ladder:
P P

ot



50

which is not a genuine contributor to the triple-Regge behaviour. This latter graph, since
it involves Pomeron exchange, could easily obscure the contribution from the graph with
genuine nucleon exchange and hence effectively lower the observed value of «f).

Another nice example is p %, A+ which has been measured at CERN at 8 and 16 GeV
[2]. For ¢ not very small we expect p-A4, exchange in the t-channel. Since the experiment
is done at two widely spaced energies, %,(0) can be determined rather than assumed
(2,(0) = 1 can be justified only in the case X exotic). Again one sees an effective a(z) which
is reasonably close to the expected ¢-4, trajectory with intercept }.
* Triple Regge analyses have been carried out for processes involving Pomeron exchange
but this topic is best dealt with after introducing the Finite Mass Sum Rules.

Finite Mass Sum Rules

In two-body scattering, the development of the ideas of duality began with the writing
down of the Finite Energy Sum Rules. In the last Section we have been discussing the form
of the amplitude for Reggeon-particle scattering and so it is natural to ask whether similar
sum rules can be stated in this case where the “dispersing variable” is the missing mass M2
rather than the incoming-energy s; hence the name finite mass sum rule (FMSR). Of
course we need to consider only one special case where the momentum transfer is zero;
since we are considering forward Reggeon-particle scattering. The procedure we follow
is that of Kwiecinski [3] and Einhorn ef a/. [4]. Again we begin by assuming s/M? large
and s » ¢ so that the inclusive cross-section is given by Eq. (2) represented by the graph
immediately before it. '

The next step is to write down the large M? behaviour of A4, ;, (M?, t) which
is Eq. (3).

To write a dispersion relation for Ay, ;, (M?, t) we need to know its analytic prop-
erties. The assumption has to be made that these are the same as for forward two-body
scattering. This is supported by analyses of the six-point function in dual resonance models.
As in the two-body case, we need to consider both the right- and left-hand cuts of A4, j,
(M?,¢). To do thisit is first convenient to define an anti-symmetric variable v (analogous
to s-u in the two-body case) given by v = py(p,—p.) = ¥(M?*—t—m?). Le. v > —v

as (a;+b > a;4+b) —» (d;+b - &+ b) or equivalently
as (@+b = c+X) > (¢c+b - a+X)

The absorptive part The absorptive part of this gives
of this gives the the left-hand cut
right-hand cut

The large v behaviour is of course given by the triple-Regge behaviour and we get, taking
contributions from left and right hand cuts

A, 1) = 3 Brgiy™ @7 OO gz 3, 4 o7 O T, (6)
k
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To write down the FMSR one then simply has to take a combination of amplitudes which
is guaranteed to be antisymmetric in v:

N
[ dw"{Im A(v, )+ (~ 1" Im A(—v, 1)} =
0

(0) ~ai—a;+n+1

Z ﬁﬁbgu(t) [1+( n+lTT Tk] (7)

k(O) o —0; +n+l

fdvv"[f(ab = X))+ (=D f(eh » aX)] =
0

a(0)—a;—ay+n+1

- Z SHUTIG (0 [T+ (= D" '] . (8)

4 (0)—o;—a;+n+1

ijk

If we take a combination which is symmetric in v i. e. symmetric under “‘s <> " for ab
scattering then the contribution from residues of the nonsense wrong signature fixed
poles has to be included:

N
§ aw'[flab > cX)+(=1)"f(cb - aX)] =
[¢]

= Z sutal {H("’(t)-i-G,}k(t) [1+(=D"r7] 9)

ijk

Nuk(O)—az,-—aj+n+l }

2 (0)—ot;—at; + n+ |

This is just the same as for two-body scattering. The fixed poles arise from the presence of
a non-zero third double-spectral function which is symmetric under “s < u”. In the
language of Veneziano 4pt functions, the terms V(s, 1), V(u, t) give the usual Regge pole
behaviour while ¥(s, u) gives rise to the fixed pole behaviour. However, if we can arrange
matters such that either s or u for the ab scattering is exotic then F(s, u) vanishes and hence
the fixed pole contribution vanishes for the resonant part of the amplitude.

The *‘odd” sum rule (8) is the analogue of the “good” FESR while (9) is the analogue
of the Schwarz sum rule.

Applications of FMSR

To try to estimate the triple Regge couplings by applying the triple Regge expression
(4) directly to data is difficult since its validity really requires both s/M? and M? large.
The low M? data can now be used to feed into the 1. h. s. of the FMSR and, with a suitable
cut-off N, the triple-Regge couplings obtained. N has to be chosen above the resonances —
say M? ~ 4 GeV? but the error obtained on the estimate of the couplings will naturally
be O(M?2_,; oe¢/s) which is not small for py,, < 25 GeVle.
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Next, what about duality for Reggeon-particle scattering ? The FMSR provide a method
for testing whether the Harari-Freund two-component duality holds for ab scattering.
According to the seven component duality scheme presented in the earlier lectures we saw
that for the case of a normal Reggeon for « (), the usual 2-component picture is expected
to hold up; i. e. resonances in the missing mass dual to Regge in the bb channel, non-reso-
nating background dual to the Pomeron. In fact we shall proceed assuming this to be the
case — the assumption being justified a posteriori. On the other hand we also saw pre-
viously that when «(z) is a Pomeron, the duality situation is controversial. Einhorn
et. al. [4] have suggested that for Pomeron-particle scattering the resonances are dual
to the Pomeron. Therefore we make no duality assumption for diffraction dissociation
but rather try to resolve the question by applying FMSR to the data.

Related to this is the controversy over the smallness or otherwise of the triple-Pomeron
coupling. Ther eare theoretical arguments for believing that when ¢ = 0, gppp(?) = 0. It has
been conjectured by many people that the triple-Pomeron vertex would therefore be small
even for ¢ # 0. This can be precisely tested by evaluating the FMSR for diffractive pro-
cesses.

Next consider the even moment sum rule (9). In ordinary two-body scattering the
fixed pole contributions have no physical interpretation and only tend to be a nuisance.
However, the fixed pole contributions to Reggeon-particle scattering have a direct physical
significance, first pointed out by Abarbanel [5]. Writing H{(1) = L&) Bl (t) R (1)
then RE‘})(t) is precisely the vertex for the cut generated by the exchange of «; and «;, ac-
cording to the Gribov calculus. The cut is generated by convoluting Rg’)(t) with itself:

b (RTATY b
a[ﬂ;]
b (R} b
Notice that since the momentum transfers for o; and a; are the same, we can calculate the
cut contribution only in the forward direction. At least, in principle, we can use data on
inclusive reactions and via the FMSR calculate the two-Reggeon contribution to a total
cross-section.
Essentially the only other prescription for calculating Regge-Regge cuts is the eikonal

procedure. In this model we have a sum over low mass resonances (including the incoming
particle itself) instead of the fixed pole contribution i. e.

b ——mme—— b
a’Ba}
b—=—=—0b

Even if the eikonal prescription is theoretically not well justified, almost all cut estimates
are, in one way or another, based on it. What is therefore interesting is to compare an
estimate based on the Gribov calculus with that based on the eikonal model. This amounts
to comparing, in Eq. (9) with n = 0, the size of Hi‘}” and the low mass integral on the . h. s.
which can be done using the n = 1 sum rule (8) to evaluate the Regge terms.
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A special form of a FMSR is one in which the leading Regge terms, for one reason
or another; are absent. This is called a superconvergent FMSR. The low mass integral
which is essentially a sum of resonance production reactions, is then equal to zero, thus
providing a relation between such quasi-two-body processes.

Let us consider some specific examples of applications of FMSR which we have been
discussing.

Superconvergent relations

To obtain a superconvergence relation one should arrange things to ensure exotic
quantum numbers in the bb channel and therefore, to leading order, the Regge terms
in the FMSR vanish.

Consider gn elastic scattering [6]; by taking the combination

A+ Ayers —2A s (10)

we guarantee pure I = 2 in the crossed (nr — pp) channel. For example, these amplitudes
could be extracted from inclusive data by looking at the natural parity exchange contri-
butions of

po AT, pod’ p 4. (11)
Using isospin to relate the ppd vertices, and taking n = 1 for the odd sum rule (8) we get
N
dM? (1 = nt nt
jv 5 {gf(p - 4" ) +f(p - 4°)~f(p - A+)} = 0. (12)

0

Next we take the resonance contributions only to the missing mass, the assumed reso-
nances in the on channel being =, w, 4,. Using isospin we can relate all to the reactions
ntp — (resonance)® A*+ and obtain finally:

d
- (7r Tp o 4T ) —(mo—t—m n) (ﬂ p—wd™ M)+

+(mj,—1 m,) (7: p— AT =0 (13)

(the o subscript is to remind that we are taking only the natural parity exchange contribu-
tion). Similarly one gets
do

d
—t —dt—e (n7p = 1%n)—(m2—t—m?) }%@ (n"p = wn)+

d
+(m2, —t—m?) ~di:(n_p — A%) = 0. (14)

Before attempting to find whether data support this relation, it is worth pointing out
the novelty of connecting reactions involving particles which belong to completely different
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SU(3) classifications. The *‘elastic’’ reaction is strongly damped at small ¢, hence we have
approximately

- (n” )~ D (g ) 15
~ —(z"p > wn) & - — - .
dt mj, dt P 3 PTen (13)

From density-matrix analysis of w production we know that natural parity exchange
accounts for about 60 9 of the reaction. Equation (15) predicts the natural parity contri-
bution to A production and when we compare this with the measured differential
cross-section we find the prediction accounts for about only 309%. Thus we note an

e w contrib. to superconvergence rule

o n® and A‘2 contributions

100 |

. 8t g

i i L 1

0.2 0.4 06 0.8
-t (GeV)?

Fig. 1. Experimental values of contributions to the superconvergence relation (14) evaluated from the data

example of a systematics which we shall understand later on; high mass resonances
are produced vig an increasing proportion of unnatural parity exchange.

Since density matrix elements for A2 have not been measured we have to do a little
juggling before testing equation (14). We have o._.+¢._. for A7 production and using
factorisation we can write

d
e (27p - 7°n)

do, _ do,, _ _ o dt

— (TP > A3n) = — P~ A:p) 7 . (16)
Cof , - -
r (n"p-np)

This last quantity involves using a model for nN scattering (we used Barger and Phillips
S pole fit). At last we can test equation (14), the results being shown in Fig. 1 for py,, ~ 7 GeV.
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Regge-Regge cuts

When the exchange channel in a reaction is exotic e. g. I, = 2, the only contributions
are those from cuts and so it is interesting to calculate the Regge-Regge cut in such a case.

If we go back to our superconvergent relation (12) but re-write it for the n = 0 even
moment sum-rule instead then we obtain

s dae( _ on) do;_,( _ o)+ do*,_,( _ A%n)
— - n)y— — - — - ==
2 a TP ar T PT® i P 2

= O ED (B Ry (D), (an
where szz(t) is the fixed pole contribution with isospin 2 in the nn or go channel. In
fact using equation (14), the odd sum rule, we can write the R in terms of just the z° and
 production cross-sections
do do
(mi—ml) — (" p - 7°n)—(mi—m}) —d-l—" (z"p - on)

d
[B%+ 0] : —

do
(mi—1~m2) — (z"p - n°n)

dt

Ry i1 =

s

18)
The eikonal prescription in which all resonances in the intermediate state are inserted
would be identical to (18). If only the elastic i. e. n° states are included, i. e. the Born term
is just
- T
By () = 5 [Biew]® (19)

convolution of (18), (19) gives

Insertion of the experimental resonance production cross-sections gives a value for
the cut in the Gribov case to be roughly half that for n° eikonal prescription.

The most interesting cuts to try to estimate are those involving Pomeron-exchange.
Later on we shall outline some of the problems involved in attempting to calculate the
P—P cut, when we discuss Pomeron-particle scattering.

Semi-local duality for Reggeon-particle scattering

We are, one by one, generalising features of duality for two-body scattering to the case
of Reggeon-particle scattering. The next concept we carry over is that of semi-local
duality [7]. If we write FESR for the resonance part of the two-body scattering amplitude

Na+n+l
j'lmfmas(" Ydv = Z ﬁ()a+n+1 (20)
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then we assume that resonance fluctuations in Im fggg (v, £) average out over relatively
small energy intervals i. e.

Natnt1N=N2
jlmfREs(v H'dv = [Z B a+n+1] (21)

Im fogs(v, 0> = Im fregoe(v, D). (22)

or

This can be seen from a plot of Im 4 (v, 0) [7] for nN as a function of v where the contri-
butions from various resonances fluctuate strongly but the amplitude is given in the mean
by the smooth p Regge pole term.

Perhaps the most striking demonstration of semi-local duality was when Dolen,
Horn and Schmid [7] demonstrated the additive contributions of just two or three
resonances to {Im vB“) (v, t) dt could easily produce the famous W. S. zero at
a(t) = 0 at t = —0.5 characteristic of ¢ exchange.

In the case of inclusive reactions we are looking only at the forward scattering of
Reggeon-particle. If semi-local duality holds in this case then we can expect the leading
Regge exchange in the bb channel to interpolate the resonances in the missing mass in an
average sense; i. e. if no fixed poles are present

d
<-£ (a+b - c+ Resonances)> ~ (vggs)™ V20, (23)

From our experience in the case of two-body scattering the averaging is to be done over
a range of about 1 GeV? in M2. For the quasi-two body reaction

a c
iac(t)
b

(23) tells how the cross-section, at fixed s and z, varies with the mass of the produced
resonance. We essentially have a four-point function where in addition to knowing the
dependence on s and ¢, we know the dependence on the mass of one of the external legs.

In the situations we shall now coansider we shall assume the validity of two-component
duality, i. e. resonances in missing mass are dual to the leading Regge exchange (meson,
with «, = }) and background dual to Pomeron (g, = 1). So we can write

N

do
f dn i (a4 b > o+ Res) ~ (OO N0 24

0

In particular if there are no fixed poles present

d
<d—(: (a+b—c+ Res)> ~ (vgs)? T2, 25)
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This use of Harari-Freund duality greatly reduces the number of triple-Regge terms since
we need never consider Pomeron exchange in the bb channel. Also since we are isolating
one trajectory a(t), the number of terms is reduced. In fact we need not consider inter-
ference terms since always we look at exchange degenerate pairs like #—B or w—f.
Looking at resonance production cross-sections offers several advantages. Very often
there is no data on the general inclusive reaction e. g. n-p — n+anything but there is

Kp—xn X =Kkik"
d_O' 68
dtdv 10 GeV v:
4
pb/GeV 05<|tl< 15
400} / l
200 (a)
KQ Kll
5 10 . 15 v
{GeV?)
VI.GO
do
dtdv i
ub/GeV?
4L00F — 1
{b)
200}
b of K“
»
i 1

5 1.0 v
(Gev?)

Fig. 2. Experimental v" (do,/dt) (Kp — (K*, K**)n) at 10 GeV/c for 0.05 < 7| < 0.15 compared with
the m-exchange Regge contribution. @)z =0, (b)n = 1

excellent data on the quasi-two-body reactions e. g. 7°p — gn or fn or gn. Again for the
FMSR to be valid, s must be much larger than M2 and since M2 is in the resonance region
this is automatically guaranteed, even if s is not too large.

Incidentally we are assuming everywhere that we really have genuine Regge pole-
-particle scattering. The FMSR are of course not valid if cuts were also important in the
t-channel. To avoid such problems we try to choose examples where such cuts are thought
to be rather small. For many cases there is evidence that poles are dominating the ac
channel from measurements of the decay density-matrix elements.
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(i) m-exchange

To test the above formula we should isolate a particular exchange trajectory «(t). For
the reactions

n7p — (% £, g)n, (26a)
K7p - (K*°, K**)n, (26b)

np—» X x° po,fo'go

66
11 Gev ve
OL<Iti< .16

1000}
do
dtdv /1 l

ub/Gev* — l -+
S00¢ 1 — {a)
o f g
+ I 'S .
5 1.0 15 v
{GeV?)
vl.sﬁ
dao
vdﬁv
1b/Gev?
1500 - ,
1000+
(b)
—
500+ |
I { g
Y v ' .
5 10 15 viGev?)

Fig. 3. Experimental v™(do/dt) Gx— — (°,f°, £%)n) at 11 GeV/c for 0.04 < |t| < 0.16 compared with the
m-exchange Regge contribution. (@) n =0, (b) n =1

the small t-region is known to be dominated by n-exchange, (energy dependence, big gq0)-
For (26a) we are studying n*n~ scattering and for (26b) ntK~, in either case the u-channel
for the Reggeon-particle scattering is exotic, hence no fixed poles enter since we are looking
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only at s-channel resonances. So we may consider n = 0 as well as n =1 in

do

<V'|'{Es ar (n (K" )p - Xgesn)> = f(0)s3 0 (vgpg)F 2O, (27

The experimental data for the 1. h.s. for both reactions and for » = 0,1 compared
with the v behaviour given by r. h.s. of (27) are shown in Fig. 2 and Fig. 3.

(if) Natural parity exchange
We may consider f—w exchange in the ¢-channel for the reactions

np—(nT, e, A, Az, 80P,

Kp—(K,K*,Q0 ,K** )p. (28)
To isolate the isospin zero exchange, the correct combinations with the charge-exchange
reactions were formed. -Estimates for the non-diffractive O~ cross-section used the observed
cross-over in @, Q production. In contrast to the previous case, neither the s nor u channel
for the Reggeon-particle scattering is exotic, as only # = 1 can be compared.

The only essential difference between (i) and (i) is the value of the intercept of the
particular trajectory — this makes the crucial difference when we come to consider

(iiiy Ratio of unnaturail/natural parity exchange

In (i) we had n— 8B (unnatural parity) exchange, while in (i) we had f—w (natural
parity) exchange. Consequently from (24) we get the ratio

‘<v b (k) > X°n]>

dt -
) ~ (Véﬁs)za!’w(') 2an,B(t) MZ_ (29)

dos,  _ __ _
<v—€; [n(K™) - X p}>

In other words, the cross-section, at fixed s and ¢, should show the unnatural parity contri-
bution rapidly increasing with respect to the natural parity contribution as the mass of
the produced resonance increases. This is the explanation behind the strong decreasing
proportion of p-exchange in going from n~p — wn to n~p — A3n that we saw in the
Section on superconvergent relations. In fact we can see how it drops from almost 709
to ~ 409, since semi-local duality predicts

2

O'unat(TC p - AZn) mAz o-unat(n p - a)n) _
- 0 — -
onm(n p— A2n) mg, O'nat(’lr p— (I)l’l)

3x 3 = 1.5. (30)

[ZRINFRN T
|

Hence only about % of AY production should be vig g-exchange.
We can directly test the prediction (30) by plotting the L. h. s. as a function of v, both
for 7~ and K- induced reactions. In Fig. 4 we show the situation for 8 GeV/c n—p reaction,
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the first bin is the ratio

do,  _
o

the second bin is

the third bin is

%n) do"r(n'~ n p)+ daw(n_ - 07 p)
R ol N do,
P20 dt P P i P20 P
9% (wp — o) |22 (2~p — A5p)
—_— - —_ -
dt T p n dt T p 2P)s

dc’( B °n) da"’( B P
—(np—gn)— - .
at p—g at Tp>gpP

Fig. 5 shows the similar plot for K—p reaction at 10 GeV/c, where again the ratio
unnatural/natural exchange is seen to increase with v with a rate consistent with Vies

5t n X°n
R(v) = "i“—(—-’i-"—_.—)
vaf‘w(n p >X"p)
LF
3t
Riv) . i
2t
-
1+
by P tA, g
| 2 [ 25 2N ¥
0 05 1.0 15 viGevd

Fig. 4. Ratio of 7/f- exchange to the reaction 7~N — XN at 8 GeV/c for 0.05 < |¢| < 0.25

on (K'p =X°n)

Riv)} = ———rmr 10 GeV
¢ w{K'p+X"p)
1.0r
R{v) J
St I

10 N (Gev?)

Fig. 5. Ratio of 7/f~w exchange to the reaction K"N — XN at 10 GeV/c for 0 <|t| < 0.2



61

(iv) Antishrinkage

We can express the ¢-dependence in Eq. (25) as

do ,
<—d—t~ (a+b— c+Res)> ~ e L2 108 VRES (€)Y

i. e. we obtain a logarithmic antishrinkage at the resonance mass increases. This means
that higher mass resonances are expected to be less peripherally produced:

low-mass
resonance

.
(2}
- -

/

high mass
resonance

P
t =-F -

~N

This means that if we calculate the ratio

d N\
(—".) (a+b — c+Res)
d‘ 1=tz

do
(—) {a+b — c+Res)
dt /o=y,

then R(vggs) should be increasing like vgee “*~*2. There is some evidence in favour of this
antishrinkage. In Fig. 6 the ratio R(vggs) is plotted for ¢t; = —0.2, ¢, = —0.6 for the
10 GeV K-p data, the two bins being K*-+ non diffractive X~ and K**- + non-diffrac-
tive . Similar results are obtained for the n~p reactions but now the f and w exchanges
must be separately treated.

Note that we are not discussing diffractive processes here. There is certainly anti-
shrinkage seen in such reactions whose behaviour is much stronger than logarithmic and
whose origin is far from obvious.

= R(vggs),

(v) Background

We can likewise write an expression analogous to (25) but for the background com-
ponent in missing mass i. e.

do non-resonating
- b ~ (M%)t =220, 32
<dt <a+ —et background )> (M%) (32)

In principle this equation could be used to separate the resonance and background compo-

nents in the large M? regions. It seems that (32) gives a behaviour consistent with the data
although any hard conclusions are difficult to make.
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Fig. 6. Ratio of f-w exchange contributions to the reaction X—p — X—p at 10 GeVjc at two values of r,
—2.0 and —0.6 compared with the f-w exchange Regge term

(vi) Baryon-exchange [8]

So far we have looked unly at meson exchange in the #-channel; we now turn to the
case where () is an anti-baryon and we can consider the duality properties of baryon-
-antibaryon annihilation. There is a well-known inconsistency in the case of meson reso-
nances formed by such annihilation for if we require the s-channel to correspond to
a quark-antiquark pair then the s-channel has to be exotic:

<

However, all the established meson-resonances lie below NN threshold and so the predic-
tion cannot be tested by direct annihilation experiment. The trick is to let anti-baryon be
a Reggeon — whose (mass)? is then negative — then mesons of any mass can be produced
in the direct channel. For example consider np — Pragiformara+ X~ Which is assumed
to proceed via A exchange in the w-channel:

sd26’
at dM?
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i. e. o Reggeised antibaryon-baryon scattering in the forward direction. Separating the
missing mass spectrum into resonance and non-resonating background, we expect from
the semi-local duality considerations of the previous Section:

do - 2 \a(0)~ 2aa(w)
EJ (n”p — p+(meson resonance)) ) ~ (Mggs) ,

do _ 2 N1 —2a4(0)
o (n”p — p+background) ) ~ (Mggs) , (33)

where o,(0) is the intercept of the trajectory to which the meson-resonances are dual.
The above reaction has been studied at 16 GeV/c where the resonances observed

were n, 07, Ay , A7, g~ and in the region u ~ —0.2 where we expect o, =~ 0. The experi-

mentalists carried out a resonance-background separation so one can check both parts of

06L FESONANCES -~
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\;\
s
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o
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™
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a2+
- 4 4
oLy ¢ ; N 2 i ? L
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Fig. 7. Resonance and background cross-sections for zp — pX~ at 16 GeV/e. The resonance curve cor-
responds to %g{0) = —0.5 while the background requires @g(0) = l.u = —0.2

Eq. (39). Fig. 7 shows the M? distribution for each part. The background in fact looks
linear in M? — which is consistent with (33) when o, = 0. Actually we would expect,
on the duality argument basis, some background contribution from meson exchange
corresponding to exotic resonance in the missing mass channel. This could well be present
since our phenomenology will not be very sensitive to such a contribution.

The resonance cross-sections are divided into three bins corresponding to (n~, ¢7),
(A7, A7), g. The striking feature is the fall of the resonance cross-section with M2, re-
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membering that a normal Regge intercept of ~ 4 would give a rise with M2, In fact a fit
with (M?)™® gives #,(0) = —0.5+0.3. So the analysis seems to give support to the duality
diagram suggestion of meson-resonances in baryon-antibaryon scattering being dual
to exotic exchange.

These systematics are given further support by looking at

Kp~— A+X° where XgEs = 7°, n°, QO, o, f, Ag (34)
and
np > A+X°% where XQps = K°, K*°, K**° (35

which are proportional to Pp and Y *p forward scattering. A similar analysis to that above
on data around 4.5 GeV gives ¢,(0) = —1.4 and —0.8.
We can also look at baryon-exchange but for baryon resonance production e. g.

n L8
aynfu)
K™ AzY*

In this case we have Reggeised baryon-meson scattering and so expect “‘normal” duality,
i. e. 0 (0) = %, which is consistent with the available data. On the other hand the same
reaction proceeds in the forward direction via K* exchange:

K-\Z/ L
S
n =7 AZ Yt

with again a,(0) = }. Therefore if we compare the reaction in the forward and backward
directions we expect

do f d

—— forwar

dt

(G vetoma)
— backward
dt

The data, even if it is rather sparse at 3 — 5 GeV, does tend to confirm this behaviour.

One of the nice features of studying Reggeon-particle is that one is not always tied
down to a nucleon “target”. For example, when studying n-exchange we were considering
meson-meson forward scattering. If we wish to make further tests of duality diagrams
we could study reactions (34) and (35) but instead in the forward direction. In one case,
(34), we would have K* —K scattering and in the other, (35), K* —n scattering. The meson
resonances in the first case would be dual to the ¢—f trajectory (o, (0) ~ 0) and in the
second case to the ¢ —f trajectory. Data are not too good on these reactions, the energies
being rather low. However, there does seem to be some indication for an (M2)?* difference
in the two cases although the actual values of «; in both cases are low.

~ (MZ)Zaxar—ZzN ~ M2.
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Semi-local factorisation

In the entire fragmentation region a % ¢ we have exchange of Regge poles ,(0) in the

bb channel i. e.
s d26‘ < c
3 = a Q
dtdM oy
b b

As we saw very early on there is very good evidence to support the idea that both exchange
of Pomeron and secondary trajectories factorise. If this is true not only when M? is
large but also down to the resonance region of M? then we obtain strong relations connect-
ing various resonance production processes. This is another consequence of duality being
valid in the semilocal sense.

Still assuming the Harari-Freund view of duality we need consider just meson exchange
in the b channel and then the relations become particularly simple. For example, let us
consider the two charge-exchange reactions

(@np—->Xn (Gb)yp—-X'n (36)
The resonances in the first case are
XO = (71:0, 'I)» (903 CO), (fs AZ)a gO,
Xt =n", 0% 45, 8%

and in the second case

The brackets indicate that resonances inside should be taken together in the semi-local
averaging. In the first case we have

n n = = F M? M? 1
f'é’ f(p - n) - f [ —S_ }’fnn+Fq L, ’_'s‘— ?qnn ?/?
L w

and in the second case

. n ) M? M? 1
£,4, flp->n=1F,; b )Vt Fa B ) Vaany N

& o

Using the usual exchange-degeneracy arguments, the ratio of the two cross-sections be-
comes 2Yyrnn/(Vyyy+Va50y) = ¥, 84y, i e. we get the prediction

7p o (% mn _ 77p— (e 7p > (f, ADn
yp->ntn  yp-se'n  p-d4Ain

(37

We can go one step further and get even stronger relations, by once more considering
semi-local duality for Reggeon-particle scattering. We write down the n = 1 odd sum rule
for the n-exchange cross-sections. In the m induced process only the resonances @°, f, g°
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are selected and we have only the even signatured f exchange in the nxm or yy channel.
We then obtain:

do  _ 0 do _
v—(@po>on) v—(@p->f

dt _ dt _ 2Y frn (38)
v E(vp —eo'n) v iﬁ(vp S Afn)

dt dt

Data for the photoproduction reactions are very poor and only limited tests can be
made of (38). Within the rather large errors the data does agree with the claims made.
Of course, we can also connect = and K induced resonance production reactions in an
exactly similar way, but the novelty is missing in this case since such reactions are connected
anyway by SU(3). In the above relations only a higher symmetry model e. g. quark model
could connect the photon and pion induced processes.

In fact one can in principle relate the production of meson resonances with that of
baryon resonances — we shall meet such an example in the next section.

Pomeron-particle scattering

This is perhaps the area where there is most interest in triple-Regge couplings. Conse-
quently several attempts have been made to extract the values of the couplings and make
rather strong statements about duality for Pomeron-particle scattering. In particular,
attention has been centred around the relative importance of the PPP (triple Pomeron)
and PPM terms.

The full expression for the triple-Regge formula for the case ¢ = ¢ is

d’c

3 M? M\ 1 39
Tz) =fa (t, T) +fu (t: T) \/_E ) (39
dtd | —

N

where
M2 M2 1-2ap(t) M2 1—2ap(t)
fo <t, T) = Gppp(?) (T) + Gagaep(1) <T> (40)
and
MZ 'M2 %= 2ap(t) M2 4 2anm (1)
Ju (t, T) = Gpr() (—;) + Guupan() (T) . 1)
If we take t to be, say, —0.25 then the shapes are those shown in Fig. 8.
So the small M?/s region (< 0.1) is described by PPP and PPM (i. e. diffraction) and
the larger M?/s region by MMP and MMM. This means that at relatively low energies

(< 30 GeV), it is the low M? region which is described by the PPP and PPM, and it is this
same region which shows the lumpy behaviour due to resonances. A good way of ‘“‘smooth-
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Fig. 8. Cross-sections for #p — pX at 16 and 40 GeV/c. The contributions from the four terms in the
Regge fit are shown. The PPP and MMP terms are energy independent; the PPM and MMM terms
behave as s~ %

ing” out these rapid fluctuations is to work with the finite mass sum rules. Take n = |
and a = c in (8); we get
N

) v\ /v d*c _ 1
Lit, N,s) = d|- |-} ——— = I,5(t, N)+1,(t, N)— (42)
s/ \s v NE
° dtd (—)
s
with
3 - 2ap(t) N3~ 2em(®)

I, 5(t, N) = Gppp(t G 1y — )

15 N) = Gorel) 35—+ Guawe T3, 3)
and

2.5~ 2ap(t) 2.5 2an(t)
I,(t, N) = Gpppy(t) ————— +G H— 44

4 1
N=2—,;, N<<-).
s 4

The shape of the mass spectrum say for pp — p at energies below 30 GeV looks typically
like
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i. e. “‘resonances” (N*(1400), (1520), (1690)) sitting on top of background. Early analyses
of such data attempted to separate the two contributions (“resonance” and background)
and then invoked the Harari-Freund duality for Pomeron-particle scattering to associate
each contribution with the PPM and PPP terms respectively. At small ¢ and for p,,, ~ 30
the ‘“‘resonance” contribution was apparently dominating — this was then taken as evi-
dence for the dominance of PPM over PPP at small #— which might be expected if the latter
actually vanished at f = 0.

In fact it turned out that data at fixed energies on pp — p and n~ p — p could be well
described by just two terms: PPM to describe the low M2 region and MMP to describe

40

w
o

dlg ,
dt dlv/s) (mb/GeV®)

Ld
[~

Fig. 9. Cross-sections for #p — pX at 11, 16, 40 GeV/c

the larger M2 region. (The fits only go up to M?/s ~ 0.25 to 0.30 since expansion is valid
only up to O(M?/s). On the other hand the data pp — p at pj,, >~ 30 GeV and np —» p
at Serpukhov could be equally well described by pure PPP and MMP.

Clearly, as can be seen from (39)—(41) or (42)—(44), the only reliable way of separating
the contributions from PPP and PPM is to look at the energy dependence at fixed
values of M?[s and ¢. Furthermore the separation can be clean only if the energy interval
is the widest possible. This, in turn, requires data at low energies (< 10 GeV) where low
M?[s means low M? i. e. resonance region. This means that the triple-Regge expression
itself should not be used for the analysis since it requires M2 > ~ 4 GeV? and so the
FMSR provide a way of using this low energy, low M? data together with the high energy
data to get a reliable estimate of the triple Regge-couplings.
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This was the method used by Chan et al. [9] when analysing 7—p — pX from pp,, ~ 8
to 40 GeV for t > —0.25. Using equation (42), I,(¢, N, 5) at each value of N was separated
into a scaling piece, /;, and non-scaling piece I,,. The v/s dependence of each was then
fitted according to equations (43) and (44). Thus one ended up with a reliable estimate of
the 4 triple-Regge couplings PPP, MMP, PPM, MMM. (No interference terms were in-
cluded.) These values can then be inserted into the triple-Regge expression (39), (40), (41)
and we can thus calculate f{¢, v/s, s) and its various moments. These are then expected to
represent the semi-local average over v of the actual measured values, at any energy.

From Figs 9, 10 one can, in fact, see that the Regge fit remarkably well describes,
in a semi-local average sense, the resonance region of the inclusive spectrum. This is
another example of the success of semi-local duality for Reggeon-particle scattering.

0 05 10
v/s

Fig. 10. First moments of cross-sections at 11, 16 and 40 GeV/c; histogram denotes @-contribution.
Dashed curves represent results of Regge fit; dotted curves represent contribution from meson-exchange
term only

Since we have not assumed Harari-Freund duality, the next thing to ask is whether
the Regge behaviour which, on average, describes these resonances is mainly PPP or PPM,
Looking at Fig. 9 we see very little energy dependence throughout the whole v/s region
(up to 0.25). This tells us that the important terms are PPP and MMP. In fact if we plot
the (PPM and MMM) contributions and compare with the resonance (n, ¢, A, A5) cross-
-section alone, as shown in Fig. 11 we see that up to M2 ~ 2.7 GeV2, the estimated resonance
contribution is equal to or more than twice the meson-exchange contribution. One may
therefore conclude that resonances which are diffractively produced are mostly dual to
Pomeron exchange. This abnormal component of duality is suggested by the scheme of
Einhorn et al. [4}].

Some cautious remarks are in order here:

1) The resonance-background separation is open to some question. These diffractive

resonances do not sit on a simple background and there may be large errors in the estimate
of resonance cross-section.
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2) The lumps in the missing mass 4,, A; are perhaps not really resonances. Our
conclusion may be turned around to say that this is further evidence against an interpre-
tation of genuine resonances.

3) The above analysis used n—p data up to s > 76. There now exists pp — p data at
s = 930 (ISR) which can be used with data at 24 GeV. A preliminary analysis suggests

.05 3 5

{mb/Gev?)
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drd{vis)

v
B

40 GeV
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—————— FITTED MESON
EXCHANGE

v 3 15

Fig. 11. Resonance contributions of the cross-sections at 11, 16 and 40 GeV/c obtained by the resonance-
-background separation described in text. Histogram is the pion contribution. Dashed curve is the me-
son-exchange contribution of the Regge fit

perhaps a decrease in the ratio PPP/PPM than that obtained above. Nevertheless the
fact that the ISR datais ~ 4 the cross-section at 24 GeV in the region M?/s < 0.7 rules out
dominance by the PPM term.

4) The above analysis was carried out for 0.17 < |r| < 0.34. The 4, has an anoma-
lously high slope in do/dt which meant that our conclusions about duality properties of
resonances were using only a fraction of the resonant cross-section. In fact our triple-
-Regge expressions cannot hope to describe, in average, such violent #-behaviour.
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Nevertheless the exercise nicely demonstrates the dual properties of the missing
mass spectra. We can furthermore ask what semi-local factorisation has to say in this case
of diffractive scattering. If we consider only small M?/s with assumed Pomeron exchange
only, we can relate the missing mass spectra of n~p — pX and pp — pX:

° Yop iR Vrp il 1
fp—p)=—fsp =P+ —fulp > P —=- 45
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Fig. 12. Cross-section for pp — pX at 24 GeV. Data is compared with the prediction obtained from the
fit to wp — pX using factorisation. Typical experimental errors are indicated

This is shown in Fig. 12.

If we just simply compare f(p 5 pP)/oror(pp) and f(p 5 p)/oror(np) over the M?
spectrum then we are directly comparing the two pieces of experimental data. Fig. 13 shows
this comparison and it is remarkable how local the agreement is between a meson reso-
nance and baryon resonance distribution.

Having discussed the odd-moment sum rule for Pomeron-particle scattering and its
consequences we now turn to the even moment sum rule and the possibility of calculating

Pomeron-Pomeron cuts.
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Take the Pomeron contribution of the inclusive cross-section at a fixed value of ¢,
Ap(t, v) which is got by extrapolating at fixed v or M? the s behaviour:

d*c
2a5(t)—1 2apm(t)— 1
§ ——— = Agu(t, v)s™*? + Ay (t, v)s . (46)
dtdM? ’
f v
N n¥(1520)
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Fig. 13. Cross-section for pp — pX at 24 GeV compared with that for 7 p — pX at 25 GeV

Note that this involves knowing the value of Pomeron trajectory at that value of . Then
the fixed pole contribution to Pomeron-proton scattering is given by

N
2—2ap(t) 14— 2ap(r)

deAy(ta v) = Gppp(?) 2_’“_2“—(0 + Gppu () i%jo;_(?) + Hpp(2). 47
0

Notice that the first term on the r. h. s. is oc N72*"/(—2apt) and so if the Pomeron were
very flat (&’ ~ 0), this term would be huge and would require a huge negative fixed pole
contribution to cancel it. The situation at £ = —0.25 as a function of ap is shown in Fig. 14.

So if the slope ap was taken to be 0.4 then the strength of the Pomeron-Pomeron cut
would be essentially zero. At a value of &’ ~ }, the magnitude of H is approximately the
same as the low mass integral (which is dominated by the elastic contribution) but of
opposite sign. However, the sign does not enter into the cut calculation since the con-
volution involves |Hpp(t)|2. In such a case the P—P cut strength would be the same in
either the Gribov or eikonal prescriptions. Anyhow it is somewhat distressing to see how
very sensitive the value of the fixed pole residue is to the value of the Pomeron slope.
However, if the triple-Regge analysis itself can estimate ap(¢) as well as the couplings then
we have some hope. The proton spectra at ISR show a diffraction peak at small M?/s —even
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at large ¢. This allows a fairly accurate determination of a#) at each to value and hence of
op. The resulting value seems to be close to %, i. e. giving rough equality between the two
cut prescriptions.

It is not enough to know H,(f) at one or two values of 7. To do the convolution
we must integrate over 7 so if the triple-Pomeron coupling does vanish at ¢ = 0 (we still
do not know this to be true) then this crucially affects the value of the PP cut.

We can use the results of the same analysis to extract the two-meson cut — in this
case (f, w)—(f, w) to pp scattering. Using

N 2-2an 13- 2apr
JdVAM(t, V) = Gyup —QT&M + Gpmm ES;M‘ + Hppn(1) (48)
o

we find that Hj,(#) and the Born term contribution (elastic scattering) to the low mass
integral are almost equal with the same sign and roughly half of the low-mass integral
itself see Fig. 15. Hence this implies the magnitudes of the Regge-Regge cut according to
the two prescriptions (Gribov vs. eikonal) are not very different, although analyses at
other, smaller values of ¢ should be carried out. Finally we should remark that we have
assumed only poles to be exchanged in the bb channel. Our procedure may be regarded
as the first step in an iterative calculation — the next step being the inclusion of the cut
calcuiated in the Ist step.
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