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SINGLE PHOTON EMISSION IN ELECTRON-POSITRON
COLLIDING BEAM REACTION ete — ptpu

By M. HAvAsHI
Department of General Education, Saitama Medical College*
(Received July 11, 1973)

We evaluate the energy spectrum of the photons emitted in the reaction ete~ — utu-y,
and the hard photon correction to the total cross-section of the reaction ete~ — u*tu—., We
develop a simple technique based on the analytical QED formulae, in particular, on the
current conservation.

1. Introduction

The study of the muon pair production in the reaction ete” — ptu~ by means of
colliding electron-positron beams at high energies (See Fig. 1) is interesting from the
point of view of checking quantum electrodynamics at small distances [1]. The experi-
mental analysis of this reaction, however, requires the detailed knowledge of the radiative
corrections to the lowest-order in a cross-section [2] and the hard photon correction due
to emission of undetected real photons of relatively high energy [3, 4}
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Fig. 1. Feynman diagram for ete~ — u*p-

It is not difficult to evaluate the radiative corrections to the differential cross-section
for symmetrical detection of muon pairs or to the total cross-section by applying the usual
technique [5]. On the other hand, the evaluation of the hard photon correction appears to
be rather complicated.

* Address: Department of General Education, Saitama Medical College, Kawakado, Moroyama,
Saitama Pref., Japan.

(167)



168

In this work, we discuss the process

et e o pt 4T +y ey
on the basis of the lowest-order perturbation theory, assuming a purely electromagnetic
electron-muon interaction. This reaction, if accurately measured, can be used to test the
validity of quantum electrodynamics at small distances. We will obtain 1) the energy
spectrum of the emitted photons, 2) the hard photon correction to the total cross-section
of the reaction (1) for emitted photons of c. m. s. energy higher than ¢. The main purpose
of the work is to present the simple technique based on the analytical QED formulae,
in particular, on the current conservation to evaluate the above mentioned quantities.
Our approach is close to the one employed in the Ref. [6]

We will restrict our considerations to the case in which the muons’ charge is not
measured in the experiment. In this case, the total hard photon correction is obtained
by summing the contributions of initial and final bremsstrahlungs. We call the process in
which the photons are emitted from the initial (final) particles the initial (final) brems-
strahlung.

The plan of the paper is as follows: In Section 2, we describe our method of evalu-
ation in some detail and derive the analytical formulac for the energy spectrum of the
photons and report some numerical values. In Section 3, we discuss the hard photon
corrections. Some numerical results are also given. The asymptotic formulae are derived
in Section 4.

2. The energy spectrum of the photons

a. Initial bremsstrahlung

We evaluate the energy spectrum for the initial bremsstrahlung. The two lowest-order
Feynman diagrams due to the initial bremsstrahlung are shown in Fig. 2.

Fig. 2. Feynman diagrams for the initial bremsstrahlung in ete~ - utu~y

We use the following notation for the energy momentum four vectors:
e"(p)+e’(p) > n (@) +17 (@) +1(K)
(or u~u™(Q)+¥(K)). 2

The scattering amplitude, in this case, is of the form [7]

M = iE“(K)'//{ua(p’ ;) Qa K)Ja(Q)a (3)
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where J (Q) is the electromagnetic current provided by the muon pair, ¢,(X) is the polariz-
ation vector of the photon and .#**(p, p, Q, K) is the scattering amplitude for the process

e"(p)+e"(B) = UK)+<yNQ)- C))
We write the absolute square of the matrix element as
IMi> =3 7=} (= gu) ™ "7 T (DI 5 (D). &)
spins spins

For the product of the muon pair currents we have

T = 2 JADJ;(Q = 2{(0.05~ Q8. — .05}, ©

spins
where Q = g+9¢, O' = gq—q. Next we recall the relation

d*q d®q v d*Q
— — = - — dwdQ, @)
2q, 2‘10 8 20,

where w = Q2 = invariant mass squared of the muon pair, dQ = angular variable of the

2
muon pair defined at the rest system of the pair, v = \/ 1—- L. velocity of the muons
w

with the mass g in the rest system of the muon pair.
In Eq. (6) we perform the angular integration over dQ which has no kinematical
constraints and, therefore, covers the entire 4n angle. We define

Bye 1t (10 2) 0 ®
From Eq. (5) together with the current conservation condition
M*Q, =0 )
and Eq. (8) we get
M2 =% avu,, (10

spins

The calculation of the trace is now straightforward and the result is given in the following
manner:

}iM|2— §+é +(w+2m*) < —2m? —1-—+i +£~(—2 %) 11)
g T\ap)TVT Nete)t st

where m is the electron mass, s = (p+p)%, t = —(p—K)* =—(Q0—p)’, A = (p—K)>—m? =
= —t—m? and B =(p—~K)’—m? = w+t+m?—s.

In order to take into account kinematics and phase space, we combine d3Q/20,
in Eq. (7) with the final state photon phase space as

d3Q d*K

4
2. 3%, 0P HP-K-0) =

(12)

wl:‘?

dt
5
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From Egs. (8), (11) and (12) we obtain the cross-section for the initial bremsstrahlung as
do, =5 L (14 22) 2 dar 13
g = e e — | — awdt,
%712 vt w/w (13)
where the invariant flux is expressed as sv/2. v is the velocity of the initial particles in the
c.m.s., I. e,

4m?
ve= [1— —0. (14)
s
Eq. (13) is rewritten as
d ~ 1 MP 20 dwdt i
o, = 04 - —_
' °8 7 dvs? (15)
where
-~ 2nd? Yy U
6o = — (3—0%) —. (16)
3 w
The kinematical bound for ¢ is
s— —
~—2—‘Y(1—u)—m2 <t<%—w(1+v)—m2. an

We integrate Eq. (11) over ¢ and obtain

1 T Yo (W 1-0° 2K
SR = Bz, ) Yo (Y 0
8; | -5 X, R R T8 (18)

where

1 140
u=-In—0>F7/
2 1-v
The result is
- dw {9y /w127 2K,
do, =0y —=<1—|— + —_ }
°z\/s{z<o<s 5)+ “} )

Taking into account the relation which expresses the dependence of w on the photon
energy K, in the c.m.s. as

w=1s5-2,/sK, (20)
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we get the energy spectrum of the photons emitted from the initial electron pair
do; . {7y (w 1-0*\ 2K,
=0o4—|— + + =710
dK, © {Ko (s 2 s & @1

This formula coincides with the one derived by Mosco who used a different
approach [3].

b. Final bremsstrahlung

We derive the energy spectrum for the final bremsstrahlung. The two lowest-order
Feynman diagrams under consideration are shown in Fig. 3.
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Fig. 3. Feynman diagrams for the final bremsstrahlung in ete™ — utu—y

The scattering amplitude, in this case, is of the form
M = i (K)M™(P, q, g, K)J (P), (22)

where J,(P) is the electromagnetic current of the colliding electron-positron pair, and
&,(K) is the polarization vector of the photon, and .#*(P, ¢, g, K) is the scattering ampli-
tude for the process

P +9(—K) > 17 (@) +17(9)- (23)
We define
)y enll™eg MP* = — N MEMF = — M. (24)
spins spins

We first perform angular integration over d@ of the muon pair defined in the c. m.s.
We define

— 1 PP
MY = — | M"dQ = f, - | g~ -5 ). 25
4%.[ fl (g ‘PZ > ( )
We determined this form by taking into account the current conservation condition

P = M”P, = 0. (26)
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We obtain from Egs. (22), (24) and (25)
= Yy JJJ(—M") =

spins

o , PP, 2m?
= _2{(Pva’_P2guv)—Pqu}fl (gu - ;2 > = 4fls (1+ T) s (27)
where P2 = (p+p)? = s, P’> = (p—p)*. On the other hand, we get from Eq. (25)
1, 11 v
Ji=38aM" = 27— | guM7dQ. (28)

Thus, it is enough to evaluate g, ,M*’. After a straightforward calculation of the trace,
we get

1 1 1 2 (9K 4K
- g M = (s+2u2)[—,u2{ + = } + (—— + :—-) +
4°" (gK)* (@K’ s+’ \gK = ¢K

1
N E——- .
" @K @K @)
Substituting Eq. (29) into Eq. (28) we obtain

§:rz 2s+2uyw_ -
fe 3P e

(30)

where

We take into account kinematics and phase space in a similar way as in Eqgs. (7) and (12).
Then the cross-section for the final bremsstrahlung is obtained from Egs. (27) and (30).
It reads as

3<xf v dt dw a1
8nlle 2 7 2’
ey

\ s

dO'f =0y "

where a, is the {elastic)) cross-section to the lowest order for the diagram shown in Fig. 1

,0 4 2m? 2\ 1
oo = mol — {1+ — {14+ —])—. 32)
v 3 s s s
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v’ is the {elastic) velocity of the muon in the ¢. m.s., when K, = 0, i. e.,

4 2
v'=\/1——’;‘—. (33)

The integration over ¢ in the kinematical bound for ¢ (see Eq. (17)) is straightforward
and we obtain

3¢ v fi dw
dog = 6o — — (s—w)— . 34
% ®16n v (s—w s s+24° (349
Substituting Eq. (30), we get
v odw (w 7, 2K, -
dog =06 —|— — + —— . 35
f oy 2\/s<s Ko  s+24° 1 (35)
Using Eq. (20), the energy spectrum of the photons emitted from the final muons is ex-
pressed as
do v(w 7y 2K, -
il R <_ Yo 2o y1> (36)
dK, v'\s Ko s+2u
nd
0 T
) ole] fri0 Fen zelf
9K, e

1;’\2 .
%
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Fig. 4. Energy spectrum of the photons emitted in e*e~ — utu~y



174

This expression coincides with the one derived by Longhi who used a different
approach [4].
c. Total energy spectrum of the photons

The total energy spectrum of the photons emitted in the reaction (1) is given by sum-
ming the energy spectrum of the initial and final bremsstrahlungs, i. e.,

do — > do; N do'f) 37
dK, ~\dK, dK,)’ @7

The factor 2 in the right-hand side comes from the non-identification of the muons’ charge.
In this case, the interference term between the diagrams of Figs (2) and (3) does not contri-
bute. In Fig. (4), we report the energy spectrum do/dK, for E = 0.15, 0.3, 0.5, 1.0, 3.0 GeV,
E being the energy of the colliding electrons.

3. Hard photon correction

The correction due to emission of real photons with the c. m.s. energy K, higher
than & (which is a cut-off determined by the experimental condition) is called hard photon

correction. The hard photon correction is obtained by integrating the energy spectrum
2

s—4
of the photons over K, which may vary from a lower limit ¢ to an upper limit 7\7&—, ie.,
s
3 2
6SK0<K0m3x=70 . (38)

In the case of the final bremsstrahlung, the hard photon correction reads as follows:
o; = 0,0%(e), 39

where

s 1 20|1-0? 1 1
on(e) = — — 2{n—-)—\{n+ -)lnnpt+clny+
v om 4 n n

1
1— —

c 4’ a—-vm—1 In (1-x)
+ ~In*n+ 1 + ——dx+
PR P (1+v’)'1—1’ c{ j x O

1-1
a

an—1
=ik
a—mn

1-a

In(1—-
J E(—x)dx+lnaln

X

1—an
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ol 12/n+1 < 1)2 2}1
+W3’—72-)[{c(n+ Yn+1- '7";1 / nn+

3 1 1
+ - (nz— —i) —~2(c+1) (n— -ﬂ (40)
4 n n

and
2(140v'%)
¢ = 2
1—v
140
a = —,
—v

The hard photon correction due to the initial bremsstrahlung is similarly obtained
by integrating Eq. (21) over K, in the region (38). The integration, in this case, is per-
formed analytically. The result is

o; = 0'0514(3)’ 41

where

2s (1-2"%) v [[Y(B-0v?)(3-1v?)
T W G=G-0Y) v [ 2 x

an—1
a-—n

n—1{(1-v") 2-v%) 2 2
R ol for

1= =)+ +1)
3 (n+1)°

xIn —Ing

(42)

1-v’2( _ 3) _2n-1) (n2+4n+1)}
2 \"" 1) 7 31y '

In Table I, we report numerical results for 6l,(¢) and 8f(e) for some values of the
cut-off ¢ and for various values of the energy E of the colliding electrons.
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TABLE 1
Hard photon correction to the reaction ete™ —» uu~

E(GeV) &/p 3i(® LA
0.15 1072 0.231 0.030
10~ 0.106 0.010

0.3 10-2 0.388 0.072
10! 0.245 0.036

0.5 102 0.494 0.108
101 0.342 0.060

1.0 102 0.646 0.157
10t 0.479 0.099

1.5 102 0.742 0.196
10! 0.567 0.124

2.0 102 0.812 0.220
10-* 0.631 0.142

2.5 1072 0.871 0.240
10+t 0.685 0.158

3.0 162 0.918 0.258
10~ 0.729 0.172

4. Asymptotic formulae

For the sake of completeness, we derive asymptotic formulae for the energy spectrum
of the photons and the hard photon correction. In the asymptotic limit when s> m?,
we get the following formulae for the energy spectrum of the initial bremsstrahlung:

20 s
y0=y1=-(—1+21n\/-—), 43)
7 m
do; . 2K, 1[2K,\?
iad QU 1D B Pl el el I O (44)
dK, K, Vs 2\{/s
In a similar way we have, in the asymptotic limit w> p2,
_ . 2a w
yo=y1=——(——1+2ln\-/—), (45)
w u

do; _ 1 2K, 1 2K0)1}
— = —d1-2 4 {2 46
dK, To¥o K, { Jsoo2 ( NE (46)
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Under the asymptotic condition /5> u and g > &, the following formulae are easily
derived for the hard photon correction:

Sie) ——{ZIn\’{;ln% 21n71n\/_ +ln\—/;

- <E +21n 2) In }‘/_s} , 47
3 m

(o i 3 s

In the ultrarelativistic case, the dominant contributions come from the double
logarithmic terms. In this case, we have

; ¢, In Js/m In \/3/;1)
oo = > (1+ ) 7 (49)

This shows that the hard photon correction from the lighter particles (electrons)
is larger than the one from the heavier particles (muons). Indeed the numerical result
shown in Table 1 supports this fact.
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