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ELECTRON-POSITRON ANNIHILATION: UNITARITY,
SCALING AND ELECTRODYNAMICS AT HIGH ENERGIES

By G. KARL*
University of Guelph, Canada, and CERN, Geneva
(Presented at the XIV Cracow School of Theoretical Physics, Zakopane, June 15-28, 1974)

Recent work on e*e~ annihilation by Cabibbo, Wolfenstein and the author is reviewed.
The restrictions of unitarity are analyzed and the connection between the cross sections oy
(into hadrons) and o, (into muons) is derived. The possibility of non-scaling in e*e~ an-
nihilation is studied and it is pointed out that it leads to no contradiction with presently
available information. It is further pointed out that non-scaling could provide a cut-off
mechanism for Quantum Electrodynamics.

Introduction

Recently, a great deal of attention has been focused on the large and roughly constant
cross section (g,) of the process:

ete~ — hadrons )
compared to the smaller, and falling cross section (c,) for the leptonic process
ete” — utur, (2)

It is found that o, agrees with the piediction based on Q.E.D. to leading order in a. (See
Eq. (4))

The large and constant cross section ¢, has caused surprise because of general expecta-
tions of “‘scaling behaviour” (o oc s71) in analogy with deep inelastic electron scattering.
The explanations offered find reasons for ““late” (or “‘senile”) scaling or introduce (ad-hoc)
new interactions which produce a constant cross section g,. Another logical possibility,
which is pursued here, is that the ee annihilation is electromagnetic, but it does not scale,
not even at high energies. In this case one has to explain why the photon propagator in
low energy experiments looks like s—1, and when and how will scaling be broken in electron
scattering experiments. Further, given the assumption of non-scaling for o, one can ask
about its general physical consequences: the main one appears to be that the hadrons
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provide a cut-off mechanism for quantum electrodynamics, thereby rendering all EM
mass differences finite.

We shall first discuss the constraints imposed by unitarity between o, and ¢, given
simple assumptions of minimal coupling and universality. We will then turn to study the
unitarity constraints on the photon propagator given the non scaling behaviour of o,
and construct various logical possibilities for the photon propagator, and focus on the
simplest possibility. ‘

To start with we discuss the main assumptions made throughout. Although the
assumptions are quite conservative, I shall try to spell them out in detail in order to avoid
confusion with other strategies that have been proposed. We shall conclude with a discussion
of the problems raised by the logical possibility described here, assuming it is true. The
notes describe work which has been carried out at CERN in the first half of this year,
in collaboration with Nicola Cabibbo and Lincoln Wolfenstein. Although the notes may
differ in details from the exact content of the preprints CERN TH-1858 and 1881, most
of the observations arose in the discussions preceding the writing of these two preprints,
The surviving mistakes however are probably my own.

A. Assumptions

We assume in the first place that ee annihilation is an electromagnetic process, i.e.
that it proceeds mainly through a single virtual photon intermediate state. We assume that
perturbation expansions (in e) remain valid at all energies, and so, two or three photon
annihilation is unimportant. We abstract then the main properties of the 1-photon anni-
hilation graphs in Q.E.D., but we contemplate the possibility of unitarity corrections to
one photon graphs. In an abstract form, we thus assume the following propezties for the
amplitudes (S matrix elements) .of processes (1) and €2):

1. Annihilation occurs from the J¥¢ = 1 state of ee (with opposite helicities of the
two leptons). This is a consequence of the “minimal” coupling of the leptons to the
phboton [$y,y], which prefers, at high energies, the lepton and antilepton to spin'in the
same direction. The student who wants to check this statement is advised to work out
Py, v for all choices of helicities of ¢ and !

2. Electron-muon universality, in the form that the amplitudes for process (2) and
for the.exclusive channels in (1) are invariant at high energies under the simultaneous
replacement (¢~ <> y—, et «> ut). Again this is an abstract statement of properties of single
photon annihilation graphs, in field theory.

3. When talking about S-matrix elements for processes involving charged particles,
we are commiting the sin of using very ill defined concepts. As is well known there are
many dificulties, connected with the preparation of wave packets, (spurious) divergences
due to soft photon emmision, etc. We sweep these under the carpet, with the statement
that these are taken care of (by others!) when making radiative coreections to the raw
experimental data. Most of the above can be summarized in the statement that we naively
use perturbation expansions in a for the coupling of leptons to the photon and restrict
attention to the leading term. The perturbation expansion can in principle fail at some
higher energies, but we assume that it never does.
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B. Consequences of unitarity

Why worry about unitarity? Unitarity is an expression of probability conser-
vation and, if process (1) becomes important, that fact is expressed by saying that its
probability becomes large. But because probabilities must add up to one, it necessarily
follows that in such a case the probability of the leptonic process (2) taking place must
be greatly modified from whatever its value is in the absence of hadronic processes (1).
This is a complicated way of saying that when hadronic production becomes important,
quantum electrodynamics for leptons has to suffer changes. We try below to express
quantitatively these rather vague considerations.

The Unitarity bound of Cabibbo and Gatto. The maximal value of any
probability is one and this is the simplest consequence of probability conservation. This
implies a bound for the cross section of any single inelastic channel or the sum of cross
sections for all inelastic channels, which go through a given total angular momentum
intermediate state. This bound was stated for ee annihilation by Cabibbo and Gatto,
who have shown that if the photon has J*¢ = 1-- then

) 3)

where ¢, is the cross section from unpolarized ete~ beams.

We want next to indicate that if the bound (3) is saturated, our assumption of feeble
lepton coupling to the photon no longer holds. To see this, remember that when the in-
elastic cross section reaches its maximal value (“black disc”, “complete absorption’)
the elastic cross section must equal the same value. Therefore, when g, = 37n/s ol '= 3n/s.
However, if perturbation theory were to hold, the J = 1 projection of the elastic cross
section (Bhabha Scattering) would be expected to be of order (¢?/s), and therefore we get
an indication that when (3) is saturated the photon couples to the leptons with coupling
(much larger than ¢) of order unity. Note that it is inconvenient to consider Bhabha
scattering in this connection since its partial wave projection diverges due to ¢ channel
photon exchange. It is much more convenient to consider for comparison purposes
the cross section o, of process (2) which, to leading order in a, has at high energies
(s> m?) the value:

4ro®
o) = ——- )

If we insist that the estimate (4) is roughly correct, then the electrons couple to the photon
with a coupling « (in the cross section) and we would naively expect that the cross section
of process (1) which also starts from an electron positron pair cannot saturate the bound (3)
but will be at most of order (a/s). These naive considerations are actually correct.
The unitarity of the S matrix with the additional assumption of muon electron univer-
sality allows the computation of the imaginary part of the amplitudes for the process (2)
arising from the cross section o, of the process (1). The argument is given in detail in pre-
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print TH-1813, and is only sketched here, as it is rather simple. Starting from the usual
unitarity equations:

S = 14T,
Sst = Sts =1, 5
T-Tt = iT'T = iTTH,

and sandwiching them between e*e— states of definite helicity (RL, say) and utu~ states
of the same helicity, in the forward direction, one can derive the equation:

ImT(RL—-RL,0=0)=1 Z KhiTeTe™ >)* = so(eTe™ — h; RL), (6)
)

which has the familiar form of the optical theorem. Here T{RL — RL, 8 = 0) is the
forward amplitude for process (2) with the helicity states specified, on the right hand
side we have the cross section of (1) starting from an electron-positron pair in the same
helicity state as on the left hand side. Only hadronic intermediate states have been included
in between T'and T'f, an approximation which is justified when the hadronic states dominate
the annihilation. Eq. (6) shows explicitly that by virtue of universality the annihilation into
muons can play the role of the elastic channel. Eq. (6) also makes clear that the cross sections
o, and o, are not entirely independent for if one makes o, very large, one generates a large
imaginary part for 7, and therefore o, must have a minimal value. To transform these
statements into a precise form, note the following equations:

o, = o,(unpolarized) = 4 a(e*e” — h; RL), @)
IT(RL - RL; 6 = 0)|* = 48rnso,(unpolarized) = 48nsc,. 8)

We can transform now Eq. (6) into a bound by squaring it and noting that

Im T2 < TP ©)
Substituting (7) and (8) into (9) we obtain:
12
ot <5, (10)

N

Comments:

1. Eq. (8) follows from the normalization of states, and the assumption of a J = 1
intermediate state. I have followed the normalization in the well known book by Pilkuhn.
2. In terms of the ratio R of the cross sections o, to ¢,, the bound (10) can be
reexpressed:
12n

6}.§_"
SR

(1n

3. A better bound can be obtained by including also the leptonic channels in between
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T and T7, it is

12n 12zR

< = . 12
%S 47" SR+2? (12
S R+4+ —I?

4. A concise derivation of the bound (12) is given in preprint TH-1881. An “easy”
derivation consists in neglecting ¢ channel photon exchange graphs when computing the
contribution of leptonic intermediate states in the unitarity equations (5). Then on the
right hand side of (6) we have so(ete~ — A; RL)+2sa(ete~ — ptu~; RL). This leads to
Eq. (12).

5. If we insist that the Born Approximation to o, (4) remains correct, (10) becomes:

4o
o < —, 13
s

in agreement with our naive expectations, spelled out after Eq. (4).

6. Numerically, the unitarity bound (3) would get saturated at values of s & 10° GeV?,
if the present cross section (=5 x 10~5 GeV~?) is maintained at higher energies, whereas
the bound (13) is saturated at s & 2x 10® GeV?, at which energy either ¢, would have
to change its value, or o, would deviate from (4), or both of these possibilities would
occur. In other words, the present value of the cross section o, if maintained up to
s~ 2x10® GeV2, would lead to unavoidable and important modifications of Quantum
Electrodynamics.

We have now expressed into a fairly precise form the general considerations mentioned
at the begining of this section, and we turn now to speculate on various possibilities for the
cross sections ¢y, ¢, at higher energies.

C. The photon propagator when scaling is broken

We found above that the unitarity relation between o, and ¢, can be written in the
form of a bound:

on S EE , (11
sR
where R is the ratio of o, to g,. R has the meaning of an equivalent number of leptons
which would give rise to a cross section equal to ;. In models in which the hadrons are
made out of “quarks™, or more precisely, the electromagnetic current of hadrons is due to
partons, R equals the sum of the squares of charges of all possible kinds of partons which
can be produced. If R is small o, = ¢ and we could have defined R in terms of o\,
however as we will contemplate large values of R, the muon cross section will deviate
from its Born value, and the natural definition of R is in terms of ¢, rather than ¢{»
since the muons continue to be point like. “Scaling” corresponds to a “‘small” value of R,
which is reached at some value s = s,, after which the cross section o, goes down like s-1.
“Non-scaling” corresponds to an indefinite increase of R with s. We would like to find
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the high energy behaviour of the photon propagator corresponding to various choices
for R. We shall give, to start with, rather general arguments about the behaviour of the
photon propagator and continue afterwards with a more detailed discussion. Let us assume
a power law behaviour:

R(s) = (ks)".
Then in virtue of our bound stated above

1 1

sitv? and 0, S sitav’

0, 5

Remembering the calculation of ¢, in terms of the photon propagator D(s), o, o s|D(s)|?,
we obtain the bound

1
D(s) < Sl—+‘v

These statements hold as s becomes large, along the physical cut s > 4u? > 0. By analyticity
they imply the behaviout of the photon propagator D(s) in the whole complex s-plane.
It now follows from Cauchy’s theorem that D(s) must have pole (s) in the physical sheet
with negative residue, to compensate the contribution of the pole at s = 0 and the physical
cut. The asymptotic behaviour is crucial to allow the neglect of the contribution of the
circle with infinite radius. This argument shows that the photon propagator must have poles
(or cuts) with wrong residue, on the physical sheet, if there is no scaling. 1 will now anticipate
the results of the next section and state the main logical possibilities. If one computes the
propagator D(s) to leading order in « then,

— for 0 <{v < 1 the pole is on negative s-axis (Landau-Pomeranchuk pole) and D(s)
needs to extra subtraction constant (compared to usual Q.E.D.),

— for 1 << v < 2 the pole can be in the complex s-plane (Lee-Wick pole) and one extra
subtraction constant is needed in D(s),

— for 2 < v < 3 the pole is again on negative s axis, etc.

The position of the pole is the place where the asymptotic behaviour s 7 takes
over from the behaviour s~! which is in the neighbourhood of the origin. If the pole is on
the negative s-axis, then, to start with, D(s) must increase between 0 > s > s, and after
§ < Spoie the s717" behaviour sets in. If the pole is in the complex plane with Re (syqe) > O
then D(s) must increase along 0 < s < Re (s,,) and then decrease like s '™ for
5 > Re (5p010)- In this case (Re sy, > 0) the propagator D(s) will decrease for s <0,
from its initial behaviour s~ near the origin. The range of s where the takeover from s—!
to s717” is (in all cases) determined by the position of the pole, which is the place where
the bound (11) is saturated ; from the derivation of the bound we know that the amplitude T,
and propagator D(s) are purely imaginary at that value of s.

The damping of the photon propagator has useful consequences, in that it is sufficient
to ensure the convergence of electrdmagnetic contributions to self-masses, and therefore
mass differences in hadronic isospin multiplets. It is this unexpected bonus, which makes



885

the possibility of “no scaling forever” (in a,) rather respectable. We spell out in the next
section, in more detail, the computation of the photon propagator D(s), starting from the
ansatz R(s) oc 5.

D. Unitarity corrections to the photon propagator

We find the unitarity corrections to the photon propagator, to leading order in «,.
by the round about way of computing corrections to the Born amplitudes, generated by
the optical theorem.

The Born Amplitude TH(RL, 6 = 0) is given by

TYRL, 6 = 0) = +8na, (14)

where note again that u is not a Lorentz index but a reminder that we are dealing with:
the amplitude for process (2). The amplitude (14) can be computed by the standard rules
of Q.E.D., but here we computed it from equations (8) and (4) which were assumed already
(that is the reason for =).

Now consider again the optical theorem, Eq. (6), and let us choose o, = o} (note
also that (6) is written for a polarized initial state, therefore make use of (7)). Then we
obtain:

8 2
Im T,RL; 6 = 0) = sc®(RL) = —’f;‘— (15)

1t is conventional to write the corrections to the photon propagator as a factor [1+11]-2,
hence:

1 Im I7*
ImT,=Im|T® — | = T® , 16

» m[ “lem| T ¢ ji+np (16y
where, as in (14), we assumed the Born amplitude to be real. Comparing equations (14),
(15) and (16) we see that, to leading order in «, we obtain:

« 2
ImH=§, s> my, an

where we chose the sign in (14) to obtain a positive imaginary part for II. As stated above
the correction factor is associated with the photon propagator, which is usually written
as follows

1
s(1+II(s)) "
The choice of signs is such as to ensure that the residue of the pole at s = 0 has the same
sign! as the discontinuity of II(s). I will now digress and discuss a little bit more the photon

propagator, to remind the reader of “well known” facts, which are known by the “experts™
but perhaps not by the general public.

D(s) = — (13)

! Y am indebted to Dr P. Grassberger (CERN) for help at this point. We want Im IT > 0 for s > 4m},
and Im D > 0, as well!
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We have computed Im II(s) corresponding to the contribution of muon pairs in ete-
collisions via unitarity. The real part of II(s) can be obtained via dispersion relations
from the imaginary part. Assuming (17) to hold all the way down to threshold: s = 4m2,
the function II(s) with discontinuity given by (17) is?

o s

The assumption is not quite correct, and the precise form of II(s) contains threshold
factors which become 1 as s> 4m>. As we are interested here only in the high energy
behaviour of IT(s) we keep (19) which is correct asymptotically. The function I1(s) is com-
puted in textbooks of relativistic quantum mechanics, (e.g. Bjorken and Drell, vol. I);
It corresponds to the graph in which a virtual photon dissociates into a virtual pair (bubble)
which recombines again into the photon. The calculation presented here corresponds to
an application of Cutkosky’s rules to this diagram, which is shorter and it emphasizes
the role of unitarity.

The function II(s) is called in Q.E.D. the photon proper self energy. One should
note that one generally requires that II(0) = 0 to guarantee that the residue of D(s) given
by (18) be unity at s = 0, which is a requirement of charge renormalization. The formula
(19) does not satisfy this requirement so we should subtract the value at zero s
II(s)~1II(0) = ..., but again we shall not worry about this point for several reasons, which
will become apparent later on. The main reason is that we will be interested in the high s
behaviour of D(s) rather than the value near s = 0; also our aim is to construct the propa-
gator corresponding to o,, which in the most interesting case will satisfy the requirement
II(0) = 0 automatically.

Before proceeding we wish to generalize formula (17) to the case in which o, is arbi-
trary. Let us again use R(s)

Op
R(S) = T
O,
where, o, is the actual cross section for reaction in process (2), which in terms of the
Born cross section is given by
1
(B)
o, =0, ——s, 20
B [ ]1 + H[Z ( )
since the photon propagator is modified as in Eq. (18), and is squared in the cross section.
Repeating the steps (15), (16), (17) with ¢, = R(s)s,, we obtain

Im II(s) = 9°3-R(s), s> m, @)

and we can compute I1(s) for various choices of R(s) by a subtracted dispersion relation,
or even by mere “inspection”. For example if

R(s) = (ks)",

1 See footnote on the preceding page.
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then
Im I1(s) = g(ks)”, ©2)

and

I(s) = (—ks)"+polynomial in s, (23)

3sin v

where we remember that ™ = cos nv+isin v, and (—x)" = ™ |x|". Note that for
integer v the expression (23) diverges, and therefore we have to compute I1(s) separately
in the case

Im I(s) = ?‘3- (ks)"
with integer n. Then we have:
H(s) = — %r (ks)” In (—ks)+ polynomial in s. 24)
The polynomials in (23) and (24) are determined by the subtraction constants; they have
no imaginary part. The degree of the polynomials is at most equal to n. We can now write

down the photon propagators corresponding to the II(s) given by (23) for v < 1 and
(24) for n =0, L.

1

D(s) = — 2 ~ (v=0), (25)
s <1 — —In (—ks))

Iz

D(s) = — al O<v<l, (26)
s (1—- - (—ks)'
3sin nv

D(s) = — ! v=1), @7

s (1— % (ks) [In (—ks)+a])

where in (25) we assumed a constant R (n = 0 in (24)); R = 1 corresponds to Eq. (19),
and in (27) a 31 (ks) is the polynomial in s.
i

One can note immediately that (25) and (26) have a zero in the denominator for
s < 0: this is (called) the Landau-Pomeranchuk pole. From (25) we set:

oR
1— —In(—ks) =0,
3z

3
— Spote = (k)_ ! exp (a_;;> (28)
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in the case R = 1k~! = 4m} and the pole is very far indeed (104°° GeV?). Note that
one can argue that near the pole the approximation of keeping only linear terms in o
in Im IT (see (17)) is not good, and perhaps the pole is not on the axis. The existence of
a pole (or some other singularity) with wrong residue hinges only on the asymptotic
decrease of the photon propagator a little bit faster than s—*, even by a logarithm, and
that fact seems to me to be guaranteed by the mere positivity of cross sections. So we
apparently cannot escape Landau and Pomeranchuk. Not ealso that the pole moves rapidly
nearer the origin if R gets large. E.g. if k' = 1 GeV? and R = 10(—s5,,,) ~ 10*° GeV?
and for R = 100 the pole is at 10 GeV?; larger R would move it right into the origin.
If we can be sure of one thing, is that there is no such pole very near the origin; the photon
propagator is represented very well by —s—L
For the propagator (26), the pole is at

29

jod

(= = k1 (3 sin nv)“‘i.
With k= 1GeV? and v = 1/2, (=s5,,.)~ 10°GeV?, with v = 3/4, (—s,,.) =
~ 4x10? GeV? and as v — 1 the pole moves rapidly to the origin.
Finally, for the propagator (27) it is clear that the pole is not on the real axis, since
for s < O there is no cancellation while for s > 0 there is an imaginary part, so that the
zero must be complex. To find the pole of (27) we have to solve:

1= 2 (ks) [In (= ks)+a],
3n

e = 2 e(ks) In (— kse”),
3n

let

xe ?

x = —kse®, or s = — P

and

3n ,
A =-—¢,
o

then our equation is — A = x In x, with x = ge™ this is equivalent to two real equations:

0 = @cos p+(In o) sin ¢
and

— A = p{(In o) cos g~ ¢ sin ¢),

3n\ [ —€“sin ¢
Spole = d_k o R ]
@

a_ 29 [ @ cos 90}
e = — ——exp| — — >
3n sin ¢ sin ¢

with solution:
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or

o cos
a=1n<——)+ln(,(p >—¢ (p.
3n sin @ sin @

Therefore, given @ we can compute a and 5,,,, Which amounts to computing s,,. for
the corresponding value of a.

T i6 o
E.g. @ = 50 Spote = — P and a=In c)= —-6.71
3n o
=0, Sppe=— o and a=1In W -1 = —8.16,

etc. In this way we can trace the motion of the complex pole as a function of a. We should
remember that when the pole is complex (@ # 0) there is a pair of poles, necessary to
guarantee the reality of (27) on the negative s-axis. The motion of the complex poles is
limited to a curve resembling a cardioid. For a > In («/6) the real part of s, is positive
and can be as large as Re (s,,.) & 1100 GeV?, taking k& ~ 0.25 GeV-? from the present
data; the value of « is about —4. For larger values of a the pole moves slowly into the
origin.

The possibility of the photon propagator having complex poles, in the physical
sheet, was raised by Lee and Wick in an attempt to modify Quantum Electrodynamics.
The purpose of the modifications was to ensure finite mass differences in isospin multiplets.
It is known that as a consequence of these poles the theory (Lee-Wick Electrodynamics)
suffers from acausality. It is interesting that here we get the same kind of photon propagator
{with complex poles) only by enforcing the requirements that R(s) occ s and unitarity.
1t follows in particular that the propagator (27) will give rise to finite electromagnetic
mass differences. The net effect of the assumption R(s) oc 5 is to give electrodynamics
a cut-off mechanism due to the hadrons which couple more and more to time like photons.

How could we tell whether such a mechanism is indeed taking place? We should
watch the behaviour of the cross section o, Note that due to the way we defined R(s)
the condition v = 1 is not saying that the cross section o, is constant, but that at large s,
0, c 572, as was mentioned before. The transition from g, oc const. to @, oc s~
takes place in the region of the pole and, in general, is accompanied by a peak which
fooks like a wide resonance in the total cross section. On the low energy side of
the “resonance” o, oc const. and on the high energy side o, oc s=2. The peak does not
correspond to a resonance since it is due to two poles on the physical sheet rather than
one pole on the second sheet. However, when the (y — 7) amplitude has maximum modulus,
its phase is 7/2. In contradistinction from resonant behaviour, the phase of the amplitude
moves clockwise (in an Argand diagram) rather than anticlockwise as the energy increases.
At the energy of the peak the two contributions to Bhabha scattering in lowest order are
out of phase and the angular distribution is markedly different, from that at low energies.
The position of the peak, as noted before, depends on the value of the constant a. It can
also be checked by numerical computations that the modifications of the photon propagator



890

from s~ in the neighbourhood of s = 0, i.e. say between — 50 GeV? <{ s << +50 GeV2
are at most 10% for —4 < a <3 for the choice k£ =~ 0.25 GeV-2,

One may wonder about other low energy tests of Q.E.D. such as the gyromagnetic
ratio of the muon. It turns out (N. Cabibbo, private communication) that the contribution
to (g—2) from a propagator like (27) is of the form:

20, 2 (o) 2
ag, = I m, II'0) = — 5\ (kmy) (In ksy+a+1), (30)

where s, is the value of s at which the cut in the logarithm begins (in (27) we chose s, = 0).
If we choose s, ~ 10 GeV?, k = .25 GeV-2, we obtain 4g, ~ 3x10~° (a+2) a contri-
bution which is rather small, and would have escaped determination for ‘“‘reasonable”
values of a.

To conclude, the low energy tests of Ag and the photon propagator up to s = +25 GeV?
have rather small corrections to Q.E.D. values, and therefore we have to measure the
photon propagator at larger values of s or more accurately if we want to discard (27)
as untrue.

E. Conclusions

We have examined in detail the possibility that ee annihilation, though electromagnetic
does not scale, even at high energies, The main theoretical consequence of this assumption
is to lead, via unitarity, to a cut-off of Q.E.D. by damping the photon propagator at high
energies. As a result the photon propagator acquires complex poles in the physical sheet
and resembles somewhat the propagator in Lee-Wick types of theories. On the experimental
side, this assumption does not lead to contradiction with available tests of Q.E.D. at
low values of s, nor with the observed scaling, in deep inelastic electron scattering, at low
values of 5. Therefore this possibility should be taken seriously when contemplating what
might happen at higher energies. I will now optimistically assume that there is some truth
in this hypothesis, and discuss some questions that are raised by it.

(i) In the first place, one can and should attempt to compute electromagnetic mass
differences, and in principle, this could lead to a determination of the subtraction constant a.

(ii) On a more “elevated” level, one can ask whether a similar mechanism could
lead to a cut-off of weak interactions. A rough estimate shows that the cut-off in the case
of weak interactions would take place at the same C. of M. energies. This raises the interest-
ing possibility of a “joint” cut-off of electromagnetic and weak interactions.

(iii) Another question, which may be related to the previous one, is of the value
of the cross section g, at s & 10-25 GeVZ2, What determines it (or the constant &, equiv-
alently). In a recent paper, Greenberg and Yodh noted that o, ¢ G where G is the Fermi
constant of weak interactions. Could such a coincidence be explained in the context
of our considerations?

(iv) In a different direction R oc ks would imply also some constraints on the spectrum
of hadronic states and their form factors. Are there simple models for hadronic states,
which satisfy this constraint? Clearly one could go on asking such questions, and hope-
fully one could even answer some of them. The most interesting one is whether the possibility
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of no scaling is in fact realized in nature. It is nice that we shall be able to know the answer
to it, perhaps within the next five years, when the next generation of e*e~ storage rings
will start working.

Many of the ideas described here I learned in conversation with Nicola Cabibbo and
Lincoln Wolfenstein. I am very indebted for the privilege of working with them. I would
also like to thank the Theory Division of CERN for hospitality, and my colleagues at
Guelph for their generosity in allowing me to travel. Last, but not least I am grateful to
Professor Edward Obryk for the opportunity to give these lectures and to Professor P.K.
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