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An effective potential is computed for 2-body elastic scattering with the experimental
on-shell #-matrices as an input. Nonrelativistic eikonal approximation and locality, together
with spherical symmetry of potential, are assumed. The explicit form of potential for pp, 7'p
and 7 p in the energy range from 5 to 20 GeV is investigated. The half off-shell scattering
amplitude is calculated in the potential model. In the position representation this amplitude
is found to be asymmetric along the eikonal direction, and an interesting absorption inter-
pretation of this fact is given.

1. Introduction

Nonrelativistic eikonal approximation, initiated by Moliére [1] and Glauber [2],
has been extensively and successfully used for description of high energy hadronic collisions,
particularly for the scattering on compound systems. The validity of the original Glauber
formulae should be restricted to high energies and small momentum transfers, however
they were used far beyond that region, giving quite reasonable results [3]. There have
been attempts to explain this situation by performing theoretical or numerical estimates
of corrections to the Glauber model {4-13]. Some of the corrections include the eikonal
two-body amplitudes which are off energy shell or at least half off-shell. It is generally
assumed that they have the same form as the on-shell amplitudes. Our aim, in this paper,
is to express the off-shell amplitudes trough the on-shell amplitude wvia potential
model [7], and to investigate numerically their shape as well as that of the potential in the
high energy region.
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A concept of an optical potential [14] is often used in high energy physics. One of
the methods adopted in the optical potential investigations is to assume some general
shape of the potential and obtain the values of free parameters from a fit to the experi-
mental data [15, 16]. We shall proceed more directly. Assuming locality and spherical
symmetry of the potential, as it is usually done in the eikonal approximation if the spin
interactions are neglected, we can derive potential uniquely from the two-body on-shell
elastic scattering amplitudes {2, 10].

We are aware of the fact that at high energies the concept of the potential in the
conventional sense may scem dubious. However, one should look upon our potential
as a mathematically equivalent to the on-shell amplitude effective potential which enables
us to construct the off-shell amplitudes. Thus, in spite of its energy dependence and com-
plexity which make the physical interpretation more difficult, it proves to be a powerful
device to the investigation of the off-shell effects.

In Section 2 we derive the general formulae for our potential, and review the numerical
results for the pp, n*p and n—p elastic scattering in the energy range from 5 GeV to 20 GeV.
Section 3 is devoted to the investigation of the half off-shell eikonal amplitude in the
potential model. As an example, the numerical calculations are carried out for the case
of n—p elastic scattering at 9 GeV. It turns out that the half off-shell amplitude is slightly
asymmetric along the eikonal direction. We give the possible physical interpretation of
this effect by connecting it to the absorption.

2. Effective eikonal potential

We shall use the notation similar to that of Harrington [7], although our formulae
will not be limited to any specific reference frame or eikonal direction. Assuming that the
centre of mass motion has already been separated we can fully describe the two-particle
state by its relative motion variables — energy E, momentum p, and position 7. The full
Hamiltonian of this systems is

2

h=ho+V =2 4v, 2.1)
2p

where p is the reduced mass and F-interaction potential. By the eikonal approximation
we shall understand a linearization procedure of Hamiltonian through expanding it around
some vector f)j and leaving terms linear in difference (i—ﬁj):

v b bbb
2p 2p u
The choice of p ; is free here with the only restriction that for physical values of p the differ-
ence (p—p ;) should be small. In general P ; is taken equal to Pi» Pe» 3 (i +pp), or
1p:1(pi+ P/ 1 P;s+ pe. [16], where indices i and f correspond to the initial and final state,
respectively. :{)j will be called the eikonal momentum and its direction — the eikonal
direction. We shall always choose the z-axis of a reference frame in the eikonal direction
and denote the component of any vector in a plane perpendicularto p by anextraindex 1.

(2.2)
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The Green functions and amplitudes in the eikonal approximation will be denoted with
a tilde.

In the eikonal approximation, a state |p,> will be said to be on energy shell if
P _ Pipo=p) _
2u u

E- 0. (2.3)

It is clear from the definition that the on-shell momentum is equal to the eikonal momentum
if, and only if

E = 5—2 . 2.4)
Otherwise, denoting
n = fpﬁ -2 2.5)
we get the on-shell condition in the general form
Doz = pj+1; (2.6)

This means that except for p ;= p; Or p ;o= Pr in the centre of mass system the initial and
final states will always be slightly off-shell.?

Depending op states sandwiching the scattering matrix ¢, its matrix elements can be
full off-shell, left off-shell, right off-shell or on-shell. We shall denote them by ‘7', '%, ',
and 7, respectively.

The eikonal approximation has two very important advantages. First, due to the
Green function linearization, it is possible to find an exact solution of the Lippmann-
-Schwinger equation in a simple and compact form. Secondly, if the potential is spheri-
cally symmetric, the relation between the on-shell amplitude and potential is easily convert-
ible, and allows us to express the potential in terms of the amplitude. This enables us to
investigate the shape of the potential and then to calculate the off-shell amplitude with
the help of this potential.

Now we proceed to the derivation of the formula for the eikonal amplitude. Neglec-
ting the spin interactions and assuming that the potential, is local we get the solution of
the eikonal Lippmann-Schwinger equation in the form

t = V+VgV, 2.7
where g is the eikonal Green function and in the position representation equals
in 2

Tl viLoa

- i - - i
gy = = 28 G ~F )P~ z)e 2.8)

J

! In the eikonal approximation momentum is on-shell if its z-component is determined; other com-
ponents are arbitrary (see Eq. (2.6)). See also Ref. [20].
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Substituting Eq. (2.8) into Eq. (2.7) and going to the momentum representation we get
the full off-shell amplitude

(e8]

it 1 [ 27 ‘i?(;’l_;) —iz(p'z—pz) -

<p|t|p>=(7)3jdrle A (.
-

s

i _ ﬁp— V@0

- = dz dz' 0(z' —z)e ' @=mPimnN = izlpitn; = pe) V(ri, Z)V(F_L, z')e } .
~ 00 — o0

2.9

Now, taking the left or right state on energy shell, i. e. for p; = p;+y; or p, = P+,
we get the half off-shell amplitudes

> T i 3 _"(p —p) - Fj f V("l &)dg
plit'ip) = G d’re V(e : 2.10)
in %
. O —— f V(L4
TN — e FE By [N
<P'l'tlpy G | 4T (Pe ' @11

Finally, the on-shell amplitude is

B e

-, 1 . - —ir D7 J = o0
pltlpy = @’ fdz LEL R —1]. (2.12)

All the above formulae are valid in any reference frame in which symmetry condition
is satisfied and for any choice of eikonal momentum. However, for the sake of simplicity,
we take p ;= p; = k and continue our considerations in the cms frame. Introducing

f= —Qn)’ut, (2.13)

one can easily recognize in Eq. (2.12) the well known Glauber formula [2] for the eikonal
amplitude

. ik . o g
f4) = 2’— f d?he” (1 — 2PNy, (2.14)
7T
where
- u —_
xb) = ~ J V(b, z)dz, (2.15)
Ad=p-p, b=F. (2.16)

Eq. (2.14) will be our starting point to calculate the potential. With one additional
assumption about the spherical symmetry of the potential, the relation between the phase
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function x(g) and potential becomes an ordinary Abel integral equation

o0

u -
2(b?) = T f V(b2 +z2)dz (2.17)
which can be easily solved to give
V(r) k4 (+2) 2.18
r)y=— 5 x(y+r) —=. .
wJ \/ @19

Now, to obtain an explicit form of potential, we have to assume some parametrization
of f(4 ). In the high energy domain the simplest and the most popular parametrization
for small momentum transfer is

iok —adi2
fd)y =— (1—19) * (2.19)
where
_ Rej(0
= m s (2.20)

o is the total cross-section and 2« -— the slope of the elastic differential cross-section.
Substituting Eq. (2.19) into Eq. (2.14) and calculating the phase function y(5?), one obtains
from Eq. (2.18)

2ik d B
Vi) = — - R In[1-De Jdu (2.21)
o]
or, equivalently,
V(r) = ik vdu 1— 1 QW 4a - (2.21a)
2map D ’ ’
0
where
i
p - od-io) (2.22)
8na

The remaining integration in Eq. (2.21a) can be done numerically. However, for some
values of parameters o, o, and g it is possible to express ¥{(r) in an analytic form. Namely,
if 0, a, and p satisfy the inequality

O' e
D = 8—77:m»\/1+92 <1, (2.23)



260

then for any r we can expand the logarithm in Eq. (2.21) and after carrying out integration
and differentiation term by term we get

V() = — —ik—_— Z i_ [De ;7]". (2.24)
2u \/not 4 Jr

The condition (2.23) is satisfied for n¥*p — n*p in the whole high energy domain
above 5 GeV, and for pp — pp at energies higher than 10 GeV. With our parametrization
of the amplitude, the elastic cross-section is

el — Oj{L+ @2)
32na

(2.25)

which means that to satisfy Eq. (2.23) it is sufficient that ¢* < 1 ¢. It is interesting that
the strong violation of the inequality (2.23) induces a positive imaginary part of the po-
tential. An example of such a case is shown in Fig. la, the curve corresponding to
Db = 5 GeV/e. This effict will appear in any reaction in the sufficiently small energy
region since |D| decreases with increasing energy. It is probably caused by the fact that the
eikonal approximation and our parametrization in Eq. (2.19) are not valid there, especially
at large momentum transfers which correspond to small r.

1atRov (1)
4 LGaV]

_06 ......

-08 ~—=10GeV/c
~~~~~~~~ o == 15 GeV/c

- 10 TS e 20Gev/c

B — 25GeWre

Fig. la
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Our results are presented in Figs la, b, c. We consider the following scattering
processes

PP = PP, T'p = P, TP = TP

as illustrative examples. Parameters o, o, and ¢ used in our numerical calculations are
listed in Table 1.

TABLE I
The values of parameters taken for numerical calculations of the effective eikonal potential at different
energies
Reacti Diab G @
caction [GeVjc] [mb] [GeV/c] e
5 41.2 35 -0.33
10 40.0 4.2 -0.30
PP — PP 15 38.8 4.5 -0.27
20 38.6 4.6 —0.26
25 38.6 4.6 -~0.26
5 26.6 3.5 —0.25
atp — atp 10 24.8 4.3 —0.21
20 235 4.3 -0.15
5 29.0 3.9 —0.16
p > ap 10 26.5 4.6 —0.13
20 25.0 5.0 —-0.12

Our effective eikonal potential has the following properties:

1. It is energy dependent through momentum k and parameters o, «, and p. For very
high energies the last three parameters vary very slowly, and nearly all energy dependence
is due to the variation of k. Therefore, asymptotically the imaginary part of V(r) should
increase monotonically with energy, as can be seen in Figs la, b, ¢. This might not be
true for Re V(r), if o changes sign in the high energy region.

2. It is asymptotically of the Gaussian shape, as can be seen from the leading term in
Eq. (2.24). This is just the result of the Gaussian parametrization assumed for the on-
-shell amplitude. The range of the potential is roughly 0.3 to 0.6 fm.

3. It is not very sensitive to the variation of ¢ and ¢ in the limits of experimental
errors. Under such a change our curves may be shifted by about 5-109%,. The parameter «,
which is known with rather high uncertainty, has a stronger influence on our potential.
Changing it by 209, we can get a shift of ¥(0) up to 409, with a slight change of the shape.

4. From our considerations and the figures it follows that neither such simple
parametrizations of potential as Yukawa’s or exponential, nor any kind of real potential
can be used for description of experimental data.

Now, we shall proceed to one of the main applications of the potential, namely, to
the calculation of the off-shell eikonal amplitudes.



203

3. Off-shell eikonal amplitudes

From the formula (2.9) it is clear that the full off-shell amplitude is very compli-
cated and depends on the four independent scalar variables — A 1» Pz> and p;. Since in
various applications amplitudes are usually only half off-shell, we shall restrict our con-
siderations to the much simpler formulae (2.10) and (2.11). As in the previous Section,
all our con_sjderations will refer to the centre of mass system for the eikonal momentum
.1;;' = Ei = k.

Let us introduce the two phase functions {10]

z

H ,
1) = =1 j V(b, &)dE, (3.1)
) L
bz = - f V(b, )de, (3.2)
and the Fourier transforms of the half off-shell amplitudes
"1(b, 2) = V(b, 2)e'*" &3, (3.3)
t'(b, 2) = V(b, 2)e'r ¥ &2, (3.4)
1t is clear from the definition that with the spherically symmetric potential we have
2 7b, 2) = 1B, —2), (3.5)
and R R
t'(b,z) = t'(b, —z). 3.6)

Therefore, it is sufficient to calculate explicitly one of the two amplitudes. We shall choose
the left off-shell amplitude. Suppose that the inequality (2.23) is satisfied. Then, substi-
tuting Eq. (2.24) for potential, we get

ik [N 1 e
t(h,z) = — — -—= D" 4a X
2u \na NZ

n=1
I 1 2, m
x [1—De ‘“‘]"’zexp{— - g - (De~P47ymp (\/ﬁ 4)} (3.7)
2 m 4o
m=1
where
2 2
P(x) = —/—;J<e—' dt. (3.8)
\/”0

One can see that the procedure of continuation off energy shell introduces some dependence
of the ratio of real to imaginary part of amplitude on momentum transfer. In practical
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calculations we shall assume ¢ = 0 for simplicity. With this assumption the parameter D

in Eq. (3.7) must be replaced by
ag
3.9

Dy =—
%7 8na

and both on-shell and off-shell amplitudes are purely imaginary.
We have carried out the numerical calculations for the 7-p and nn elastic scattering

at p, = 9 GeV/c using the values of parameters listed in Table II. As an example, the
shape of the n—p left off-shell amplitude is presented in Figs 2a, b (dashed curves). The

Yi‘t(v,z) -
20 4i‘t(b,2)
. o [GeV]
e g 20
[
ft 18 = Tp
J 16
/
H ; 141,
| 9 '
{ il
] i 10
II // 0.
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Fig. 2. The left off-shell scattering amplitude "7(b, z) for 7~ p = 7 p at 9 GeV/e. a) for fixed b equal to 0.0,

0.5, and 1.0 fm; b) for fixed z equal to 0.0, —0.5, and 0.5 fm. The dashed curves correspond to the actual

shape of amplitude as given by Eq. (3.7) with parameters from Table I1. The dotted curves are the result

of the two-parameter fit with the formula (3.10) and constraints (3.15) and (3.16). The corresponding values
of parameters are listed in Table III

brief analysis suggests that ‘7(b, z) is of a Gaussian-like shape in both variables but with
the maximum slightly shifted in the negative z direction. Moreover, the shift depends
on the b parameter and tends to zero with increasing b. This effect has an interesting
physical interpretation [17]. It can be connected with absorption. When the flux of particles
approaches a spherical potential, one could expect the interaction region to be also sym-
metric. But on their way along the positive z direction, the particles get partially absorbed
and the interaction becomes weaker. This means that the effective maximum of inter-
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action must be at some z < 0. The dependence of this shift on b seems to confirm this
interpretation since the absorption must decrease with the increasing impact parameter,
that is for more peripheral collisions.

Since normally one needs the amplitude in the momentum representation, we should
take now a Fourier transform of Eq. (3.7). As this would be rather complicated calcula-
tion, let us proceed in a much simpler, although more approximate, way. One can assume
that the amplitude is of the shape

1(b, z) = Ae™ BV TCET (3.10)

and then make a four parameter fit to our curves. The assumption that 4 does not depend
on b is important if we want to get an easily Fourier-transformable function. Then, from
(2.11) and (3.10) we get

Alz A22 .
-, —\ — + s +iddz o~
pl'tip> = me (48 ac ) = "t(4), (3.11)
where
4d=p-p (3.12)

also for the unphysical momenta. However, when going on-shell, which means putting
(see Eq. (2.6))

4, =0, (3.13)

we would not reproduce exactly the input amplitude, although the difference between
the correct and fitted 4 and B parameters is less than 109. Therefore, we shall use the
constraint that on-shell Eq. (3.11) becomes

ick

W = —
(4) 1673y

et (3.14)

Hence, the following conditions should be satisfied

4= ke yC (3.15)
B 87> 2au’ )

B = ! (3.16)
_ 4a . .

We have carried out the two-parameter fit and its results are shown in the Figs 2a, b
(dotted curves). The values of the parameters obtained from the fit are given in Table IIL.
It follows from the symmetry relation (3.6) that the right off-shell amplitude will have the
same values of parameters with the opposite sign of 4.

It is clear from Figs 2a, b that our fit is not very good. However, for the small momen-
tum transfer the Fourier transform is not sensitive to the detailed shape of ‘7(b, z)
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and, therefore, our amplitude should be correct in the eikonal approximation region.
Besides, the above fit has an important advantage of providing us with a very simple
formula for the half off-shell amplitude which can be applied for further calculations
[18]. Since the slope in the variable 42 is smaller than that in 42 and parameter d is
rather small, the off-shell effect may be expected to be negligible in the small momentum
transfer region.

TABLE 11
The values of parameicrs taken from Ref. [19], used for calculation of “#(b, z) at the laboratory momentum
9 GeVie
Reaction | ¢ [mb] ! @ [GeV/e]™? e
np 26.9 1 4.5 0
TN | 25.3 l 4.5 0
TABLE IlI
The values of parameters obtained from the two-parameter fit to the left off-shell scattering amplitudes
at 9 GeV/e
Reaction g C [fm] 2 d [fm]
!
e p i 2.20 —~0.136
T n | 2.12 ~0.127
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