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The theoretical quadrupole and hexadecapole ground state equilibrium deformations
and deformation energies are calculated by the method of summation of the single-particle
energy levels, for even tungsten, osmium and platinum isotopes. They are in a good agree-
ment with the known experimental data.

The reduced transition probability B(E2), and Rasmussen parameter for the one-
-phonon vibrational 0* and 2+ states are calculated for the same elements, in the framework
of the “quasiboson’ approximation. The results show that with the use of proper quadrupole
and hexadecapole equilibrium deformations of the nucleus one is able to fit the experimental
data for tungsten and osmium quite satisfactorily, while for platinum isotopes this method
fails.

1. Introduction

In the last years many new experimental data for the collective levels in tungsten,
osmium and platinum region appeared {1, 2]. So it seems to be interesting to look for the
theoretical description of those experimental results.

Theoretical investigations of the properties of the collective vibrational states in the
deformed nuclei are usually based on a microscopic model. In such a model one assumes
that the nucleons move in a deformed average field and interact via pairing and multipole-
-multipole forces {3,4,5,6]. For the single-particle potential one uses the Nilsson or
Woods-Saxon model. The short range pairing interaction is treated by means of the BCS
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method and for the multipole-mulipole interaction the Random Phase Approximation
is applied.

We would like to present here such a description of the properties of the one-phonon
0* and 2* collective vibrational levels in W, Os and Pt isotopes, with the inclusion of the
hexadecapole deformation parameter (g,) which seems to play quite an important role.
We are especially interested in the problem how far one can go with this formalism into
the transition region. Also, we add the calculation of the deformation energies and the
ground state equilibrium deformations for these nuclei. We insert the comparison of our
results with the values obtained by Kumar and Baranger in their model which does not
include the hexadecapole deformation [7, 8].

In Section 2 we present the method of evaluation of the equilibrium deformations.
Section 3 gives the formulae for the energies, wave functions and the decay characteristics
for the quadrupole vibrational collective 0™ and 2t states. In Section 4 our results are
presented and discussed.

2. Deformation energies and equilibrium deformations

It was suggested in the Ref. [2] that, for even isotopes of W, Os and Pt the deformed
shape is the most stable if the neutron number N is equal 108. It may be expected then
that the deformation energies for these elements, calculated as the functions of N with
constant proton number Z, should have a maximum for N = 108. However, the deformation
energies as calculated by Kumar and Baranger [8] appear to vary monotonically with
N in the vicinity of N = 108 (Ref. [2]). This behaviour could be a result of the neglec-
tion of the hexadecapole deformation of the nuclei.

In the present work we have calculated the deformation energies and the equilibrium
deformations for even isotopes of W, Os and Pt taking into account both the quadrupole (¢)
and the hexadecapole (g,) deformation parameters. The calculations have been done
with the use of the Mottelson-Nilsson-Bés-Szymarniski method [9]. This method consists
in the minimization of the total energy of the nucleus with respect to ¢ and g, with the
condition that the nuclear volume remains constant as the shape of the nucleus is changed.
The total energy of the nucleus, E(c, ¢,), is given as a sum of the single-particle Nilsson
energy levels, with pairing energy, Egcs, (both for protons and neutrons) and the Coulomb
energy, E.,.,, for protons:

E({-;, 84) = EgCS + E;;CS + Ecoul (1)
with

Egcs = Z 2”3‘3;: -4 Z/Ga 2

where

1
n =z 1_ Ty
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e,(e, 8;) — is the single-particle energy of a proton or neutron, 4 — denotes the position
of the Fermi level, and 4 — the energy gap.

The single-particle energy levels e,(s, &4) are calculated in the “new Nilsson™ model
[10] with the inclusion of the coupling terms between the N and N+2 oscillator shells, as
was suggested by Moller [11]. For the Nilsson model parameters « and y we take the
interpolated values corresponding to A4 = 187, from Ref. [12]:

Kk, = 0.0620, u, = 0.614 for protons and
Ko = 0.0636, pu, = 0.393 for neutrons.
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Fig. 1. Total energy in MeV, as a function of the deformation parameter ¢ with s, = const.,
El(e, &4 = 0.04)— E(0,0), plotted for isotopes of tungsten, Z = 74

The pairing interaction is taken into account in the BCS approximation [13]. The
number of levels included in the BCS equatations

1 e,—A
/ Z Jenitar Z[ \/(e,,-l)2+A2] ©

is equal to Z and N for protons and neutrons, respectively. The pairing force strength
is G, = 20.8 [MeV/A] for protons and G, = 15.6 [MeV/4] for neutrons.
The Coulomb energy is calculated from the formula

Ecoul(sz 84) = Ecoul(e =0,8, = 0) X Be, (4)
where

Ecou(z = 0,84 = 0) = 0.6 Z%*/R = 0,71996 Z*/4'* MeV

is the energy of a sphere, and the coefficients Be describing the change of the Coulomb
energy, as the nucleus is distorted from the spherical to the deformed shape, are taken
from Ref. [14].

The calculations of the total energy surfaces as a function of the deformation param-
eters are performed for the positive and negative values of the quadrupole deformation e,
and for the positive values of the hexadecapole deformation g,. The equilibrium deforma-
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tions in the minima of the surfaces are denoted as &g and (g4)g for the positive values of ¢
(prolate shape of the nucleus) and as ¢; and (e;), for the negative ones (oblate shape).
The coiresponding deformation energies are defind as &g = E(0, 0)—E(eq, (¢4)¢) and
o = EO0,0)—E(sy, (64)9)-
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Fig. 2. Totalenergy in MeV, as a function of the deformation parametr £, with £ = const., E(e = 0.20, £,)—
—E(0, 0), plotted for isotopes of tungsten

The minimum of the total energy surface in (g, ¢&,) plane for the given nucleus is
determined as a crossing point of the two curves — one of them joins the minima of
the total energy £ as a function of £ with various values of &, = const. (Fig. 1) and the
second one -— the minima of the total energy as a function of &, with various values of
¢ = const. (Fig. 2).

3. Microscopic description of the one-phonon vibrational states

In order to find the energy of the quadrupole collective vibrational states with X = 0+
and 2+ and their decay properties we apply the quasiboson approximation [4]. We start
with the nuclear Hamiltonian given by:

il = ‘Llsp+Hp;xir+Hc0H9 (6)
where the single-particle part has the form

H,, = kZ(e,‘.—/l)a,?;aks with s = +1, @)

the pairing term is given by

Hpair = _Gza:+a;~ak'—ak’+ (8)

ki’

and the collective part

H-:oil = ‘%Q*Q (9)
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with
Q= Z (Iksk's'“:sak's's (10)
ot
where g, is the single-particle matrix element of r2Y,, in the case of 0+ state and of
r3(Y,,+Y,..,) for 27 state.
The ground state of our system is the phonon vacuum defined by the equation P;¥ = 0,
where P; is the phonon operator given by

Pp=1 ; {y);&k’Akk’ - (flik’AI:;(’]' (1

Ay and Ay, are the quasiboson creation and annihilation operators respectively. In
order to find the energy and the wave function (the amplitudes y;,. and ¢y.) of the one-
-phonon state P;"¥ we use the variational principle

5{<WPAHU%W>—<WJHW>af§[:£:«w&f—«who%—z]}:=0 (12)

Kk’

which leads us to the dispersion relation!

1=k, Flw) =0 (13)
with
. (Ey+ Ey) (0 + 0p1) gl 44° Gl ;) )
P(w,' =2 ! 2 2 - .. 2 25 °? (14)
(Ex+Ep) —o; y(w;) E4E; —w;)
kk’ k
where E; is the quasiparticle energy F; = \;(674152+A2,
447 — ol +de,—A) (e — 4)
Y(wz) = . 2 ‘2( 2 £ 2y (15)
E\E(AE; —w}) (4E; ~ o)
kk’
I'(w) = {(w)—4(e,— n(w)), (16)
y qu[44% — 0} —4(e,— 1) (e — A)
Uw) = ul L= Z*ZJ (17)
E\E(AE; ~ 7)) (4E;. — ;)
kk’
and
Guler—ey)
'. = . 18
e §:mamﬁ—ﬁxwﬁwb 19
kk’

For the amplitudes 4}, and ¢l,. we obtain the formulae

i \/ 2 [ qulu +ouy) 4 [2Fk((’)i)Ek + 4E:3 - w‘Z]}
‘Pkk = . R T 2 2 s
E+E.—wy Ww)E(4E; — ;)

Y

(19)

! Due to the inclusion of the particle-particle interaction into the quasiparticle interaction, the spur-
ious state is excluded from all the formulae for 0t statc characteristics [15].
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P = 0% E ~ O 3 s (20)
v+ Ep+o; PW@)E(BE; — wf)
with
y = (Ex+ Ev) (0 + vty ) g o;
[(Ex+Ep)*—of ]
W
n () 242 qud (@) @1)
Z E(4E; — o) y (w,) ?(w,) E(4E; —})*’
In the case of the y-vibrations (2" state) all the diagonal matrix elements g, are equal
zero, and
(Ex+ Ee ) +vaie) i
F ;) = 2 s
=2 ) B e
Kk’
; 2 que + o)
Wkk’ - \/Y Ek+Ek»—wi ’ (19a)
{ 2 Qe +v4ttye)
1 — _ -~ RER BRI
P \/ Y E+Ep+to, (202)
with
y (Ex+ Ey) (i +vie) g, @1a)
[(Bx+Ep)* —f]
ki’
It is now easy to find the matrix elements for the electric multipole transition EA
e \ 2
M(EA) = :/—i é (v + V) (Wi + P, (22)
I

where £ is the single-particle matrix element for EA transition. So, for the transition
between the ground 0+ state and the y-vibrational 2+ state we find

B(E2;070 - 2*2) = 0.674 A™*3 x

9 [(1 tey) E G (uy + 00 ) (B + Ey) e ql%k'(ukvk’ + 04)
o (E+Ep) —of o — (Ex+E.)* — o}
protons neutrons
2 2
Qi (U + ) (B + Ep o,
X (E,+E, 23
(Bt Ee )}/ Z [(Er+Ep)—l]? 23)
K

protons,
neutrons

in the single-particle units. Here gy ~ <k|r2(¥,,+Y,,)[k'>.
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For the decay of 0* collective vibrational state (f-vibration) one usually calculates
the so-called Rasmussen parameter [16],

4 2
e’R50*(EO)
.nt +
B(Eza Ovibrational—'zmtation on the ground state)

where ¢ (EO)R? = M(EO), R, = 1.2 A'® [fm] is the nuclear radius and e — the electron
charge. For this parameter we have the following formula

_ 4 (1 +e0) P Qo (Ex+ Ey) (ukvk'+l7kuk’)2 _
(F(w)? o (Ex+E) -}
kk*

protons

¥ kkr k(wl) te ' TG (Eg + Ey) (wop + L’kuk'f _
y(w.) E(4El-wl)| " (Ex+Eo) —?
Ty

29

Pfo[ons neutrons
24° rud (o) 2 25
Ko £ EX4Ei—od) (25)
k

neutrons

where gy ~<kir? Yyolk'>, ry ~ {kir?Ysolk’) and F(w,) is given by the formula (14a).

4. Results and discussion

Table I presents the values of the quadrupole and hexadecapole ground state equili-
brium deformations, for prolate (g ,(¢,)g ) and oblate (g5, (¢4) ) shapes of nuclei, calculated
by the method described in Section 2. It contains also the corresponding deformation
energies &% = F(0, 0)— E(ef, (e4)F), the energy differences between the oblate and the
prolate minimum, A& = E(g;, (€4)o ) —E(eg » (84)0) = Eaut—Eqer, and the values of
B, and B,. The relation between (8,, 8,) and (¢, &) parameters has been taken from work
[12] where it is assumed that R(©) = Ro(B264P6 ... )0+ B2Y20+PaYao+Bs¥Yeo+ -...).
The calculations have been performed for about ten isotopes od W, Os, and Pt including
light nuclei lying far from the S-stability line. For comparison, some experimental values
of ff, taken from Ref. [2] are also presented. The experimental values of £, for these
isotopes are unknown. One can see that the theoretical values calculated by this simple
method are in quite good agreement with the experimental ones. They are also close
to the results obtained by means of the Strutinski renormalization method, with Nilson
potential in the single particle Hamiltonian [12, [7].

The quadrupole (f,) and hexadecapole (f,) ground state deformations for some
isotopes of W, Os, and Pt have been calculated in the paper of Gareev ef al. [18] and
recently in the paper of Gotz er al. [19], by means of the Strutinski method with Woods-
-Saxon single-particle energy levels. Our f, values for W and Os nuclei and for light
isotopes of Pt are close to the values given in [19], the differences are less than 10%.
The B, value for Pt *°2 and B, from [19] have different signs. The values of f, given
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TABLE 1
The ground state equilibrium deformations and the deformation energics of W, Os and Pt isotopes
- +
O e O R 8 BV Vel I A L R
| | |
74 | 96 | 170 | — | — | 225|000 30 | 15 | 45 24 oz
98 | 172 | —.265 : .000 | 240 @ .000 ; 3.5 1.9 5.4 .261 .025
100 | 174 | —.255 | .000 | 240 | 015 4.0 20 6.0 .262 007
102, 176 |+ —.250 ¢ .000 245 .024 ;| 4.3 2.0 6.3 .268 | —.003
104 178 —.240 005 | 240 .034 4.4 2.1 65 .263 | — 016
106 = 180 = —~.240 | .009 . 230 | .043 42 2.3 6.5 251 | 253  -—.029
108 | 182 | —.240 ; 011 | 225 | .053 | 3.8 2.2 6.0 | .247 248 | —.042
110 | 184 | —.225 | 017 | .215 | .054 | 3.3 1.8 5.1 | .233 236 | —.045
112 | 186 | —.205 | .020 | .190 | 050 : 2.7 1.3 4.0 | 224 208 | —~.045
76 98 | 174 — — 225 004 | 27 1.4 4.1 245 ¢+ 017
100 176 -.260 .000 .230 . .01l @ 3.1 1.5 4.6 251 1 .009
102 178 -.250 002 230 ; .020 3.3 1.7 5.0 251 ~—.002
104 | 180 | —.250  .003 | 225 | 032 4 34 | 1.7 5.1 246 —.017
106 | 182 | —.240 | .006 | .225 | .040 | 3.3 1.8 5.1 | .228 247 | —.027
108 | 184 | --.225 | .01l | .215 | .050 | 29 | 1.8 47 | 213 236 | ~.041
110 | 186 | ~.200 | .014 | .195 | .051 | 2.4 1.5 3.9 | .205 214 | —.045
112 | 188 | —.180 | .019 | .180 | .048 | 1.9 1.2 310 194 197 | —.044
14 190 | ~.165 | .024 | 165 | .047 1.5 0.7 22 .180 180 | —.045
16 192 = —.150 .023 .145 | .044 1.1 0.5 1.6 | .167 , .158 | —.044
78 100 | 178 | — . o-- 1 .230 008 | 22 L1 33 .250 .013
162 180  —.230  .002 230 | .0I5 @24 1.1 35 251 .005
104 | 182 | -.230 | .004 | .230 | .027 | 2.5 1.1 3.6 251 | —.010
106 | 184 | —.220 | .007 | .220 | .036 | 2.3 1.1 34 | 226 241 | —.023
108 . 186 | —.200 | .014 | .200 | .040 | 2.0 0.9 29 | .197 219 | —.031
1o | 188 | —.170 | 017 | 175 | 038 | 1.7 0.5 22 | .183 191 | —.033
112 0 190 ¢ —.155 | 020 ' .150 @ .036 | 1.4 0.2 1.6  .165 163 1 —.034
14 | 192 © —~.140 022 130 | .032 1.0 0.1 1.1 169 . 141 —.031
e & 194 -.125  .020 .115 ! .031 0.7 | —0.1 06 | .149 | —.130  ~-.017
; 18 i 19 | —.110 | .018 = .100 A .028 05 | —03 02 | 135 ; —.115 | —.016

The first three columns identify the nucleus. The next seven columns list the results obtained in this
paper: the quadrupole (¢) and hexadecapole (&4) ground state deformations for prolate and oblate shapes
of nuclei, the deformation energies for oblate shape (&3.f), the energy differences between the oblate and
the prolate minimum (& 4r) and the deformation energies for prolate shape (€a¢). All energies are given
in MeV. In column 11 some experimental values of the quadrupole deformation BS*P are given. The last
two columns present the quadrupole (f,) and hexadecapole (£.) deformations evaluated from (&, €4) para-
meters.

in [19] differ much more from our results. Their absolute values are always greater than
ours. This could be partly connected with the fact that in evaluating the (f,, B,) param-
eters the authors of work [19] assumed that R(O) = Ry (B84 (1+B:Y20+B84Y40)
neglecting f¢ and the others components.



303

The equilibrium deformations are also presented in Fig. 3 in the (¢, &,) plane. It can
be seen that for isotopes lighter than the isotope with N = 108, the hexadecapole deforma-
tion increases strongly with 4, while for the isotopes with N > 108 it changes very slowly.
On the contrary, the quadrupole deformation changes very slowly with A4 for isotopes
lighter than N = 108 and it strongly decreases for N > 108.

In Figure 4 the deformation energies are plotted as the function of the neutron
number N for constant proton number Z. It appears that these curves really have a maxi-
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Fig. 3. Ground state equilibrium deformations in (¢, &) plane, for W, Os and Pt nuclei

mum, as was suggested in Ref. [2]. The position of this maximum is in the vicinity of
N = 104, 106. The curves presenting the variation of A&, with N (Fig. 5) also exhibit
amaximum. The greatest energy differences appear for N = 106, 108.

The results for the deformation energies in W, Os, and Pt nuclei obtained by Gotz et al.
are plotted in Fig. 6. Unfortunately, in Os and Pt nuclei the authors did not present the
results for isotopes lighter than isotopes with N = 106. So, the comparison with our
work for these nuclei is difficult. The deformation energies taken from Ref. [19] are greater
than ours at about 1 MeV for Pt nuclei to 3 MeV for W nuclei. In all nuclei the defor-
mation energies decrease with increasing N for N > 108. For isotopes with N < 108
the values of &4 are equal to the value of &4 (N = 108) or smaller than this value

With the use of the formulae (23) and (25) we have calculated the values of the reduced
transition probability B(EZ;O;ound—-Zfibr) for the transition from the 0* ground state
to the second 2* state (the y-vibrational level) and the Rasmussen parameter X which
characterizes the decay properties of the one-phonon vibrational 0t state (the -vibrational
level). The calculation was made for seven isotopes of Pt, six Os, and four W nuclei.
The quadrupole equilibrium deformations were obtained from the experimental values of
B(E2) between the ground state and the first rotational 2+ state [2). For the hexadecapole
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Fig. 4. Deformation energies in MeV, as a function of neutron number N, for even isotopes of W, Os and Pt
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Fig. 5. Energy differences in MeV between the oblate and the prolate minimum, as a function of neutron
number N, for even isotopes of W, Os and Pt
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deformations we took the theoretical values given in Ref. [20] for tungsten and osmium.
For platinum we used the extrapolated values. Both the & and &, deformations agree
fairly well with the values evaluated in this paper. For the rest of the Nilsson model param-
eters and for the pairing force strength we use the numbers given in Section 2. All the
summations in (23) and (25) goes over all single-particle states in the energy range
A—2hwy < e <A+hwe where 4 is the energy of the Fermi level. It corresponds to about
50 levels for protons and about 60 for neutrons.

1 1 ] 1 1 1 1 ] 1 1 1 1 Pt‘=
96 98 100102 104106 108 10 712 114 116 118 120 N
Fig. 6. Deformation energies in MeV, as a function of neutron number N, for W, Os and Pt nuclei, taken
from Ref. [19]

All the calculations are performed for the experimental values of the energy of the
one-phonon state. The only free parameter of this calculation is the effective charge for
neutrons which was chosen to be equal to 0.15.

In Table II we present our results, the experimental data and the resulst obtained
by Kumar and Baranger [7, 81]. In the case of the 2* states one can notice that the agree-
ment of our results with the experimental data for tungsten and osmium isotopes is quite
good. In many cases it is better than in the theory of Kumar and Baranger, while for the
platinum isotopes our results are very far from the experimental data. The same trouble
seems to occur with the value of the Rasmussen parameter for those nuclei. Unfortunately
there are almost no experimental data for X for the isotopes of Tungsten and Osmium.

With the use of Eq. (13) one can calculate the values of the quadrupole coupling
constants K,, and x,, which give the experimental energy of the one-phonon 0* and 2+
vibrational states 1/F(w;) = x = k°A4~#/3, It seems to be interesting to notice here that
the quadrupole coupling constant k3, for the 0+ B-vibrational state decreases with the
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quadrupole deformation of the nucleus while the non-axial quadrupole coupling constant
x5,, which corresponds to the 2+ y-vibrational state, increases as the quadrupole nuclear
deformation increases. This result is in accordance with the predictions of Ref. [20].
The general aim of this work was to test how far one can go into the transition region
with the formalism described above. It seems to us that using the proper values of the

TABLE II
Vibrational 2+ and 0* states in W, Os, and Pt isotopes

i exp exp

B(E2y | B(E2) B(E2) E +

Nucleus & N Ey+ 102X 102X 102X
MeV exp K-B lees=0.15; MeV exp theory K-B
10w | 024 0.056 | 0.828 470 | 0.904 20 45
182 0.24 0.056 1.221 4.01 0.87 2.02 1.138 42
184 0.22 0.056 0.903 3.92 2.71 4.81 1.004 42
186\ 0.22 0.056 0.737 4.90 4.84 7.15 0.883 42
182()g 0.21 0.05 0.891 5.13
184()g 0.20 0.05 0.944 4.45
186()g 0.19 0.05 0.767 7.28 5.97 6.67
188()g 0.18 0.05 0.633 7.86 5.69 8.53 1.085 26
190()s 0.17 0.04 0.558 7.02 4.36 9.41 0.912 29

9205 1 0.15 0.04 0.489 6.38 1.05 10.10

184py 0.21 0.05 0.649 8.24 0.492 0.8+0.3 31

186py 0.18 0.05 0.607 8.12 0.471 ,0.65+0.2 24 0.61
188py 0.17 0.05 0.606 8.70 0.799 10.90£0.15) 22

190p¢ 0.15 0.04 0.598 8.62 0.921 {0.62+0.12] 16

192pt 0.16 0.04 0.612 0.60 0.15 8.58 1.195 122403 18 1.9

194pt 0.14 0.04 0.622 0.36 0.15 771 1.267 (0.8+0.2 10 1.4

196p¢ 0.13 0.03 0.689 6.02 1.135 8

The first column identifies the nucleus. The next two columns give the quadrupole and the hexadec-
apole deformations of the nuclei, used in the calculation. The next four columns list the experimental
energies of 2* vibrational states, in MeV, the experimental values of B(E2), the values of B(E2) given by
Kumar and Baranger and values of B(E2) calculated in this paper, with eeer = 0.15. All B(E2) values are
given in single particle units. In the last four columns we present the experimental energies of 0*-vibra-
tional state in MeV, the experimental values of Rasmussen parameter multiplied by a factor of 100, the
values of this parameter calculated in this paper and the results of Kumar and Baranger.

quadrupole and hexadecapole equilibrium deformations ¢ and g,, one is able to fit the
experimental data for Tungsten and Osmium isotopes quite satisfactorily while for Platinum
nuclei this formalism is no longer valid.

Most of the numerical calculations were performed in the Joint Institute for Nuclear
Research in Dubna, and we are indebted to the Nuclear Theory Department for the
hospitality extended to us.

We would like to express our gratitude to Drs. N. 1. Pyatov, A. Sobiczewski and
J. Jastrzebski, and to Professor Z. Szymanski for their helpful comments.
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