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A formulation of quantum electrodynamics is proposed in which all the propagators
and field operators are gauge invariant. It is based on an old idea of Heisenberg and Euler
which consists in the introduction of the linear integrals of potentials as arguments of the
exponential functions. This method is generalized by an introduction of the so-called “com-
pensating curreats”, which ensure local, i.e. in every point of space-time, charge conser-
vation. The linear integral method is a particular case of that proposed in this paper. As
the starting point we use quantum electrodynamics with a non-zero, small photon mass
(Proca theory). It is shown that, due to the presence of the compensating current, the theory
is fully renormalizable in Hilbert space with positive definite scalar product. The problem
of the definition of the current operator is also briefly discussed.

1. Introduction

Physical objects appearing in quantum electrodynamics can be divided into two large
classes: gauge invariant and gauge dependent. The first class of objects contains all the
observables (like current, S-matrix efc.) and some of the renormalization constants,
whereas propagators or field operators can be quoted as elements of the second class.

Consider as an example the electron propagator i< 0[T(p(x)p(¥)[0>. Its gauge
dependence has a clear physical origin: it is the violation of the charge conservation,
namely, a charge e is created in y from the vacuum and is absorbed back into the vacuum
in x [4]. Therefore, the charge conservation law is satisfied globally but violated locally.
Charge conservation can be made local by introducing into the propagator an object
which will carry the charge back from x to y. One example of such an object is an expo-
nential function with a linear integral of the potential as its argument [1, 2, 5, 8, 9]:

exp (—ie jy A4 (8)). (1.1)

* Address: Imstytut Fizyki Teoretycznej, Uniwersytet Warszawski, Hoza 69, 00-681 Wa rszawa,
Poland.

(353



354

Then the propagator defined as:
i€0| T[(x) exp (—ie | d&"4,()y())] 0> 1.2)

is invariant under local gauge transformations:
P(x) > Px)e 1P, A,(x) > A(x)+8,4(x). 1.3)

The subject of the present paper is a generalization of the above method. The main
idea is to replace the linear integral in the exponent by a more general object of the fol-
lowing type [4, 6]:

§ d*2[F(z—x) -3 (z—»]4x(2), 1.4
where J,is a non-conserved current with point source: 8*3,(x) = —ed® (x). This current
carries the charge back from x to y and can be interpreted as a macroscopic current
flowing in the sources and the detectors of charged particles.

In Section 2 we construct propagators with an arbitrary number of external lines
using such a compensating current J,. It is shown that they are gauge invariant, where by
the gauge invariance we mean invariance under gauge transformations of the free photon
propagator. In Section 3 the problem of renormalizability is discussed. It is shown that
the theory can be made renormalizable, even if as the starting point quantum electrodynam-
ics with small photon mass (Proca theory) is used. In contrast to the formulation proposed
by Zimmerman [10, 11], in our formulation the introduction of the indefinite metric in the
state space is not needed. In the last Section we discuss briefly the problem of the defini-
tion of the current operator in the theory with compensating current.

2. Gauge invariant propagators

As the basic objects in our gauge independent, but compensating current dependent
formulation of quantum electrodynamics we choose propagators defined in the follow-
ing way:

Gug.“u;‘['xl, ves xm .Vm ey }’1, :la cees Zklda] =
= "C0; out | T(p(xy) ... P(X)P(Ya) ... P(y)A,(21) ... A, z)@[a]) 105ind,  (2.1)

where:
ofa] =exp[—ie a?‘*z'i1 (@' (z' —x)—a*(Z' = v)) (A(z) + L ()] (2.2)

and «,(z') is an external c-number electromagnetic potential. Since ea’(z) plays the role
of the compensating current, it must satisfy the divergence condition with a delta-type
right-hand side:

d*ay(z) = 5“9(z). (2.3)

Therefore, the propagator (2.1) is invariant under simultaneous gauge transformations
of the fields (x) and A4,(z) or under the same transformations applied to y and to the

external field &/,. To show the invariance of G, , under gauge transformations of the
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free photon propagator we will use the following brief notation for the perturbation
series in the theory without a compensating current [16]

Gy X1s o> Xy Vs ovv. Y15 215 - Zgl ] =

s ol - 0
=5z, . 0Tz, {(VWD P (2 j“"") e"p( _[" 4 M)

i [0 o
xexp(-— E J‘é_J; A 5‘%) C[‘M]KF[xl’ cors Xps Vs oons yl!d]}

In this equation K, denotes the propagator in the theory of non-interacting electrons
moving in an external electromagnetic field and C[/] is the vacuum to vacuum ampli-
tude in this theory:

(2.4)

J=0

KF[xla ey xm ym ey ylkd} =

= i"C0; out| T(yo(Xy) ... Yo(X)Po(¥a) --- Yo(¥1)) (05 in), (2.52)

(—zy ;—v +m+ey”&¢,,(x)) wo(x) = 0, (2.5b)

C[#] = <0; out{0; in) = <0;in|T exp (—ie [ d*z: phy*vi’: &) 10;in), (2.5¢)
i é é

V[f] = exp (— d f — 4 M) cls]. (2.5d)

Symbols of the type [ JAgJ etc. stand for the following integrals:

§ IO g = I (y)d*xd*y,
where 4p,, is the free propagator of the vector field with mass u:

d*k . —gumtu kK,
Apy(x) = f oS AT (2.6)

Expression (2.4) can be made gauge invariant by inserting into it a suitable phase factor
in the front of K. This phase factor must be composed of a* and /% in the following
way:

exp [—ie [ d*z' i (a*(z' —x)—ad* (2 —y))sZ (2))] = exp (—ie | asd). 2.7

The perturbation expansion for the gauge independent propagator G[a] can now be
written as:

Gl X1s voos X Vs oos V15 21, oo ZilHa] =

_ & v - JAgJ J4 °
= 5J“‘(zl)...5J“"(zk){( LD exl’(zf F )exp( J FW)
xexp(— 2 J——-—AF )exp(—iejm) Kel X1, vor X Yoo Yoty oo ymﬂ}

J=0

(2.8)



356

It is easy to show that

= exp (—- ie Jad) exp (-—- t;._ J(iea - 5%) Ap (iea - 5%)) (2.9a)

v 10 ) ot [as) =
o (-tefa)on(- [1a, (S i) o

Using (2.9) we can insert exp (—ie [ af) in (2.8) before the large bracket!

and

Gn;...m([xlb et xm ym sees yh Zl> LERTY Zk‘da] =

. X 6" -
= exp (—-ze fa&i)l T o) {(V[Jai]) exp (2 JJAFJ)
é i d o
X eXp (-— JJAF (5; —-iea)) exp(— — j(@ -—zea) Az (5—; —-zea)) X
X C[VKp[X1, s Xy Vs - s y,]&f]}

We see that (2.10) can be obtained from (2.4) simply by insertion of §/d/ — jea instead of
8/6s7 and multiplication by an overall phase factor, equal to one in the absence of the
external electromagnetic field. Similarly as in [4], we replace §/5s/ ~iea by:
o é 0 o
i - d4w-——la“(z——w) L=
osd X 0z ot ;(w)
0 é
= | g% ASNz _wy— — gz — —
J w [g“ (z—w) oz, a'(z w)j' 5w
Formula (2.11) follows from the equations describing the dependence of C and K, on the
gauge [16]:

(2.10)

J=0

(2.11)

0, —rmee C o1 =0, 2.12
b 0 — K, E4
X1s cves Xy Vs vevs ) =
y5 ,"( ) FL*1 y Vi
=ieY [6(z—x)~8Nz—y)IKe[x1s -0 Xp Yo -or V1 1] (2.12b)
i=1

1 A procedure of this kind has been applied by Bialynicki-Birula to the propagator G with k = 0
in Ref. {4].
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By substitution of (2.11) into (2.10) we obtain:

Gy X1s coos X Vi oy V15 205 -5 ZilHa] =
jie | ast ) i* & VD! ! JAgJ
= — (.4 —_
KPS - 60 (z) P F ) X
I‘ o i ] ]
— |Jp@ = —— | = 9F =
8 e"p( | 7P 5.&)“"( 2 Jw 5,«!) x

X CLATKE[X1s ovs Xps Vs vov yli.szl]}

[\

) 2.13)

J=0

where the photon propagators D{ and 2" are given by the following formulae:

-~

D(a) . 4 1 vs(4) 7 ¢ Yyt ’
raz—w) = | d°2"| gi67 (2" —w)— a—z—aa (' —=w) | dpu(z~2'), (2.14a)

i}
D w—w') = Jd‘zd“z' [g,_”é“)(z —w)— i afz— w)] AP(z—2")x

i
- a - w’):} . (2.14b)

x [gevé“)(z' —w)— 5

It follows from (2.3) that the singular part of the free vector field propagator y~20,0,45
does not appear in (2.14). Therefore, the propagator 4z, in these formulae can be replaced
by the usual Feynman-gauge propagator Dg,,. In order to avoid infrared divergences
we maintain non-zero mass in the denominator of its Fourier transform.
Formula (2.13) shows that in the perturbation series of the general propagator G, .
appear three types of free photon propagators: D{)., Py, and Ag,,. The first two can be
obtained from the Feynman-gauge propagator by a transformation of the following

type:
DFuv g DFyv+anfv+avfu+auavg' (215)

On the other hand, one can easily verify the invariance of the propagators (2.14) under
gauge transformations of the same type. This implies invariance of G, ,, under (2.15)
(if the Proca propagator Ag,, in (2.13) is not changed). We have therefore shown that
our new propagators (2.1) do not change both under transformations (1.3) and (2.15).

3. Renormalizability of the theory

Our further discussion of the compensating current dependent quantum electro-
dynamics will be based on the formula (2.13). One can see from it that the Feynman
diagrams occurring in the perturbation series of the propagator G,, ,, contain three types
of photon lines with different analytic expressions corresponding to them. Internal photon

lines correspond to the propagator @,fv defined by (2.14b). External photon lines with
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one end free and one end attached to the rest of the diagram must be replaced by D{),,
whereas external lines with two ends free correspond to the usual Proca propagator 4y, .
We see therefore that the expressions corresponding to the photon lines with at least one
end attached to the diagram are free of the singular y~*k k, terms in momentum space.
This implies that the asymptotic behaviour of the momentum space integrands in the
perturbation expansion of G, , is no worse than th«t in Feynman-gauge quantum
electrodynamics. This statement is tiue independently of the presence of the compensat-

ing current in 9* and D, since from (2.3) it follows, that in momentum space we have:

k*a,(k) = i. (3.1)
This means that the asymptotic, large £ behaviour cannot be made worse by the occur-
rence of the compensating current.

As a result of the introduction of the compensating cutrent to the theory of massive
photons we have obtained, apart from the gauge invariance of the propagators, a full
renormalizability of that theory. Note that the vector meson field theory is not renormal-
izable in the usual formulation, /. e. finite field operators cannot be constructed as operator
valued distributions acting in the state space with positive definite metric [10, 11, 12].
On the other hand, the gauge independent formulation, proposed in the present paper,
results in fully renormalizable propagators in the usual Hilbert space with positive de-
finite scalar product, at least for a certain class of compensating currents.

To make the role of the current a* in our theory more clear, let us consider the photon
propagator 9 in greater detail. It follows from (2.14b) that it is equal to the photon
propagator evaluated in a certain, paiticular gauge, which is in a sense defined by a*[4].
The analytic expressions corresponding to the remaining types of photon lines have the
same form as that for the internal ones after performing the following gauge transfor-
mation:

A z) = B(2) = A,(2)- jd“z' 57;4' a’(z' —2)A(z"). (3.2

The free propagator of B, is equal to EZZ‘, Thus, using instead of G
9 defined as:

the propagator

Bi...Hk
.. px

G X1 s Xy Yy oo V15 2y s il a] =

= i"0; out| T(p(x,) ... Y(x)P(¥y) - Y(¥1)B,,(z1) ... B, (z)®[a]) (0;in)  (3.3)
we obtain a fully gauge-invariant object. Howeves, it follows from (2.14a) that it is equal
to the usual propagator in the theory without a compensating current, calculated in a cer-
tain gauge, namely the gauge defined by a*. We can therefore say that quantum electro-
dynamics with a compensating current, expressing explicitly charge conservation (gauge
invariance), is equivalent to the theory formulated in a certain, particular gauge (cf. equiv-
alence theorem in [4]).

A large class of compensating currents is given by the following formula [17]:

n*(nk)— ok*

Pl ) =i 0
K Q) = ey — ok

nn, =1, (3.4)
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where the parameter o can change from —oo to +o0. For ¢ = 0 (3.4) gives the Fourier
transform of the current created by a point particle moving along a time-like straight
line, whereas for ¢ = 1 we obtain the Coulomb-gauge current. This means that substitut-
ing a (k;1) to the Fourier transform of 2}, we obtain the Coulomb-gauge photon pro-
pagator:

0,0,—n,(nd)o,—n,(nd)o
gFV — _ v+ i [ v v J D x). 3'5
u ()C) |: gu D _(na)z F( ) ( )
For p — o the formula (3.4) gives the Fourier transform of the complex current vector:
kl
ad(k; 0) = i —5——, 3.6
( )= kK +ie (3:6)

corresponding to the Landau-gauge. This is the only relativistic gauge which can be
described by a compensating current (by a relativistic gauge we mean a gauge in which
no direction »n* in space-time is distinguished). However, since a*(x; o) is not real, it has
no clear physical interpretation as a macroscopic current connected with the process of
creation and detection of a charged particle. On the other hand, it is well known that
Landau-gauge formulation of quantum electrodynamics requires “ghost” states with
negative norm squared, and therefore our earlier statement concerning renormalizability
is not true for the case ¢ — oo in (3.4). Thus, as far as the class (3.4) of compensating
currents is concerned, quantum electrodynamics with a compensating current can be
renormalized in good Hilbert space with positive definite metric for finite p. This result
is consistent with the well known fact that Coulomb-gauge quantum electrodynamics
is renormalizable in the state space with positive definite scalar product.

4. Final remarks

We have shown that the compensating current dependent quantum electrodynamics,
formulated in Section 2, is a fully gauge invariant and fully renormalizable theory. This
means that all objects (even those, which in the usual formulation are gauge dependent)
become now gauge invariant, and that the field operators can be constructed in the state
space with positive definite norm.

The next problem to consider should be the problem of field equations or the equa-
tions fulfilled by the propagators. Their right-hand sides contain various kinds of current
operators, such as the Dirac current or the electromagnetic current, given by the formal
products of at least two field operators in the same space-time point. It is well known
that such products can be defined properly with the use of a limiting procedure of the
following type [1, 5, 9, 13]:

X +¢&
lim [g(x +&yyte ™ L 450 y(x — &)].
£~+0

The exponential function has been inserted into this formula to ensure gauge invariance
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at all steps of calculations. In our formulation this exponent must be replaced by an
expression involving the compensating current:

e~ies dizla*M(z—x— &) —atz - x+ O a(z)

Since the current operator, as an observable, is a gauge-invariant object, it should not
depend on a*. Problems connected with a proper definition of the current and its depend-
ence on a* will be studied in a further publication.

The author is greatly indebted to Professor 1. Bialynicki-Birula for suggesting the
problem and for many critical discussions and comments.
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