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DUST-FILLED VISCOUS UNIVERSES
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The Friedmann Equation with the bulk viscosity term (coefficient of bulk viscosity =
= const) is integrated for the dust-filled models. It appears that the introduction of dissipation
removes the initial singularity provided it is allowed by the Hawking-Penrose Theorem.
Many models obtained by this method, although analytically regular, possess regions with
negative energy.

1. Introduction

The role of dissipative processes in cosmic evolution has been discussed in several
papers [1]-[4]. In a previous paper [5], hereafter referred to as HKS, we have introduced
the bulk viscosity into the frame of Friedmann-Lemaitre cosmology. Explicit solutions
of Einstein field equations were found for the flat (k = 0), dust-filled and radiation-filled
universes (k = 0, +1), under the highly idealized assumption of constant coefficient of
bulk viscosity. It became evident that the introduction of the viscosity term into the cosmo-
logical equations does not exclude automatically the appearance of singularities (as is
often the case in hydrodynamics). There are, however, some viscous Friedmann-Lemaitre
models without an initial singulaiity.

In the present paper we enlarge our discussion by considering a wider class of dust-
filled Friedmann-Lemaitre universes (with & = 0, +1). The bulk viscosity coefficient
again is equal to a constant. The solutions which are presented here were found numeri-
cally. For the sake of completeness we also review our previous results concerning the
case k = 0.
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It is worth to mention the work of Treciokas and Ellis [6]. They consider the kinetic
world model in which the substratum is regarded as a distribution of particles of proper
mass m and 4-momentum p”. This function obeys the relativistic Boltzmann equations.
The system is completely described by the Boltzmann-Einstein equations. The kinetic
theory indicates that the motion in the Robertson-Walker cosmological models will be,
in general, irreversible, corresponding to a non-vanishing bulk viscosity. Treciokas and
Ellis have found, moreover, the flat (k = 0) solutions of FEinstein field equations with the
bulk viscosity term. The solutions coincide with those of HKS.

2. Methods of evaluation

1. As in HKS, we assume the energy-momentum tensor for an imperfect fluid:
T”v = (CZQ + p)upuv - pguv + ”HMKH‘M(”X;/I + ul;x - % gl.xu a;o) + CH‘wul;b (1)

where: H" = g""—u"u’ and n, { are, respectively, the coefficients of shear and bulk
viscosity. The Einstein field equations with the Robertson-Walker metric and the above
form of energy-momentum tensor give:

ke* 4+ R?

ICQCZ = —A+3 W 5 (23)
2RR+ R*+ kc? 2 R -
—————— a — ,

c2R2 R ( )

Kkp = A—

where: « = 3 {«x. The shear viscosity term vanishes on account of isotropy.
The equation (2b) with the equation of state for dust-filled universe: p = 0, and the
system of units: ¢ = k = 1, takes the form:

2RR+ R*+k—AR*—~22RR = 0. 3
2. If we define the energy to be equal to gR3, then from (2a) we have:
E = 3(R*+k)R— AR C))
Differentiating (4) and comparing the result with (3) we immediately get:
E = 6aR?R. ®
Since near the singularity IR| = o and |R| » o, equation (3) approaches the fol-
lowing form:

2RR+R?2 = 0. (6)

Hence we may notice that the singular behaviour of any model does not depend on
any physical constants, and is represented by the Einstein-de Sitter solution:

R ~ 1?1, (7,
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From (4) and (5) we also deduce that:

lim E = 2aE. ®)
R—0

3. The equation (3) was integrated numerically with the help of the modified Runge-
-Kutta method with minimization of truncation error. The serious difficulty in computer
calculations is to obtain a “‘smooth transition” through the singular point of the solution.
In order to arrive at proper solutions, the Runge-Kutta method is improved in the fol-
lowing points:

a) We postulate that near the singularity the energy must change continuously. If Az
is the step of integration then, according to (8), relation 4E'~ 2aEAt must hold. Applying
this to a certain region R < R; we correct the last value of E and, with the help of (4),
the last value of R, if necessary. The value of R, depends on the assumed accuracy.

b) We believe that only positive solutions have a physical meaning. We set the lowest
allowed value of R, say R,. If the result of integration is R < R,, we substitute R - R,
and R - |R| sign (4¢). The value of R, is chosen small enough not to decrease the accuracy
of the solutions. The solutions obtained by this method are compared with solutions
which are known analytically for special cases of k = 0 and « = 0 and good agreement
is found.

3. Results and discussion

1. Results of calculations are summarized in Figures 1-3. Three columns in each
figure correspond to three different initial values of R (chosen at the moment E = 1),
the first being the lowest one and the third the highest one. There are some cases in which
these initial values cannot be fulfilled, which are labelled with the word “impossible™.

If £k = 0 and « = 3 we have the critical value for A (see HKS), A, = —}a?, equal
to —3, so the models in the last row (Fig. 1) are identical with CV and CVI from HKS.
Note also that in cases (0, 3, 3, b) and (0, 3, 3, ¢) (the first three numbers denote param-
eters: k, A, « and letters: a, b, ¢ — first, second or third column, respectively) there are
regions with negative energy, which had not been marked in HKS (case A II).

2. In considering the problem of singularities in the viscous models we make use of
Hawking-Penrose theorem (H—P theorem) [7]. Since in our viscous world models there
are no closed timelike curves, we may consider, for our purposes, the H—P theorem to
summarize all previous results concerning the appearance of singularities in cosmology
(theorems II, I1I, IV, and V cited in the paper [7], except the theorem I holding also for
A > 0; theorem 1 postulates different, so-called weak, energy condition and applies to
the giavitational collapse and to some “open” world models). The H—P theorem is
proved for field equations with the cosmological constant 4 < 0, however Hawking and
Penrose conjecture that this restriction is not essential (*“... the larger the curvatures present
the smaller is the significance of the value of A. Thus, it is hard to imagine that the value
of A should qualitatively affect the singularity discussion, except in regions where curva-
tures are still small enough to be comparable with A.” [7, p. 531]).
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The energy condition of the H—P theorem for the energy-momentum tensor (1)
and the Robertson-Walker metric are equivalent to:

H = <0 (9)

Rl
i

at every point. The thick horizontal lines on some graphs (Fig. 1-3) denote regions in
which the energy condition (9) is violated (# > 0). Lack of this line on a given graph
does not mean that the corresponding solution satisfies the condition (9).
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Fig. 1. Models of the universe with k= 0: R vs ¢t dependence for different values of A4 and &, and for
different initial conditions (columms: a, b, ¢)

3. Most interesting cases are: (0, 0, 1, ¢), (0, 0, 3, b), (0, 0, 3, ¢) and (0, 3, 3, b). In all
these cases the energy condition (9) is violated, the singularity disappears and energy
E = gR? is positive everywhere. Let us note that the Friedmann-Lemaitre counterparts
of these solutions (¢ = 0) possess the initial singularity. Therefore bulk viscosity may be
.considered here to be an effective mechanism removing the singularity.
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There are many cases [(0, 3, 1, ¢), (0, 3,3, b), (0, 3, 3,¢); (1, 3, 1,¢), (1, 3, 3, b), (1, 3,
3,0):;(1,0,1,0),(1,0,3,b),(1,0,3,¢); (1, 3, 1,0), (1, 3,3, b), (1, 3, 3, )] in which s# >0
and the initial singularity is also removed by « 5 0. In these cases the introduction of
dissipation makes the energy E = oR? negative. The achieved solutions are analytically
regular. If we decide, however, to treat the regions in which E < 0 as unphysical ones
and cut them off, we obtain solutions geodesically incomplete, i. e. singular in the sense

k=+1 c b c
A=3
=0 Impossible
TN TN
Ay
Ay
A=3 AN /
Impossible
=
=t
AY
A= ./
= Impossible
. | —— |
A=0
ax=0 Impossible Impossible
DTNETINSTNC T N
A=0
=1 .AA/ Impossible Impossible
A=0
=3 Impossible Impossible
A=-3
w=0 Impossible Impossible
NN TN
A=-3
x=? N\/\/ Impossible Impossible
A=-3
o =3 Impossible Impossible

Fig. 2. Models of the universe with £k = 41: Rovs¢ dependence

of Geroch [8]. Therefore it will be useful to distinguish between the “point singularity” —
the zero-point of the R(¢) function, and “geodesical singularity” originating by the removal
of a part of the solution. Within the considered class of models such a distinction has
a clear meaning.

If we decide to remove regions with negative energy, the models (1, 3, 0, ¢), (1, 3, 1,
¢) and (1, 3, 3, ¢) are especially interesting: the regular model (1, 3, 3, ¢) acquires the ge
odesical singularity on account of dissipation.

Model (1, 3, 0, ¢) is interesting in itself. It satisfies the energy condition (9) and all
other conditions of the H—P theorem and has no singularity. This model supplies an
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example that the extension of the H—P theorem to models with 4 > 0 would not
be valid. This is precisely the case when ‘‘curvatures are still small enough to be com-
parable with A,

4. Conclusions

1. The introduction of the bulk viscosity into the frame of Friedmann-Lemaitre
cosmology removes the initial singularity (“point singularity”) provided it is allowed by
the H—P theorem.
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Fig. 3. Models of the universe with

&

= —1:Ruvst dependence

2. Many models obtained with this method, although analytically regular, possess
regions with negative energy.

3. The H—P theorem cannot be extended to models with positive value of the cosmo-
logical constant.

The authors are indebted to Dr A. Staruszkiewicz for valuable discussions.
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