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The Pokorski-Satz and the Dorren-Rittenberg-Yaffe models for diffractive process
pp — pnot at 12 GeV/c are tested. The Dorren-Rittenberg-Yaffe model is tested with 0.0,
0.3, and 0.5 pomeron slopes. This model has only two free parameters (the overall normaliza-
tion constant and relative coupling constant) and gives a reasonably good agreement with
the data for the pomeron slope of 0.3 and 0.5. In particular, it gives the correct angular
distributions in the Gottfried-Jackson angle on the nz+ system. The distribution in
azimuthal angle @(nn*) in Gottfried-Jackson and helicity frames are not flat which means
that helicity is not conserved both neither in 7- nor in s-channels. The Pokorski-Satz model
also reasonably describes the data except for the angular distributions in the Gottfried-
-Jackson frame.

1. Introduction

After a successful application of dual models to the non-diffractive processes [1-3]
an attempt of incorporating the pomeron exchange into the dual framework has been
made by Pokorski and Satz [4] and by Satz and Schilling [5]. In the diffraction dissociation
vertex (¢f., Fig. 1a) one observes in general both direct and crossed channel exchange
effects [4], therefore the dual description of the upper vertex (Fig. la) seems to be very
natural. The Pokorski and Satz (PS) model has, however, serious difficulties with the high
energy double Regge limit. These difficulties became a starting point for Dorren, Ritten-
berg and Yaffe [6] who constructed another model of diffractive dissociation with a correct
double Regge high energy behaviour.

The aim of this paper is to compare the predictions of the two models for the invariant
mass, momentum transfer and angular distributions with the experimental data from
Bonn-Hamburg-Munich Collaboration for the diffractive process pp — pn n+ at 12 GeV.
The angular distributions are emphasized as they offer a sensitive test of production dy-
namics.
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In Chapter 2 we briefly discuss the two models, stressing the differences between them.
In particular the Dorren, Rittenberg and Yaffe (DRY) model describes better the angular
distributions in the Gottfried-Jackson frame of the nzn* system than the PS model. We
also find that the double Regge limit of the single Regge limit of the Bs function is identical
with the double Regge limit of the same Bs function, in contrast to the results of Ref. [6].

Chapter 3 contains theoretical predictions of the two models for the M(nn+) and M(pnt)
effective mass distributions, for the distributions of momentum transfer between the
target and recoil protons and of momentum transfer between the beam proton and
neutron.

The gross features of these distributions are reproduced by both models. Chapter
3 contains farther the discussion of angular distributions in cosine of the Gottfried-Jackson
angle cos @g; of the nat system. In particular these angular distributions give in the DRY
model a backward enhancement which is absent in the PS model.

The angular distributions in the azimuthal angle @(nn*) in the Gottfried-Jackson and
helicity frames are strongly influenced by the kinematical cut in s3z. In the DRY model the
angular distributions are not flat, even without the kinematical cut. This means that
helicity is not conserved neither in the s-channel nor in t-channel. In the PS model the
distribution in the @1y(nnt) is determined only by phase-space and is flat without the cut
in s35. The cut in 535 improves the agreement with the data around @ = 0 but the disagree-
ment around @ = 7 still remains.

To summarize, the DRY model gives distributions which reproduce the data quite
well if the pomeron slope is not zero.

2. Description of Pokorski-Satz and Dorren-Rittenberg-Yaffe models

The Pokorski-Satz model is based on an assumption of the factorization of the
amplitude into the lower vertex function e'/* ! taken from the asymptotic elastic scattering
and the upper vertex function V describing the process 14+p — 2+3 (our kinematics
explained in Fig. 1). Assuming the pomeron trajectory of zero slope and unit intercept,
Pokorski and Satz postulate the following form of the amplitude

M ~ ellzatlslAV. (2.1)

To incorporate the incident nucleon spin, they decompose the upper vertex function ¥
into the invariant spin amplitudes A(dq,, 0z3, ¢13) and B(oy,, 923, ®33), each of them
being the symmetrized four-body Veneziano amplitude

By(—ay3, —013)+By(—0y3, —a;3)+By(—ayp, —%y3). (2.2)

Here B, is the Euler beta function and a;; the Regge trajectory in {j, j} channel. The spins
of target and recoil nucleons 4 and B are ignored in the model.

It is obvious that the amplitude (2.1) has a correct high energy Regge behaviour
in s;,. Dorren et al. [6] noticed that the double Regge limit of amplitude (2.1) does not
coincide with its usual form. This is caused by the fact that the pomeron propagator



83

(s, = sy4) in Eq. (2.1) depends only on 5,4 and not on sz Similar comments are also
made in Refs [7, 8] wherc the factor s, is substituted by other effective factors.

On the other hand the Bardakgi-Ruegg-Virasoro [9] function has the correct single.
and double Regge limits {9, 10]. The idea of Dorren, Rittenberg and Yaffe was to write
down the single Regge limit of Bsfunction, which factorizes in this limit into a product of
terms describing the upper and lower vertices. Using the pomeron trajectory with arbitrary
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Fig. 1. a) Kinematics of the process pp — pna*. b) Graphs of the Ross and Yam model for the processes
pp — pnw*

slope, adding the lower vertex funciion (taken from asymptotic high energy scattering)
and symmetrizing the amplitude, Dorren et al. finally obtain the following expression

S14\7 .
M ~ &' (1—u,) (?M—) (1+e™ ™) x
0

1
s | dx[x™" =T (1—x)T 1 — (1= K)x[* +
0

xBTS T - K x T T () T T K — LX) (23)

Here s, = 1 GeV?, a,, is the pomeron trajectory and K = asp/a, 4 is kept fixed. This form
of amplitude is assumed to be valid for high energies s, .



The double Regge limit of Bs function [10, 11]is obtained in the limit 535, $,3, §;,—00,
keeping ¢ = 350,35/, 4 fixed. The amplitude M in Eq. (2.3) reduces to the same expression
as in Ref. [9] if 5,3 —» oo (for details see Appendix 1). In this point we disagree with
Ref. [6].

Comparing Eqs (2.1) and (2.2) with Eq. (2.3) one sees that both amplitudes are identical
if the terms with absolute values in Eq. (2.3) are equal to oné. However, all these factors
cannot be equal to unity at the same time. Therefore the PS model cannot be considered
as a special case of the DRY model. For instance the additional terms (those with absolute
values in Eq. (2.3)) change the residues of the daughters {10].

The difference of the two models can be illustrated e.g. in the angular distribu-
tion in the Gottfried-Jackson angle Og; of the {2, 3} system. The diffractive process
144 - 2+ 3+ B can be reproduced by the sum of the graphs (double diffractive dissocia-
tion diagram is neglected) which are shown in Fig. 1b. The contributions of individual
graphs A, B, and C to the total amplitude are proportional to

ELAB ELA® ELAB

5 , 5 and — 2.4)
m;—3S;3 mz—35;; ms;=—$;3

respectively [12]. These terms are identical in the high energy limit [13-14].

In the process pp — pn n~ we have m} = m? ~ 0 and the denominator in the second
term of Eq. (2.4) strongly depends on the cosine of @g;j in the rest frame of nzn* system.
As the first term in Eq. (2.4) does not depend on cos @ gy, the lab energy EX*® must compen-
sate this dependence on cos @, of the denominator in the second term of Eq. (2.4).

In the PS model all energies in the nominators are identical (s, , ~ EX*®) and do not
depend on cos @g;. This means that the strong dependence of denominator on cos @g;
in the second term is not compensated. Therefore we expect the PS model to give the
angular distribution in cos @ gy strongly peaked in the very forward direction as s, ~ 0
for cos@gy ~ 1.

On the other hand, the DRY model gives the correct form of all terms in Eq. (2.4)
and we expect an improvement in the angular distributions in cos@g; [15].

The above considerations are valid only for an amplitude with a flat pomeron and in
the high energy limit, but we expect that the difference in angular distributions as predicted
by the two models will be visible even at finite energies.

3. Application of the models to the process pp — pn nt at 12 GeV/c

For both {2, 3} and {1, 3} channels we consider only the non-degenerate baryon
trajectories N, and N, in the form

ay. = —0.445+4i0.16(s —5)0(s —s),

«

oy, = —0.8+5+i0.16(s— 5)0(s—3), (3.1)

Y

where s denotes the nN effective mass threshold.
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In the {1, 2} channel the 7 and the A4, trajectories can be exchanged. Since the 4,
trajectory is much weaker coupled to the NN vertex than the z trajectory, we suppose
that only the = trajectory

o, = —0.02+s (3.2)

can be exchanged in this channel. This simplifies the amplitudes in both models. Thus
the contribution from the B invariant amplitude in the PS model can be neglected [4]. As
we are not interested in polarization effects, we must sum over all final nucleon spin states
and average over all initial nucleon spin states. This adds the additional factors of |s,,|
to the absolute square of PS amplitude (2.1). This way of including spins in the upper
vertex cannot be applied in DRY model and the factor |s;,] in their amplitude is introduced
phenomenologically.

Taking into account only the exchange of two trajectories (3.1) the absolute square
of the PS amplitude can be written as

IM)? = ce®sI VI +AV | Is1a] . (3.3)
Here ¢ is a normalization constant and 4 the relative coupling of both amplitudes
v = By(3 —ag3, —012) £ By(3 —ap3, 3 —oy3)+ Ba(d —ay3, —ay;). (3.4)

The + (—) sign corresponds to the N (N,) trajectory and the § is added to obtain the
baryon resonances at the right places. Similarly under the same assumptions the absolute
square of DRY amplitude can be written as

’ " atr 1_e—¢'7ta'n . Sia apl2 N o
iM% = ce™|sy,] P rd-o't)) o W4+ AV ™|~ (3.5)
t 0

Here o’ means the pomeron slope, ¢ the normalization constant and 4 the relative coupling
of amplitudes corresponding to N, and N, exchange. With the help of the hypergeometric
functions ,F; [16], the following expressions for ¥V*(}~) can bz obtained from Eq. (2.3)

V* = By(} — a3, —a13),F (3 —az3, —,5 3 —03 =y, 1K)+
B — 3, 3 —033)2F (3 —a3, —o5 T =03 —oy3; K)+
+(1=K)27 37 B (3 —ouys, L+o,) Fi(l+oq,, 3 —ay3; 3 —oy3+a,; 1-K)+
+KTM2T B (— g5, 1 a,), F (=30, § +ay35 1=+, K). (3.6)

This form of amplitude is similar to that proposed in Ref. [17] and can be essentially
simplified for a flat pomeron. The expressions (3.3)-(3.6) have been used in numerical
calculations with a fixed parameter @ = 10 GeV~2 characterizing the slope of the diffrac-
tion peak.

The models are tested using the data from Ref. [18] for the process pp — pnn* at
12 GeV/c, where the following kinematical cuts have been made

0.02 < jt;] < 1.0 GeV?, 535 > 4 GeV?, £, > —0.8 GeV2. 3.7

We use the same kinematical cuts in our calculations and use the same Regge trajectories
for both models. All graphs are normalized to the same number of events as in experiment.
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The calculations have been performed using the Monte Carlo program FOWL [19] and
checked in a few points by direct integration.

There are only two free parameters in our formulation of the problem: the overall
normalization constant ¢ and the relative coupling constant 4 of the baryon trajectories N,
and N,. These parameters are fitted from the M(nznt) effective mass and cos @, angular
distributions in the mass interval (1.1-1.7) GeV at fixed value o’ of pomeron slope. In

TABLE 1
Fitted values of the relative coupling constant 4 in the two models at fixed values of pomeron slope &’

Model 1 o A
PS ' 0.0 1.770
DRY 0.0 0.079
DRY 0.3 0.065
DRY 0.5 0.055

Table I are shown all fitted values of the relative coupling constant A. The relatively small
values of 2in DRY amplitude are due to the fact that the term N, in the amplitude (3.5)
is of one order of magnitude greater than the N, term.

3a. The M(nn*) effective mass distribution

The effective mass distribution of the rieutron and the meson is shown in Fig. 2. Its shape is determined
by the trajectory in the diffractive chanrel {2, 3}, by the pomeron slope and is influenced by kinematical
cuts in s3p and f£,.
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Fig. 2. M(nn*) effective mass distribution of the nnt system In Fig. a the solid (dashed) curve
corresponds to the PS (DRY) model with a flat pomeron while in Fig. b the solid (dashed) curve
represents the DRY model predictions for 0.5 (0.3) pomeron slope

In the PS model (¢f. Fig. 2a) the curve shows two peaks corresponding to the main contributions from
the N, and N, trajectories. The peak at 1340 MeV is given by the first daughter of the N, trajectory at
J = 3/2 and by the Deck-type effect and the peak at 1500 MeV is caused by the J = 3/2 pole from the N,
trajectory. The dip at 1420 MeV is caused by a destructive interference between N, and N, amplitudes.

On the contrary, the DRY model predictions show a constructive interference between both amplitudes
resulting in a single peak at ~ 1400 MeV which decreases and moves to the higher mass values of M(nst)
with increasing pomeron slope. Small peaks in all DRY model predictions at 1680 MeV correspond to the
first Regge recurrence of N, trajectory and their values increase with pomeron slope.
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An increasing peak at 1260 MeV has its origin in the background terms of diffractive {2, 3} channel
of (3.5) amplitude (similar to the Deck effect). This is not significant in the case of a flat pomeron and arises
only at higher values of pomeron slope. It is seen that neither the PS nor the DRY models reproduce the
Mnnt) effective mass distribution well enough due to dips in the Roper region.

3b. M(pnt) effective mass distribution

The M(psr) effective mass distribution of the recoil proton and the & meson is shown in Fig. 3. It
is strongly influenced by the kinematical cut in s = M*(pw*) > 4. As the PS amplitude in Egs (3.3)-(3.4)
does not depend on s3p, the M(pzt) distribution is determined in this model by phase-space. The DRY
model predictions agree better with the data than the predictions of the PS model. Lower M(pn*) values
may be enhanced by increasing the pomeron slope. The best fit corresponds to the pomeron slope of 0.5.
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Fig. 3. M(pat) effective mass distribution of the pzt system

3c. Momentum transfer 7, distribution between target and recoil protons

Fig. 4 shows the momentum transfer #, distribution between the target and the recoil protons. The
curve corresponding to the PS model is too steep and does not reproduce the data well enough. The same
holds for the DRY curve corresponding to the value of pomeron slope 0.5. Generally, the higher is the
pomeron slope, the steeper is the momentum transfer distribution in #,. These results may be adjusted by
a slight change of the parameter a characterizing the diffraction peak. Its value was kept fixed throughout
our calculations.
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Fig. 4. Distribution of momentum transfer ¢, from the target proton to the recoil proton
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3d. Momentum transfer #; distribution between beam proton and neutron

The momentum transfer 7, distribution between the beam proton and neutron is presented in Fig. 5.
All curves feature an enhancement at small values of [f,]. The PS model deviates from the data at higher |t,|
values. The DRY model for the flatpomeron also deviates from the data but at small |t,]| values. However
increasing the pomeron slope impro ves the agreement with data. This indicates that in this model we should
perform our calculations with a non-flat pomeron. With increasing pomeron slope the peak at small |¢,]
values of momentum transfer ¢, distribution increases and the enhancement at higher |#,| values is depressed.
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Fig. 5. Distribution of momentum transfer z, from the beam proton to the neutron

11<M(nT J<1.3GeV IKMInT 1< 13 GeV
- F—pPS a'=0 i F—ORY a'-05
2 300 —=DRY a'=0 - L =~DRY o= 0.3
@ N (a) : ;
§
>
[
Gt
o
o‘ L L 4
Z 1 1 A 1 1 1 1 1 1 e 1 ’a 1 il 1 A
-1 7 -7 7
cosgy 61nT %) cos 855 (nT )
13< M(nIT) < 15 GeV 13<M(nT )< 15GeV
—P5 a'z0 —DRY a'= 05
60F —~DRY &'=0 1 60F ——pRY&:03 1
-
<
=3
z
g
>
2
i
]
=]
Z
10+ 1wt 4
PR o
-7 0 7 0 7
cos O3 (n*) cos 655 (nT )

Fig. 6. Angular distribution of the cosine of the Gottfried-Jackson angle cos @gjy(nzt) for 1.1 < M(nnt)
< 1.3 GeV and 1.3 < M(na*) < 1.5 GeV; a) solid (dashed) curve corresponds to the PS (DRY) model
for a flat pomeron for 1.1 < M{nnt) < 1.3 GeV; b) solid (dashed) curve corresponds to the DRY model
predictions with 0.5 (0.3) pomeron slope for 1.1 < M(nn*) < 1.3 GeV; ¢) solid (dashed) curve corresponds
to the PS (DRY) model for a flat pomeron for 1.3 < M(nznt) < 1.5 GeV; d) solid (dashed) curve cor-
responds to the DRY model predictions with 0.5 (0.3) pomeron slope for 1.3 < M(nn*) < 1.5 GeV
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3e. Distribution of the Gottfried-Jackson angle Ogj of the nn* system

The angular distribution of the cosine of the Gottfried-Jackson angle between beam proton and
neutron in the nwt system provides a sensitive test of production dynamics. The results from both models
are shown in Figs 6 and 7 for various effective M(nn*) mass intervals. They depend strongly on the intercept
of the trajectory in the diffractive {2, 3} channel and on the kinematical cuts. Generally, the PS model
gives a peak in the very forward direction without any significant enhancement in backward direction. The
DRY model on the contrary gives this backward enhancements in agreement with the data. The value
of this backward enhancement is influenced by the used kinematical cuts. The PS model predictions indicate
only a peak in the forward direction and this peaking does not depend on the kinematical cuts (mainly the
cut in 7). This disagrees with the unpublished Scandinavian data at 19 GeV/c [20], where no kinematical
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Fig. 7. Angular distribution of the cosine of the Gottfried-Jackson angle cos Ogj(n,n+) for 1.5 < M(nz*)

< 1.7 GeV and 1.1 < M(nn*) < 1.7 GeV; a) solid (dashed) curve corresponds to the PS (DRY) model

for a flat pomeron for 1.5 < M(nz*) < 1.7 GeV; b) solid (dashed) curve corresponds to the DRY model

predictions with 0.5 (0.3) pomeron slope for 1.5 < M(nat) < 1.7 GeV; ¢) solid (dashed) curve corresponds

to the PS (DRY) model for a flat pomeron for 1.1 < M(nnt) < 1.7 GeV; d) solid (dashed) curve corresponds
to the DRY model predictions with 0.5 (0.3) pomeron slope for 1.1 < M(nat) < 1.7 GeV

cut in 7, is made. The dips in the very forward direction in all distributions are caused by the kinematical
cut in s3p, while the very backward dips are due to the cut in ;. In the (1.1-1.3) GeV M(nn*) effective mass
interval the distributions predicted by the DRY model tend to increase with increasing pomeron slope.
The peaks in the forward direction increase with increasing pomeron slope in (1.3-1.5) GeV M{n=+) effective
mass interval but in the backward direction they decrease with increasing pomeron slope. For the effective
Mnat) mass from (1.5-1.7) GeV all the curves are peaked in the forward direction. In the PS model this
is independent of the kinematical cuts but in the DRY model (and apparently in the experimental data)
the role of kinematical cuts is crucial.
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Its is seen that the best curves are obtained from the DRY model with pomeron slope of 0.5. Independ-
ently of the kinematical cuts the predictions of these models in the very forward direction do not agree
with the data as in spite of kinematical cuts the data do not show pronounced dips at cos &gy ~ 1.

3f. Distribution in the Treiman-Yang angle @ry(nnt)

The Treiman-Yang angle @yy(nrt) is defined in Eq. (A2.2). Its distribution between the neutron and
the 7 meson is shown in Fig. 8 for invariant masses between (1.1-2.5 GeV). The experimental histogram
exhibits a considerable anisotropy which proves that the t-channel helicity is not conserved in this process
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Fig. 8. Distribution of the Treiman-Yang angle @ry(nz*) in the na* system for 1.1< M(na*) < 2.5 GeV;

a) solid and dotted curves are the predictions of the PS model with and without kinematical cuts, dashed

(dashed-dotted) curve corresponds to the DRY model for flat pomeron with (without) kinematical cuts;

b) solid (dashed) curve corresponds to the DRY model predictions with 0.5 (0.3) pomeron slope, dotted
curve is the prediction of DRY model for 0.5 pomeron slope without kinematical cuts

[21-22]. The DRY model predictions show an agreement with the data and this agreement improves with
increasing pomeron slope. Without a kinematical cut in s3p the PS model gives a completely flat distribution,

which corresponds to r-channel helicity conservation. The cut lowers the curve around @ = 0 but there
is still disagreement with the data around @ = +a.

Tr< e i I
1oor DRY =08 10 1oy .
90 ———DRY =0 90f ——-DRYa03] sor S0r
gob (@ sl b) 1 8o o GO
o Y
% 70+ ‘% 20k S m- % 70t
g 60} E 60+ % 60t E 60+
g 5ot g sof g 50t & 50t
s 4ok 5 40 5 of 5 sor
g - £ 30- 2 3} 2w |racmmi<is |
201 20l 20 ISR 20t |moRY 05 |
o+ ol ) —T-DRYaso ol |-—0Rva-03 |
o T BT T G <7060 08 ST 0 06 7
cos By cos Oy cos By cos By

Fig. 9. Distribution in the cos @yx(nz*) of the nzt system in the nz* helicity frame; a) solid (dashed) curve

corresponds to the PS (DRY) model for a flat pomeron for 1.1 < M(nn*) < 1.3 GeV; b) solid (dashed)

curve ccrresponds to the DRY model predictions with 0.5 (0.3) pomeron slope for 1.1 < M(nwt) < 1.3 GeV;

¢) solid (dashed) curve corresponds to the PS (DRY) model for a flat pomeron for 1.3 < M(nx*) < 1.5 GeV;

d) solid (dashed) curve corresponds to the DRY model predictions with 0.5 (0.3) pomeron slope for
1.3 < M(nnt) < 1.5 GeV
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3g. Distribution in helicity angle cos Oynn®)

The distribution in helicity angle cos @y is given in Figs 9 and 10, The helicity angle @y is defined in
A2.3). Unfortunately we have no data to check these predictions.
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Fig. 10. Distribution in the cos Og(nzrt) of the n* system in the nz* helicity frame: a) solid (dashed) curve

corresponds to the PS (DRY) model for a flat pomeron for 1.5 < M(nn*) < 1.7 GeV; b) solid (dashed)

curve corresponds to the DRY model predictions with 0.5 (0.3) pomeron slepe for 1.5 < M(nat) < 1.7 GeV;

¢) solid (dashed) curve corresponds to the PS (DRY) model for a flat pomeron for 1.1 < M(nz*) < 1.7 GeV;

d) solid (dashed) curve corresponds to the DRY meodel predictions with 0.5 (0.3) pomeron slope for
1.1 < M(nnt) < 1.7 GeV

We see that all distributions are cut at cos Oy ~ —0.6. This is caused by the kinematical cut in sip.
The PS model predicts in all M(nntt) effective mass intervals nearly the same shape, sharply peoked in the
backward direction at cos &g ~ —0.6. In the DRY model this peaking is flattened out at the lowest effective
mass interval. With increasing pomeron slope in the forward direction the values of distributions decrease.

3h. Distribution in @y(na*)

The predicted angular distributions in the azimuthal angle @Py(nzt) of the nzz* system in the helicity
frame (see (A2.4)) are presented in Fig. 11 for the M(nn*) effective mass from 1.1-1.7 GeV. All curves
show an anisotropy in @y(nzt) which means that both models predict helicity non-conservation in the
t-channel, too.
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A 7N R R S R TN
55”’ ?SH
Fig. 11. Distribution of the azimuthal angle @g(nzt) in the helicity frame for 1.1 < M(nn*) < 1.7 GeV,;
a) solid (dashed) curve corresponds to the PS (DRY) model for a flat pomeron; b) solid (dashed) curve
corresponds to the DRY model predictions with 0.5 (0.3) pomeron slope
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We do not possess any data to check the predictions. The unpublished Scandinavian data at 19 GeV/c
[20] show about the same shape as that predicted by both models. All curves are sharply peaked at @ = 0.
In the DRY model this peaking increases with increasing pomeron slopes.
d*c
dMdr,

In the diffractive process pp — pn n* the distribution on the Chew-Low plot may be fitted with the
formula

3i. The Chew-Low plot

dPo

— Meb(M)n 37
dMdr, f) ’ @7

where the slope 5(M) decreases from 20 GeV~-2 to 5 GeV~-2 in the Roper region of M(nn*). The PS model
gives a linear dependence of log d*o/dMdt; on t; when M(nn*) is fixed. This holds for both trajectories

5
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Fig. 12. a) slope b(M) dependence on M{nnt) for the PS model; b) log d%0/dMdt, dependence on momen-
tum-transfer-squared 1, at three fixed values of M(nw*) for the N, amplitude in the DRY model

N, and N,. Fig. 12a shows the M-dependence of b(M). However, only the N, trajectory in DRY model
gives the same linear dependence of log d?*0/dMdt, on t; at fixed M(nz*) values, while the N, trajectory

gives a linear behaviour at higher |¢,| values for all pomeron slopes and all effective masses M. At low
effective masses M (1.08 < M < 1.3 GeV) there is a dip at small |7, ! values (¢f. Fig. 12) which disappears
at M(nn*) = 1.3 GeV. Again there is a dip at M(nzx~) = 1.38 GeV and at small #,|, which vanishes with
the increase of M(nw7). At M(nzx*) = 1.38 GeV the N, amplitude has a pole (corresponding to the first
daughter). In this case the dependence is not exponential and

{d® {dcos O|M|? ~ DMtig(s,), (3.8)

where the polynomial g(z,) has aroot at ¢, & 0, which is outside of the physical region. The curves in Fig. 12b
show a characteristic behaviour of d?o/dMdt,|n, for various values of M(nr").

4. Conclusions

In this analysis, the Pokorski-Satz [4] and the Dorren-Rittenberg-Yaffe [6] models
were tested for the process pp — pn nt at 12 GeV/c. In both models two parameters were
varied: the overall normalization constant ¢, and the relative coupling constant A of the
baryon trajectories N, and N, . The gross features of most of the distributions predicted
by the two models are better described by the Dorren-Rittenberg-Yaffe model with non-
-zero pomeron slope than by the Pokorski-Satz model. Our conclusions can be summarized
as follows:
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A) The M(nnt) effective mass distribution, although reproduced in gross features,
is not described in detail neither by the PS model nor by the DRY model. Both models
give dips in the Roper region which are not observed in the experimental histogram.

B) The M(pn*) effective mass distribution given by the DRY model with higher
pomeron slopes agrees with the data quite well, while in the PS model, being given only
by the phase-space, the distribution does not reproduce the data.

C) The distribution in momentum transfer ¢; between the target proton and recoil
proton is reproduced by both models only in gross features. However, the slope parameter
which determines this distribution was not fitted in this analysis.

D) The momentum transfer ¢, distribution between the beam proton and the neutron
is well described by the DRY model with pomeron slope higher than 0.3. The PS model
gives too small values at higher |z,].

E) The angular distribution in the Gottfried-Jackson angle cos @ ,(nn*) can be con-
sidered as a sensitive test of both modé®s. In the higher M(nrnt) effective mass values the
PS model predicts only the enhancement in the forward direction independently of the
kinematical cuts. This is contradicted by the data e.g. in the (1.3~1.5) GeV M(nnt) effective
mass region. The DRY model predictions are the best for the pomeron slope of 0.5.

F) In the PS model the angular distribution in the Treiman-Yang angle &ry(nnt)
is determined only by phase-space and is flat without the cut in s35. This means that helicity
in t-channel is conserved in this model. The DRY model gives a non-flat distribution in
@1y(nmt) even without the cut in s35. Therefore helicily in s~channel is not conserved
in this model.

G) The distribution in the azimuthal angle ®y(nnt) in the helicity frame shows an
anisotropy in the two models (even without kinematical cuts), which means that the s-chan-
nel helicity is not conserved in both models.

H) The PS model predicts a decrease of the slope parameter (M) with increasing
M(nn*) effective mass. However, this decrease is too small in the region of small values
of effective mass. The explanation of this effect by the peripherality in the momentum
transfer between the beam proton and the neutron is not correct [25].

There remain some problems to be explained. Firstly, the inclusion of spins of all
the particles taking part in the interaction. This seems to be a difficult problem in the
dual multiparticle amplitudes. Secondly, the inclusion of the empirical Gribov-Morrison
rule AP = (—1)* [24] which is not respected in neither model because the exchanged
baryon Regge trajectories appear as parity doublets. Finally, it seems that the M(nn*)
effective mass enhancement in the Roper region still remains to be explained. In this
analysis we could not reproduce in detail the M(nnt) effective mass using the known
resonances on the N, and N, trajectories and the kinematical Deck effect in the framework
of the dual models. The resonances were too narrow to describe the low M(nn*) effective
mass enhancement in (1.2-1.65) GeV region.

The dynamical effect of the dip in the d%¢/dMdt, distribution at small |¢;| values
predicted by the Dorren-Rittenberg-Yaffe model is not confirmed by the present data.

We would like to thank Professor A. Bialas and Dr A. Kotanski for stimulating discus-
sions and for helpful criticism. We would also like to thank T. Jaroszewicz for useful discus-
sions.
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APPENDIX 1
Double Regge limit of DRY amplitude

We show here that the double Regge limit of the single Regge limit if the Bs function is identical with
the double Regge limit of the same Bs function.

The single Regge limit of the Bs function [9-11]is obtained by letting s, 4, 53p— o0 at fixed K=a;p/x, 4.
As in the double Regge limit 5,3 — 00 with §= — K&,; fixed and X' must then tend to 0. Substituting x =
= exp (z/«,) in the first and the third integrals in Eqs (2.3), expanding all exponentials containing K up to
the terms of the order O(a:z;‘) and putting K = &/a,3, the integrals become

oo
z £\
(““zs)‘““j‘dz e_zz_‘z‘l‘l(— - = ——) (Al.l1a)
X23 X23
1]
and
oo
z £\
(—“13)_ﬂ'2jd2 e—7 z—a2—1 <— + —) (Al.1b)
%13 13
0

respectively. The second integral in Eq. (2.3) vanishes due to the increasing imaginary part of «,5 when
523 — 00, Had we neglected K in Eq. (2.3) we should also have neglected the terms &/er,5 and /oy 3 in both
integrals (Al.1). Doing that we would receive the same result as in Ref. [6].

Making another substitution z = &u and noting that x,3x —a,5 when 5,3 - 00, the sum of both
integrals (Al.1) is equal to

. oy, \T12TP
(—1)*(1+e ™ (—ay,) (f) Py, 1 —ayatap; ), (AL.2)
where
oC
Y, 1 £ gz dxd ap—1 x 1,—~x—y—xy/& Al3
- —®y1ta%,; E) = sx—%p—ly—a12—1p—Xx—p—xp/§ i
(=212, 127%p; &) F("’“p)r(—“xz) xXayx Y € ( )

0
Then using Eqs (Al.2) and (Al.3), the double Regge limit of (2.3) is finally obtained

oo

_“pﬁ(tl) (l_i_e—imzp)(lfe—inalz) (@2 3)%12(at3 g)%» .U' dxdyx—ap—ly—alz-le—x—y—xy/é' (Al.4)
]

This is the same expression as for the double Regge limit of the Bs function, apart from the factor —apf(z,)
which was introduced phenomenologically into Eq. (2.3) in Ref. [6].

APPENDIX 2

Definition of polar and azimuthal angles in Gottfried-Jackson and helicity frames

The Treiman-Yang angle @1y(23) and the Gottfried-Jackson angle ©g)(23) are defined as follows

cos Ogy(23) = —fl——gﬁ- s (A2.1)
|p1l 12| ) 247 3=0

and

cos Pry(23) — Psxpi  PrxPe (A2.2)
‘BBXE;I; ‘BIXEZI P2+p3=0
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Gottfried — Jackson frame
zipy y W (Pg xpy)

Helicity frame

zW By syl (Bexp; )

Fig. 13. Gottfried-Jackson and helicity frames for the nz* system

In the helicity frame we have the polar angle

1—;8 ‘32
cos Oy(23) = {ﬁ—}_’ W s (A2.3)
|PB] P2l P2+p3=0
and the azimuthal angle
- x—o —- x -
cos Py(23) = { fﬂ fz : fB {l }_. . (A2.4)
Ipexp2| |pBx pil)pasps=0

All these formulae are written in the rest system of the 2 and 3 particles. The angles are illustrated in Fig. 13.
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