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The semi-relativistic approach, widely applied to the two-body problem, is generalized
onto the three-body disintegration process of deuteron by a high energy electron. The proposed
way of description of fast moving, Lorentz contracted, composite systems leads us to small
anisotropy of the angular distribution of the “spectator” nucleon in the lab-system. This
effect increases with energy, but it saturates for electron energy of the order of 20 GeV.

1. Introduction

The relativistic many-body problem, hence in particular the description of the structure
of fast moving composite systems like deuteron, seems to be of great importance both
for theoretical and experimental reasons. The disintegration of deuteron by a high energy
electron seems to be a process most suitable for the investigation of this structure for the
following reasons.

1. It is reasonable to assume — as one usually does [1] — that the interaction of an
electron with deuteron is dominated by the additive interaction of the electron with constit-
uent nucleons as if they were free. E. g., the interaction of an electron with the mesonic
current inside the deuteron is rather negligible {2], particularly for collisions with large
momentum transfers to only one of the constituent nucleons, which we are mainly inter-
ested in. 2. As the interaction of the electron with nucleons is well known, one can sepa-
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rate (contrary to strong interactions) the structure of the system from that of the interaction,
and thus to test the hypothesis concerning the former. 3. Large momentum transfer to
one of the nucleons justifies neglecting of the final state interaction between nucleons [3]
and an application of the Born approximation to their motion [4]. 4. Small coupling
constant and relatively large momentum transfer of the electron justify the suppression of
the muitiple scattering of the electron {5]. 5. The disintegration process, in contrast to
elastic scattering with large momentum, does not require one to use the deuteron wave
function at small distances, where the very notion of the wave function becomes vague.
The major of the cross-section arises from the kinematically accepted region where the
wave function is large or, in other words, where the momenta of the spectator nucleon
are of the order of the Fermi momentum.

At the present stage of the theory of high energy processes one has to deal with two
different approaches to the relativistic composite systems. The first one maintains covar-
iant symmetry, and in the two-body problem it is represented e.g. by the Bethe-Salpeter
equation. The second approach, the so-called semi-relativistic one [6], distinguishes
dynamically the overall centre-of-mass system (CMS), preserving only the relativistic
kinematics. Several phenomenological models such as those based on the quasipotential
approach [7] belong rather to the second approach. It is tempting to extend the semi-
-relativistic approach to the three-body problem of disintegration of the deuteron by an
electron. Let us emphasize that the semi-relativistic description, as non-manifestly covar-
iant, tells us nothing about the transformation properties of the wave function under the
boost to a reference frame which moves with regard to the centre-of-mass system where
this wave function is determined. Another situation occurs within the manifestly covariant
theory. The so-called covariant, equal-time wave functions [8] in a moving system can
be, in principle, determined from the transformation properties of the corresponding equa-
tion of motion; e.g. from the Bethe-Salpeter equation. In the semi-relativistic picture of
the discussed three-body process we must know the deuteron (two-body) wave function
in the overall CMS of the colliding deuteron and electron. Therefore an additional
hypothesis is required concerning the transformation properties of the deuteron wave
function, known in the rest system of the deuteron, to the CMS. Our assumption is
that this wave function represents a static shape, and hence (apart from spins) the Lorentz
contraction is the only relativistic distortion of this shape [9]. Consequently, there
are no effects such as e.g. distortion of the phase of internal motion of the constituents,
characteristic for the covariant wave function [10]. Within the framework of a fully
covariant theory, our assumption would mean the impulse approximation, where one
neglects the internal (relative) motion of the constituents [11]. Meanwhile, according
to the proposed hypothesis, the static character of the wave function is a quite general
feature independent of the internal motion. Let us illustrate this on an example which
supports our point of view. Let ¥(¢, x;, x,) denote the wave function of the whole atom,
x;, x, are the coordinates of the nucleus and electron, respectively. Then the current
density ¢(t, x) is equal to

o(t, x) = Ze [ d*;|¥(t, x5, )~ e [ dx,|P(2, x, x,) .
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We assume that the centre of gravity of the atom at a given time ¢ is well localized
in the origin of its rest frame R, and the internal wave function yo(x¢,—xo;) of this atom
is real. Then

[ o(tos X055 Xo)I* & S[(MX0e+myxo))Im] 19o(xoe— o)l
where m = m_,+my, and hence

Jo(to, x0) = 0,  go(tg, Xo) = @o(x) =

m\?3 m 2 m\? m
=Zel — | |Wo| —Xo) —e|— | [¥o| — %o
m, m, my my

where x, is the space coordinate of R,. Consequently, the four-potential (4, ®) takes
in R, the form

2

Ay =0, Bylxg) = istx 2o(x) (1.1)

4r |xo — x| ’

Since (A4, @) is a four-vector, it determines the transformation properties of the density
current, while the static character of @, implies that g,, and hence y, both transform
under the boost like static shapes (with corresponding normalization factors) thus
distorted only by the Lorentz contraction. Therefore the wave function in a moving
system R takes the form

v(») = vy [LO)y], (1.2)

where y denotes the equal-time relative coordinate between the constituents in R. Here
L(v) is the 3 x3 matrix which in the case of the deuteron motion parallel to z-axis is
equal to

E b

L(v) = b b

oo =
o= O
= © O

> B4

where y = (1—v?)~"/2 and v is the velocity between R, and R. In further considerations
v will always denote the velocity between the lab-system, where deuteron before the
collision is at rest, and the overall CMS of the colliding electron and deuteron. Thus

P
Y= e (1.3)

where p, E are the momentum and energy of electron in the lab-system, and M, is the
deuteron mass. We see then that for electron energy E less than about 1 GeV the deuteron
motion is “nonrelativistic’”’, and hence its internal wave function remains practically
undistorted. This is much as if the deuteron were an infinitely heavy body. In this approxi-
mation the deuteron disintegration by electron was evaluated by Jankus [1]. The boost of
spins will be clarified further on when we construct the scattering amplitude.
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2. Disintegration amplitude

The deuteron wave function in its rest frame R, is taken from low-energy physics,
and it is equal to

1
m + Soo(n w =0, +1, 2.1
where yq is the relative coordinate between nucleons in R,,
. Yo
r= |y0[7 ny = 7 H Snp(no) = 3(”[)"0) (annO)_(apan)'

¥n are the triplet wave functions, and normalization of the wave function is such that

.f dr[uz(r)+wz(r)] = 1’ (wOm’ /q)()m:) = 5mm" (2'2)
0

The structure of the wave function of deuteron suggests a formulation of the inter-
action between the electron and nucleons in terms of the Pauli spinors. The boost of the
nucleon’s spin is realized in the following way. Let u denote the Dirac bispinor and ¢ the
corresponding Pauli spinor of a free fermion. Then

E+M /
uz\/ ’ , ulu=¢lp=1,

2F o' P
E+m?
determines the relation between the Dirac bispinor u and the Pauli spinor ¢. Since the
initial nucleons bound in the deuteron are (in R,) described by the Pauli spinors ¢,, ¢,,
which determine y,,, the quantities E, P, M will be identified with the energy, momentum,
and mass (E; ps;, M), respectively, of the initial deuteron. In other words, the Dirac
spinors of the initial nucleons have vanishing “small” components in R,. This is consistent
with the four-component wave function (2.1) assumed as an adequate characteristic of the
internal structure of deuteron in R,. Consequently, the identity

(o) = (¢'Mdgp) (2.3)

(where primed quantities denote the final state) determines the Pauli (2 x2) operator &
through the corresponding (4 x 4) Dirac operator a, and vice versa. According to the assump-
tion 1, the interaction between the electron and nucleon takes in the momentum space
the well-known form resulting in the Rosenbluth elastic cross-section, namely (1 /t)juJ,SN)
(N = p, n). Here ¢ is the invariant momentum transfer, and j,, J are the current operators
of electron and nucleon, respectively, in the momentum space, i.e.:

Ju = €V Jf,N) = F(IN)(t)y#+F§N)(t)auvAp‘,, 2.4

where (4p,)? = t, F")(¢) are the nucleon form factors. Let us denote by y the relative
coordinate between nucleons, y = y,—y,, and by Y the relative coordinate between the
ceptre of gravity of the deuteron and electron i.e. ¥ = ¥(y,—y,), all represented in the
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overall CMS. Of course, y,, y, are the relative coordinates of proton and neutron, corre-
spondingly, with respect to electron, in the same CMS. According to the semi-relativistic
approach combined with the assumptions 1-5 the absolute amplitude M;; for the disinte-
gration process takes the following form

My = [ dy,d’y 0 oot exp [ —i(q,p), + qiyi)] x

x[VP(pp) +Vp)] exp (igY ¥ yon L(0)y]e 23}

which manifestly distinguishes the overall CMS. Here ¢, , are the final momenta of proton
and neutron, ¢ is the initial momentum of the deuteron, ¥ ®™ are the ““potentials” between
nucleons and electron which will be determined from the previously assumed interaction
between electron and nucleons and v is defined in (1.3). Let w, w' with corresponding
indices (we do not attach any index to the electron only) denote the initial and final CMS
energies of the particles. Then the cross-section for the deuteron electro-disintegration takes
the form

(2n)*s*(P,~P,) o~
¢ = —-2(S_——4X72)—‘i |M e (2w2w 2w 2w 2w;) x

d3pr d3 d3
* 2F (2n)? 2E,,(2n)3 2E,,(2n)3 ’

(2.6)

where s = P} = P,? is the invariant energy square in the CMS, M is the nucleon mass,
while p’, E’ (with corresponding indices) denote the momenta and energies of final particles
in an arbitrary reference frame. As we shall see further, the only reason that the cross-
-section d°s depends on the CMS will be due to the deuteron wave function, as all kinematic
factors, like w, w' will cancel with the corresponding ones resulting from |[M;;}? averaged
over the polarization states. The integration over y, , leads to the amplitude M, represented
in the momentum space which is equal to

M 1
My = ( )w T qn {V“”(q—q’)%m [L‘i(v)<q;— 3 qﬂ +
+VNg— 4 pon [L (v)( q— qpﬂ} (2.7)

where f(q) = jd *yf(y) exp [igy] means always the Fourier transform of f(y). According
to (2.1) the deuteron wave function in momentum space is equal to

’(I)Om(p) \/47-[ [U(p) - \/— W(p)Spn(U)]

where p = |pi, v = p/p, U(p) = [drru(r)jo(pr), W(p) = [ drrw(r)j(pr), and j(z) are
[} [¢]

the spherical Bessel functions. Finally, the “potentials” ¥ ™™ in momentum space are
the operators in the Pauli spinor space which correspond, in the meaning of the identity
(2.3), to the operators (1/¢), /™ in the Dirac spinor space.
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3. Cross-section

Let us assume that all particles are unpolarized, and hence we have to evaluate the
quantity
A=13 iMf, G.1)
pol.
where “pol” denotes the polarization of all, initial and final particles, and the factor 1/6
is due to three polarizations of deuteron and two of electron. The one-photon exchange
mechanism allows 4 to be expressed as the contraction of two current tensors, namely s
of electron and S,, of deuteron. Thus we can write
1

4= 5 S (3.2)

nv

We confine ourselves to the “nonrelativistic” momenta of the spectator nucleon (in
the lab-system), when the cross-section is relatively large. Thus the behaviour of the deuteron
wave function at very small distances becomes irrelevant which makes the use of the
wave function safe. It is justified to put then w, = wy/2 (*'s” means spectator). Moreover,
we neglect the D-state admixture i.e. w(r) = 0 as, in contrast to the elastic scattering,
it does not influence essentially the investigated cross-section. Then the current tensor
of deuteron takes the following form

(S el
Wy pooe 2
+]§‘n)(t)U (L_ 1(])) (q;— % q))} Xm} {u - V}*,

where J®™(t) are the nucleon current operators defined in (2.4) written in the Pauli
spinor space, and o, «, label the polarization states of final nucleons.
The summation over the deuteron polarizations (m) leads to §,, equal to

8nM e Epa n
S =< ) E PPt TP U+ TP U]

Wy

[ 20Y. 4

p>n

x(F + 1 0,00 [UI)TPT+ U9l ol

where I,, = {L™' (v) (¢p,—%49)|, and it will be expressed through the lab-momenta in
the next section. If we assume that the momentum transfer {¢|1/2 (of the electron) is consider-
ably larger than the Fermi momentum of nucleons in the deuteron (|z| > 0.04(GeV/c)?)
then the interference terms in S,, can be neglected and

uv

6nM oy oy
Sy = o {lUU)I? Sp (JPTOH)+|U(L)1% Sp JPTMH}. (3.3)
a
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From the definition of J®™ — ¢f. (2.3) — one easily obtains

s 1 y i “
Sp (JPJP1) = — Sp [(M —ig P (M - 5’%) J 9’)] o =4Iy,

d"p

where on the right-hand side one deals already with the Dirac operators. Of course, the
same concerns the second term Sp (J{J(V7). It should be remembered that with regard
to the boost of spins, the momenta p,, and energies E, , of initial nucleons are equal
to one half of the momentum p, and energy E, of the initial deuteron, hence g/2 replaces
the initial four-momenta of both nucleons. Thus

6nM ) , y i _ 1
Sy = 2 {\U(l,,)l2 Sp [(M—%,)Jﬁf” <M— *2‘,%) Jsp)] =+

P

1
+1U(I,)1 Sp [(M—ig;)Jﬁ,“’ (M— ;;fd) ‘“)} } (3.9
Wn
Combining this with the well known electron current tensor s,,,

Spy = m Sp( ‘,Q”?;ﬂ’?v), (me == 0)3

the cross-section d°¢ for unpolarized particles can be written in the manifestly invariant
form

2n)°s' (P, —P,) d’p’ d’p, d>p),
s—4M? 2E'(2m)® 2Ep(27t) 2E! (2n)3

X L U1 Sp | (M—ig))JP M— L )7
tz n/l P lvp’p) " 2,Ad v +

+1U(,)I* Sp ((M— Y P (M~ ”;_/d) jﬁ“’}} Sp (—27"7uF7)- (3-5)

d°c =

This cross-section is manifestly invariant, and — as was said before — only the
deuterons structure function U(/,,) reveals the distinguished position of the CM-system
because the invariant [, , = |L-1(v)(q, ,— 44/2)| are defined through the CMS momenta g,
and the velocity v. In the lab-system, where the cross-section (3.5) will be evaluated,
we obtain

lp,n = {Ep;,n'_v(p;fn'{'MZ)Uz'-Mdjz]z}llz’ (36)

where » is the velocity between the lab- and the overall CM-system — cf. (1.3).

It is remarkable that the deviation of I from p’ = |p’| as given in (3.6) vanishes only
in two particular cases: (/) when v vanishes, which takes place for infinitely heavy target
particle or, realistically for momenta p of the impinging particle much less than the target
mass My, and (i/) when the binding energy of the composite target particle tends to zero.



190

In our case the possibility (ii) should mean that My — 2M which automatically implies
that U(/) —» O for / # 0. The vanishing of the Fermi momenta of composite nucleons
results in / = p’ = 0 for arbitrary value of v. It must be so, as for unbound “composite”
target particle, the distinguished position of the overall CM-system should lead to inconsis-
tencies. We see then that the relation (3.6) exhibits the dynamical aspect of the wave
function. The wave function gives us, namely, not only the momentum distribution of
nucleons inside the deuteron (in R,), but at the same time it accounts for the fact that
these constituent nucleons are off mass shell. This is the reason for the difference between
the energy (p'2+ M?)*/2 of the free final spectator nucleon and the half of the rest-energy
M /2 of deuteron (both in lab-system) which together with nonvanishing v determines the
deviation of / from its non-relativistic value equal to p’. The consequence of this fact will
be discussed in the next section.

4. Sum rule and angular distribution of spectator

On integrating the differential cross-section (3.5) over the momenta of recoiled nucleon
and the energy E’ of electron one obtains the following expression for the angular
distribution cross-section of the electron in the lab-system

do
o d3 Ul 2 P
dQ, =0 )f pdU(L)i [dQ'

Here “s” denotes the spectator nucleon, p; is its momentum in lab-system and

of
OE'

4o, { (4.1
dsz’( ps)] 4.1)

3 &2 E'
2m 16(s—4M?)i* E, ,

t(t, pl) = (ps) X

dQ’

i -
xSp (=77, #7.) Sp [(M — i P (M - E-pd) JS"’“)] )

where the density of the final states is equal to

s o [(4p—p)* +M?]'?
* B [(dp—p)* + M?*]Y*+Ecos S—E—p.p'|E"’

where 9 is the lab-angle of the scattered electron. If |¢| > p. there are no constraints upon
the p; values, and since, moreover, the spectator momenta are concentrated arround
50 MeV/c, and both functions do,, ,/dQ’ are smooth functions of p,, one can, with a very
good approximation, neglect their dependence on p;, and put p; = 0. Then the angular
distribution of electron is given by the following formula

do dol® dol® 1 3 2
— = 1[ O+ —= (t)] I=-— f d°p U1, 4.2

dQ ifod aey

where dagf),(t)/dQ’ = do, ,(t, 0)/dQ’ denote the Rosenbluth formulae for elastic scattering
of electron on free proton and neutron, respectively. As [ # p{, the sum rule is slightly
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TABLE I
E (GeV) vjc I

0.5 0.2 1.0004
0.9 0.3 1.0009
1.2 0.4 1.0016
1.8 0.5 1.0025
2.8 0.6 1.0036
4.4 0.7 1.0049
7.5 0.8 1.0064
17.0 0.9 1.0082
1.0 1.0097

modified in comparison with the one well known from low energies [1], when /, = p;, and
I = 1. The numerical calculations with the Hulthen wave function provide us with the
values of I specified in Table I for several values of primary electron energy.

As we see, the deviations of I from the value 1 are very small, and even for ultra high
energies do not exeed 19{. Thus their experimental determination is practically impossible.
However, there is another effect due to the same reason, namely, the angular distribution
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Fig. 1. The laboratory angular distribution of the spectator-nucleon, normalized to isotropic distribution,
of momenta less than 140 MeV/c. The angle @ = 0 indicates the primary direction of electron
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of the spectator nucleon, which is more distinct. Let us consider the differential cross-
-section for the electron scattered into the spherical angle d@’, and the spectator nucleon
into the momentum space element d3p., both in the lab-system, and for |¢t| > pl%.
According to (4.1) we have

1 T de® d flR)
By = SOUMWE, 60 = — [ 0+ (t)]. “3)

The difference between p; and / specified in (3.6) implies that the angular distributions
of the spectator nucleon cease to beisotropic (in the lab-system). We present in Figs 1, 2
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Fig. 2. The laboratory angular distribution of the spectator-nucleon, normalized to isotropic distribution,
of momenta larger than 140 MeV/c. The angle « is the same as in Fig. 1

the angular distributions evaluated with the help of the Huilthen function, for spectator
momenta smaller — Fig. 1, and larger — Fig. 2 than 140 MeV/c. They are both peaked in the
forward direction, the more so, the larger is the primary energy of the electron. Moreover,
this anisotropy becomes larger with increasing energy of the spectator nucleons, which
is seen in Figures 1 and 2. Note that for the Hulthen function, about 209, of nucleons
have momenta larger than 140 MeV/c. [12].

Let us emphasize that this effect should be rather universal in the sense that the mecha-
nism of the disintegration is irrelevant provided it justifies us to deal with the *“‘spectator™,
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i.e. the particle which does not participate directly in the collision process. It is true that
this situation is best fulfilled in the electromagnetic interaction under discussion, because
of the small coupling constant. However, even for nucleon-deuteron collisions one can
expect that the disintegration cross-section is due mostly to the single scattering mechanism,
and thus the spectator particle has a clear cut meaning. This can be seen in the recently
investigated disintegration reaction of 3.3 GeV/c deuterons in the hydrogen bubble
chamber in Dubna [13]. Results show the existence of the spectator nucleons, and moreo-
ver, they do not contradict some slight anisotropy of these nucleons, of the same character
as that discussed here.

5. Conclusions

The dynamically privileged position of the overall CMS, together with the “static”
character of the deuteron internal wave function imply a nonisotropic angular distribution
of the spectator nucleon emerging from the spherically symmetric (in the lab-system)
deuteron. The point is that nucleons of Fermi momentum p bound in the deuteron are of in-
definite energies, whereas after the collision the momentum p. and energy E. = (p.* + M?)'/?
of the spectator nucleon create the four-momentum on the mass shell. Since, on the other
hand, the four-momentum of the deuteron as a whole is well defined, and the argument of
the contracted deuteron wave function (in CMS}) is equal to L-1(q.—1¢), pure kinematics
result in [ as given in (3.6). The latter means the anisotropy effect under discussion. We
see then that this effect should be characteristic for any disintegration mechanism, provided
that the single collision assumption is fulfilled when the spectator particle is well defined.
The electromagnetic interactions (because of small coupling constant) realize best the
aforementioned situation. In other processes we must carefully select these events where
the nucleon is really the “‘spectator” particle.

Finally, let us notice that such an s-dependent effect (via v), even if small, is alien
to the fully covariant approach when the deuteron structure function depends on ¢ only.
It characterizes the semi-relativistic approach distinguishing the overall CM-system, and
reminds the s-dependence of the high-energy optical potential based also on the semi-
-relativistic picture.
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